Mostrar el registro sencillo del ítem
dc.contributor.author | Luts, Jan | es_ES |
dc.contributor.author | Poullet, Jean-Baptiste | es_ES |
dc.contributor.author | Garcia-Gomez, Juan M | es_ES |
dc.contributor.author | Heerschap, Arend | es_ES |
dc.contributor.author | Robles, Montserrat | es_ES |
dc.contributor.author | Suykens, Johan A.K. | es_ES |
dc.contributor.author | Van Huffel, Sabine | es_ES |
dc.date.accessioned | 2020-10-07T03:35:28Z | |
dc.date.available | 2020-10-07T03:35:28Z | |
dc.date.issued | 2008-08 | es_ES |
dc.identifier.issn | 0740-3194 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/151315 | |
dc.description.abstract | [EN] This study examines the effect of feature extraction methods prior to automated pattern recognition based on magnetic resonance spectroscopy (MRS) for brain tumor diagnosis. Since individual inspection of spectra is time-consuming and requires specific spectroscopic expertise, the introduction of clinical decision support systems.(DSSs) is expected to strongly promote the clinical use of MRS. This study focuses on the feature extraction step in the preprocessing protocol of MRS when using a DSS. On two independent data sets, encompassing single-voxel and multi-voxel data, it is observed that the use of the full spectra together with a kernel-based technique, handling high dimensional data, or using an automated pattern recognition method based on independent component analysis or Relief-F achieves accurate performances. In addition, these approaches have low cost and are easy to automate. When sophisticated quantification methods are used in a DSS, user interaction should be minimized. The computationally intensive quantification techniques do not tend to increase the performance in these circumstances. The results suggest to simplify the feature reduction step in the preprocessing protocol when using a DSS purely for classification purposes. This can greatly speed up the execution of classifiers and DSSs and may accelerate their introduction into clinical practice. | es_ES |
dc.description.sponsorship | The authors thank the Institute for Molecules and Materials, Analytical Chemistry, Chemometrics Research Department of the Radboud University Nijmegen for preprocessing the MRSI data. Margarida Julia-Sape is gratefully acknowledged for all data management tasks; the clinical partners represented by Dr. Witold Gajewicz (MUL, Lodzi, Poland) and Jorge Andres Calvar (FLENI, Ciudad de Buenos Aires, Argentina) are gratefully acknowledged for providing data. Grant sponsors: Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen), Research Council KUL: GOA-AMBioRICS, Centers-of-Excellence in Optimisation; Grant sponsor: IDO; Grant number: 05/010 EEG-fMRI; Grant sponsor: Flemish Government: FWO; Grant numbers: G.0360.05, G.0519.06, G.0341.07, G.0321.06, G.0302.07; Grant sponsors: ICCoS, ANMMM, IWT; Grant sponsor: Belgian Federal Government: DWTC; Grant numbers: IUAP IV-02 (1996 2001), IUAP V-22 (2002 2006);Grant sponsor: Belgian Federal Science Policy Office;Grant number: IUAP P6/04; Grant sponsor: EU; Grant number: IST-1999-10310; Grant sponsor: BIOPATTERN; Grant number: FP6-2002-IST 508803; Grant sponsor: eTUMOUR; Grant number: FP6-2002-LIFESCIHEALTH 503094; Grant sponsor: HealthAgents; Grant number: FP6-2005-IST 027213; Grant sponsor: FAST; Grant number: FP6-019279-2; Grant sponsor: ESA: Cardiovascular Control; Grant number: Prodex-8 C90242. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Magnetic Resonance in Medicine | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Brain tumors | es_ES |
dc.subject | Feature extraction | es_ES |
dc.subject | Classification | es_ES |
dc.subject | Decision support system (DSS) | es_ES |
dc.subject | Magnetic resonance spectroscopy (MRS) | es_ES |
dc.subject | Magnetic resonance spectroscopic imaging (MRSI) | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.subject.classification | CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL | es_ES |
dc.title | Effect of feature extraction for brain tumor classification based on short echo time 1H MR spectra | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/mrm.21626 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP6/019279-2/EU | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP6/508803/EU/Computational intelligence for Bio-pattern analysis in support of eHealthcare/BIOPATTERN/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP5/IST-1999-10310/EU/International Network for Pattern Recognition of Tumours using Magnetic Resonance/INTERPRET/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP6/027214/EU/Agent-based Distributed Decision Support System for brain tumour diagnosis and prognosis/HEALTHAGENTS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP6/503094/EU/WEB ACCESSIBLE MR DECISION SUPPORT SYSTEM FOR BRAIN TUMOUR DIAGNOSIS AND PROGNOSIS, INCORPORATING IN VIVO AND EX VIVO GENOMIC AND METABOLIMIC DATA/ETUMOUR/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ESA//Prodex-8 C90242/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/BELSPO//IUAP P6%2F04/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FWO//G.0360.05/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FWO//G.0519.06/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FWO//G.0341.07/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FWO//G.0321.06/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FWO//G.0302.07/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Belgian Federal Government//IUAP IV-02/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Belgian Federal Government//IUAP V-22/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Luts, J.; Poullet, J.; Garcia-Gomez, JM.; Heerschap, A.; Robles, M.; Suykens, JA.; Van Huffel, S. (2008). Effect of feature extraction for brain tumor classification based on short echo time 1H MR spectra. Magnetic Resonance in Medicine. 60(2):288-298. https://doi.org/10.1002/mrm.21626 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/mrm.21626 | es_ES |
dc.description.upvformatpinicio | 288 | es_ES |
dc.description.upvformatpfin | 298 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 60 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.pmid | 18666120 | es_ES |
dc.relation.pasarela | S\36121 | es_ES |
dc.contributor.funder | KU Leuven | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | European Space Agency | es_ES |
dc.contributor.funder | Belgian Federal Government | es_ES |
dc.contributor.funder | Belgian Federal Science Policy Office | es_ES |
dc.contributor.funder | Research Foundation Flanders | es_ES |
dc.contributor.funder | Agency for Innovation by Science and Technology, Flanders | es_ES |
dc.description.references | Preul, M. C., Caramanos, Z., Collins, D. L., Villemure, J.-G., Leblanc, R., Olivier, A., … Arnold, D. L. (1996). Accurate, noninvasive diagnosis of human brain tumors by using proton magnetic resonance spectroscopy. Nature Medicine, 2(3), 323-325. doi:10.1038/nm0396-323 | es_ES |
dc.description.references | Poptani, H., Kaartinen, J., Gupta, R. K., Niemitz, M., Hiltunen, Y., & Kauppinen, R. A. (1999). Diagnostic assessment of brain tumours and non-neoplastic brain disorders in vivo using proton nuclear magnetic resonance spectroscopy and artificial neural networks. Journal of Cancer Research and Clinical Oncology, 125(6), 343-349. doi:10.1007/s004320050284 | es_ES |
dc.description.references | Lindon, J. C., Holmes, E., & Nicholson, J. K. (2001). Pattern recognition methods and applications in biomedical magnetic resonance. Progress in Nuclear Magnetic Resonance Spectroscopy, 39(1), 1-40. doi:10.1016/s0079-6565(00)00036-4 | es_ES |
dc.description.references | Ye, C.-Z., Yang, J., Geng, D.-Y., Zhou, Y., & Chen, N.-Y. (2002). Fuzzy rules to predict degree of malignancy in brain glioma. Medical & Biological Engineering & Computing, 40(2), 145-152. doi:10.1007/bf02348118 | es_ES |
dc.description.references | Tate, A. R., Majós, C., Moreno, A., Howe, F. A., Griffiths, J. R., & Arús, C. (2002). Automated classification of short echo time in in vivo1H brain tumor spectra: A multicenter study. Magnetic Resonance in Medicine, 49(1), 29-36. doi:10.1002/mrm.10315 | es_ES |
dc.description.references | Simonetti, A. W., Melssen, W. J., van der Graaf, M., Postma, G. J., Heerschap, A., & Buydens, L. M. C. (2003). A Chemometric Approach for Brain Tumor Classification Using Magnetic Resonance Imaging and Spectroscopy. Analytical Chemistry, 75(20), 5352-5361. doi:10.1021/ac034541t | es_ES |
dc.description.references | Devos, A., Lukas, L., Suykens, J. A. K., Vanhamme, L., Tate, A. R., Howe, F. A., … Van Huffel, S. (2004). Classification of brain tumours using short echo time 1H MR spectra. Journal of Magnetic Resonance, 170(1), 164-175. doi:10.1016/j.jmr.2004.06.010 | es_ES |
dc.description.references | Provencher, S. W. (1993). Estimation of metabolite concentrations from localizedin vivo proton NMR spectra. Magnetic Resonance in Medicine, 30(6), 672-679. doi:10.1002/mrm.1910300604 | es_ES |
dc.description.references | Somorjai, R. L., Nikulin, A. E., Pizzi, N., Jackson, D., Scarth, G., Dolenko, B., … Smith, I. C. P. (1995). Computerized Consensus Diagnosis: A Classification Strategy for the Robust Analysis of MR Spectra. I. Application to1H Spectra of Thyroid Neoplasms. Magnetic Resonance in Medicine, 33(2), 257-263. doi:10.1002/mrm.1910330217 | es_ES |
dc.description.references | Somorjai, R. L., Dolenko, B., Nikulin, A. K., Pizzi, N., Scarth, G., Zhilkin, P., … Brière, K. M. (1996). Classification of1H MR spectra of human brain neoplasms: The influence of preprocessing and computerized consensus diagnosis on classification accuracy. Journal of Magnetic Resonance Imaging, 6(3), 437-444. doi:10.1002/jmri.1880060305 | es_ES |
dc.description.references | Huang, Y., Lisboa, P. J. G., & El-Deredy, W. (2002). Tumour grading from magnetic resonance spectroscopy: a comparison of feature extraction with variable selection. Statistics in Medicine, 22(1), 147-164. doi:10.1002/sim.1321 | es_ES |
dc.description.references | Lukas, L., Devos, A., Suykens, J. A. K., Vanhamme, L., Howe, F. A., Majós, C., … Van Huffel, S. (2004). Brain tumor classification based on long echo proton MRS signals. Artificial Intelligence in Medicine, 31(1), 73-89. doi:10.1016/j.artmed.2004.01.001 | es_ES |
dc.description.references | Kelm, B. M., Menze, B. H., Zechmann, C. M., Baudendistel, K. T., & Hamprecht, F. A. (2006). Automated estimation of tumor probability in prostate magnetic resonance spectroscopic imaging: Pattern recognition vs quantification. Magnetic Resonance in Medicine, 57(1), 150-159. doi:10.1002/mrm.21112 | es_ES |
dc.description.references | Suykens, J. A. K., & Vandewalle, J. (1999). Neural Processing Letters, 9(3), 293-300. doi:10.1023/a:1018628609742 | es_ES |
dc.description.references | Suykens, J. A. K., Van Gestel, T., De Brabanter, J., De Moor, B., & Vandewalle, J. (2002). Least Squares Support Vector Machines. doi:10.1142/5089 | es_ES |
dc.description.references | Devos, A., Simonetti, A. W., van der Graaf, M., Lukas, L., Suykens, J. A. K., Vanhamme, L., … Van Huffel, S. (2005). The use of multivariate MR imaging intensities versus metabolic data from MR spectroscopic imaging for brain tumour classification. Journal of Magnetic Resonance, 173(2), 218-228. doi:10.1016/j.jmr.2004.12.007 | es_ES |
dc.description.references | Klose, U. (1990). In vivo proton spectroscopy in presence of eddy currents. Magnetic Resonance in Medicine, 14(1), 26-30. doi:10.1002/mrm.1910140104 | es_ES |
dc.description.references | Marshall, I., Higinbotham, J., Bruce, S., & Freise, A. (1997). Use of voigt lineshape for quantification ofin vivo1H spectra. Magnetic Resonance in Medicine, 37(5), 651-657. doi:10.1002/mrm.1910370504 | es_ES |
dc.description.references | Simonetti, A. ., Melssen, W. ., van der Graaf, M., Heerschap, A., & Buydens, L. M. . (2002). Automated correction of unwanted phase jumps in reference signals which corrupt MRSI spectra after eddy current correction. Journal of Magnetic Resonance, 159(2), 151-157. doi:10.1016/s1090-7807(02)00102-7 | es_ES |
dc.description.references | Tong, Z., Yamaki, T., Harada, K., & Houkin, K. (2004). In vivo quantification of the metabolites in normal brain and brain tumors by proton MR spectroscopy using water as an internal standard. Magnetic Resonance Imaging, 22(5), 735-742. doi:10.1016/j.mri.2004.02.006 | es_ES |
dc.description.references | FISHER, R. A. (1936). THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS. Annals of Eugenics, 7(2), 179-188. doi:10.1111/j.1469-1809.1936.tb02137.x | es_ES |
dc.description.references | Robnik-Šikonja, M., & Kononenko, I. (2003). Machine Learning, 53(1/2), 23-69. doi:10.1023/a:1025667309714 | es_ES |
dc.description.references | Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123-140. doi:10.1007/bf00058655 | es_ES |
dc.description.references | Garczarek UM. Classification rules in standardized partition spaces, Ph.D. Thesis, University of Dortmund, 2002. | es_ES |
dc.description.references | Sundin, T., Vanhamme, L., Van Hecke, P., Dologlou, I., & Van Huffel, S. (1999). Accurate Quantification of 1H Spectra: From Finite Impulse Response Filter Design for Solvent Suppression to Parameter Estimation. Journal of Magnetic Resonance, 139(2), 189-204. doi:10.1006/jmre.1999.1782 | es_ES |
dc.description.references | Hochberg, Y., & Tamhane, A. C. (Eds.). (1987). Multiple Comparison Procedures. Wiley Series in Probability and Statistics. doi:10.1002/9780470316672 | es_ES |
dc.description.references | Chuan Lu, Devos, A., Suykens, J. A. K., Arus, C., & Van Huffel, S. (2007). Bagging Linear Sparse Bayesian Learning Models for Variable Selection in Cancer Diagnosis. IEEE Transactions on Information Technology in Biomedicine, 11(3), 338-347. doi:10.1109/titb.2006.889702 | es_ES |