- -

Hydrological Alteration Index as an Indicator of the Calibration Complexity of Water Quantity and Quality Modeling in the Context of Global Change

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Hydrological Alteration Index as an Indicator of the Calibration Complexity of Water Quantity and Quality Modeling in the Context of Global Change

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cakir, Roxelane es_ES
dc.contributor.author Raimonet, Mélanie es_ES
dc.contributor.author Sauvage, Sabine es_ES
dc.contributor.author Paredes Arquiola, Javier es_ES
dc.contributor.author Grusson, Youen es_ES
dc.contributor.author Roset, Laure es_ES
dc.contributor.author Meaurio, Maite es_ES
dc.contributor.author Navarro, Enrique es_ES
dc.contributor.author Sevilla-Callejo, Miguel es_ES
dc.contributor.author Lechuga-Crespo, Juan Luis es_ES
dc.contributor.author Gomiz Pascual, Juan Jesús es_ES
dc.contributor.author Bodoque, Jose María es_ES
dc.contributor.author Sánchez-Pérez, José Miguel es_ES
dc.date.accessioned 2020-10-07T03:35:43Z
dc.date.available 2020-10-07T03:35:43Z
dc.date.issued 2020-01 es_ES
dc.identifier.issn 2073-4441 es_ES
dc.identifier.uri http://hdl.handle.net/10251/151319
dc.description.abstract [EN] Modeling is a useful way to understand human and climate change impacts on the water resources of agricultural watersheds. Calibration and validation methodologies are crucial in forecasting assessments. This study explores the best calibration methodology depending on the level of hydrological alteration due to human-derived stressors. The Soil and Water Assessment Tool (SWAT) model is used to evaluate hydrology in South-West Europe in a context of intensive agriculture and water scarcity. The Index of Hydrological Alteration (IHA) is calculated using discharge observation data. A comparison of two SWAT calibration methodologies are done; a conventional calibration (CC) based on recorded in-stream water quality and quantity and an additional calibration (AC) adding crop managements practices. Even if the water quality and quantity trends are similar between CC and AC, water balance, irrigation and crop yields are different. In the context of rainfall decrease, water yield decreases in both CC and AC, while crop productions present opposite trends (+33% in CC and ¿31% in AC). Hydrological performance between CC and AC is correlated to IHA: When the level of IHA is under 80%, AC methodology is necessary. The combination of both calibrations appears essential to better constrain the model and to forecast the impact of climate change or anthropogenic influences on water resources. es_ES
dc.description.sponsorship This project was supported by the Université Toulouse III Paul Sabatier and by the Ministry of Higher Education and Research. This study was performed as part of the EU Interreg SUDOE IVB program (AGUAMOD SOE1/P5/F0026 project, http://www.aguamod-sudoe.eu) and also supported by ERDF. We want to thank all the partners of this program that shared data and helped with their expertise on irrigation, dam and crop yield management and streamflow calibration: l Agence de l eau Adour-Garonne, la Compagnie d Aménagement des Coteaux de Gascogne, el Universidad Politecnica de Valencia, la Banque Hydro, l Electricité De France (EDF) (the project REGARD-RTRA/STAE), le Syndicat Mixte d Etude et d Aménagement de la Garonne, l Institute National de la Statistique et des Etudes Economiques, el Instituto Nacional de Estatística de Portugal y de España, el Consejo Superior de Investigaciones Científicas, El Ministerio para la Transición Ecológica and el Ministerio de Agricultura, Pesca y Alimentación of Spain. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Water es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject SWAT es_ES
dc.subject Calibration es_ES
dc.subject Large-scale es_ES
dc.subject Water resource es_ES
dc.subject Quality es_ES
dc.subject Global change es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Hydrological Alteration Index as an Indicator of the Calibration Complexity of Water Quantity and Quality Modeling in the Context of Global Change es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/w12010115 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/Interreg Sudoe/SOE1%2FP5%2FF0026/EU/Développment d'une plateforme de gestion des ressources en eau à l'étiage sur le territoire SUDOE/AGUAMOD/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Cakir, R.; Raimonet, M.; Sauvage, S.; Paredes Arquiola, J.; Grusson, Y.; Roset, L.; Meaurio, M.... (2020). Hydrological Alteration Index as an Indicator of the Calibration Complexity of Water Quantity and Quality Modeling in the Context of Global Change. Water. 12(1):1-33. https://doi.org/10.3390/w12010115 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/w12010115 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 33 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\402225 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Université Toulouse III Paul Sabatier es_ES
dc.contributor.funder Ministère de l'Enseignement Supérieur et de la Recherche, Francia es_ES
dc.description.references Eliasson, J. (2014). The rising pressure of global water shortages. Nature, 517(7532), 6-6. doi:10.1038/517006a es_ES
dc.description.references Mekonnen, M. M., & Hoekstra, A. Y. (2016). Four billion people facing severe water scarcity. Science Advances, 2(2), e1500323. doi:10.1126/sciadv.1500323 es_ES
dc.description.references Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., … Davies, P. M. (2010). Global threats to human water security and river biodiversity. Nature, 467(7315), 555-561. doi:10.1038/nature09440 es_ES
dc.description.references Raimonet, M., Thieu, V., Silvestre, M., Oudin, L., Rabouille, C., Vautard, R., & Garnier, J. (2018). Landward Perspective of Coastal Eutrophication Potential Under Future Climate Change: The Seine River Case (France). Frontiers in Marine Science, 5. doi:10.3389/fmars.2018.00136 es_ES
dc.description.references Roudier, P., Andersson, J. C. M., Donnelly, C., Feyen, L., Greuell, W., & Ludwig, F. (2015). Projections of future floods and hydrological droughts in Europe under a +2°C global warming. Climatic Change, 135(2), 341-355. doi:10.1007/s10584-015-1570-4 es_ES
dc.description.references Fu, B., Merritt, W. S., Croke, B. F. W., Weber, T. R., & Jakeman, A. J. (2019). A review of catchment-scale water quality and erosion models and a synthesis of future prospects. Environmental Modelling & Software, 114, 75-97. doi:10.1016/j.envsoft.2018.12.008 es_ES
dc.description.references Abbaspour, K. C., Rouholahnejad, E., Vaghefi, S., Srinivasan, R., Yang, H., & Kløve, B. (2015). A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of Hydrology, 524, 733-752. doi:10.1016/j.jhydrol.2015.03.027 es_ES
dc.description.references Grusson, Y., Anctil, F., Sauvage, S., & Pérez, J. M. S. (2018). Coevolution of Hydrological Cycle Components under Climate Change: The Case of the Garonne River in France. Water, 10(12), 1870. doi:10.3390/w10121870 es_ES
dc.description.references Biancamaria, S., Mballo, M., Le Moigne, P., Sánchez Pérez, J. M., Espitalier-Noël, G., Grusson, Y., … Sauvage, S. (2019). Total water storage variability from GRACE mission and hydrological models for a 50,000 km2 temperate watershed: the Garonne River basin (France). Journal of Hydrology: Regional Studies, 24, 100609. doi:10.1016/j.ejrh.2019.100609 es_ES
dc.description.references Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria. (2015). Transactions of the ASABE, 58(6), 1763-1785. doi:10.13031/trans.58.10715 es_ES
dc.description.references Holzworth, D. P., Huth, N. I., deVoil, P. G., Zurcher, E. J., Herrmann, N. I., McLean, G., … Keating, B. A. (2014). APSIM – Evolution towards a new generation of agricultural systems simulation. Environmental Modelling & Software, 62, 327-350. doi:10.1016/j.envsoft.2014.07.009 es_ES
dc.description.references Wade, A. J., Durand, P., Beaujouan, V., Wessel, W. W., Raat, K. J., Whitehead, P. G., … Lepisto, A. (2002). A nitrogen model for European catchments: INCA, new model structure and equations. Hydrology and Earth System Sciences, 6(3), 559-582. doi:10.5194/hess-6-559-2002 es_ES
dc.description.references Arnold, J. G., Srinivasan, R., Muttiah, R. S., & Williams, J. R. (1998). LARGE AREA HYDROLOGIC MODELING AND ASSESSMENT PART I: MODEL DEVELOPMENT. Journal of the American Water Resources Association, 34(1), 73-89. doi:10.1111/j.1752-1688.1998.tb05961.x es_ES
dc.description.references Ruelland, D., Billen, G., Brunstein, D., & Garnier, J. (2007). SENEQUE: A multi-scaling GIS interface to the Riverstrahler model of the biogeochemical functioning of river systems. Science of The Total Environment, 375(1-3), 257-273. doi:10.1016/j.scitotenv.2006.12.014 es_ES
dc.description.references Sparrow, A. D., Friedel, M. H., & Smith, D. M. S. (1997). A landscape-scale model of shrub and herbage dynamics in Central Australia, validated by satellite data. Ecological Modelling, 97(3), 197-216. doi:10.1016/s0304-3800(96)01904-7 es_ES
dc.description.references Oeurng, C., Sauvage, S., & Sánchez-Pérez, J.-M. (2011). Assessment of hydrology, sediment and particulate organic carbon yield in a large agricultural catchment using the SWAT model. Journal of Hydrology, 401(3-4), 145-153. doi:10.1016/j.jhydrol.2011.02.017 es_ES
dc.description.references Volk, M., Sauvage, S., Sánchez-Pérez, J.-M., & Biegerd, K. (2016). Development and applications of the SWAT model to support sustainable river basin management on different scales. Sustainability of Water Quality and Ecology, 8, 1-3. doi:10.1016/j.swaqe.2016.12.001 es_ES
dc.description.references Gassman, P. W., Sadeghi, A. M., & Srinivasan, R. (2014). Applications of the SWAT Model Special Section: Overview and Insights. Journal of Environmental Quality, 43(1), 1-8. doi:10.2134/jeq2013.11.0466 es_ES
dc.description.references Arnold, J. G., Srinivasan, R., Muttiah, R. S., & Allen, P. M. (1999). CONTINENTAL SCALE SIMULATION OF THE HYDROLOGIC BALANCE. Journal of the American Water Resources Association, 35(5), 1037-1051. doi:10.1111/j.1752-1688.1999.tb04192.x es_ES
dc.description.references Zalasiewicz, J., Waters, C., Summerhayes, C., & Williams, M. (2018). The Anthropocene. Geology Today, 34(5), 177-181. doi:10.1111/gto.12244 es_ES
dc.description.references Volk, M., Bosch, D., Nangia, V., & Narasimhan, B. (2016). SWAT: Agricultural water and nonpoint source pollution management at a watershed scale. Agricultural Water Management, 175, 1-3. doi:10.1016/j.agwat.2016.06.013 es_ES
dc.description.references Volk, M. (2015). Modelling ecosystem services: Current approaches, challenges and perspectives. Sustainability of Water Quality and Ecology, 5, 1-2. doi:10.1016/j.swaqe.2015.05.002 es_ES
dc.description.references Grizzetti, B., Pistocchi, A., Liquete, C., Udias, A., Bouraoui, F., & van de Bund, W. (2017). Human pressures and ecological status of European rivers. Scientific Reports, 7(1). doi:10.1038/s41598-017-00324-3 es_ES
dc.description.references Richter, B. D., Baumgartner, J. V., Powell, J., & Braun, D. P. (1996). A Method for Assessing Hydrologic Alteration within Ecosystems. Conservation Biology, 10(4), 1163-1174. doi:10.1046/j.1523-1739.1996.10041163.x es_ES
dc.description.references EEA Report European Waters—Assessment of Status and Pressures 2018https://www.eea.europa.eu/publications/state-of-water es_ES
dc.description.references The Statistical Office of the European Union Water use by NUTS 2 regions—Eurostathttps://ec.europa.eu/eurostat/web/products-datasets/-/env_watuse_r2 es_ES
dc.description.references Romero, E., Garnier, J., Lassaletta, L., Billen, G., Le Gendre, R., Riou, P., & Cugier, P. (2012). Large-scale patterns of river inputs in southwestern Europe: seasonal and interannual variations and potential eutrophication effects at the coastal zone. Biogeochemistry, 113(1-3), 481-505. doi:10.1007/s10533-012-9778-0 es_ES
dc.description.references Gao, Y., Vogel, R. M., Kroll, C. N., Poff, N. L., & Olden, J. D. (2009). Development of representative indicators of hydrologic alteration. Journal of Hydrology, 374(1-2), 136-147. doi:10.1016/j.jhydrol.2009.06.009 es_ES
dc.description.references Richter, B. D., Mathews, R., Harrison, D. L., & Wigington, R. (2003). ECOLOGICALLY SUSTAINABLE WATER MANAGEMENT: MANAGING RIVER FLOWS FOR ECOLOGICAL INTEGRITY. Ecological Applications, 13(1), 206-224. doi:10.1890/1051-0761(2003)013[0206:eswmmr]2.0.co;2 es_ES
dc.description.references Richter, B. D., Baumgartner, J. V., Braun, D. P., & Powell, J. (1998). A spatial assessment of hydrologic alteration within a river network. Regulated Rivers: Research & Management, 14(4), 329-340. doi:10.1002/(sici)1099-1646(199807/08)14:4<329::aid-rrr505>3.0.co;2-e es_ES
dc.description.references Bioclimatic map of Europe, bioclimates, University of León, E-24071, Spainhttps://www.globalbioclimatics.org/form/maps.htm es_ES
dc.description.references AQUASTAThttp://www.fao.org/nr/water/aquastat/data/query/results.html es_ES
dc.description.references Cunge, J. A. (1969). On The Subject Of A Flood Propagation Computation Method (Musklngum Method). Journal of Hydraulic Research, 7(2), 205-230. doi:10.1080/00221686909500264 es_ES
dc.description.references George H. Hargreaves, & Zohrab A. Samani. (1985). Reference Crop Evapotranspiration from Temperature. Applied Engineering in Agriculture, 1(2), 96-99. doi:10.13031/2013.26773 es_ES
dc.description.references Hargreaves, G. H., & Allen, R. G. (2003). History and Evaluation of Hargreaves Evapotranspiration Equation. Journal of Irrigation and Drainage Engineering, 129(1), 53-63. doi:10.1061/(asce)0733-9437(2003)129:1(53) es_ES
dc.description.references P. W. Gassman, M. R. Reyes, C. H. Green, & J. G. Arnold. (2007). The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions. Transactions of the ASABE, 50(4), 1211-1250. doi:10.13031/2013.23637 es_ES
dc.description.references Battude, M., Al Bitar, A., Brut, A., Tallec, T., Huc, M., Cros, J., … Demarez, V. (2017). Modeling water needs and total irrigation depths of maize crop in the south west of France using high spatial and temporal resolution satellite imagery. Agricultural Water Management, 189, 123-136. doi:10.1016/j.agwat.2017.04.018 es_ES
dc.description.references Gilmore, E. C., & Rogers, J. S. (1958). Heat Units as a Method of Measuring Maturity in Corn 1. Agronomy Journal, 50(10), 611-615. doi:10.2134/agronj1958.00021962005000100014x es_ES
dc.description.references Climate and the efficiency of crop production in Britain. (1977). Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 281(980), 277-294. doi:10.1098/rstb.1977.0140 es_ES
dc.description.references Gesch, D., Farr, T., Slater, J., Muller, J.-P., & Cook, S. (2006). New products from the shuttle radar topography mission. Eos, Transactions American Geophysical Union, 87(18), 174. doi:10.1029/2006eo180003 es_ES
dc.description.references Häggmark, L., Ivarsson, K.-I., Gollvik, S., & Olofsson, P.-O. (2000). Mesan, an operational mesoscale analysis system. Tellus A: Dynamic Meteorology and Oceanography, 52(1), 2-20. doi:10.3402/tellusa.v52i1.12250 es_ES
dc.description.references Landelius, T., Dahlgren, P., Gollvik, S., Jansson, A., & Olsson, E. (2016). A high‐resolution regional reanalysis for Europe. Part 2: 2D analysis of surface temperature, precipitation and wind. Quarterly Journal of the Royal Meteorological Society, 142(698), 2132-2142. doi:10.1002/qj.2813 es_ES
dc.description.references Raimonet, M., Oudin, L., Thieu, V., Silvestre, M., Vautard, R., Rabouille, C., & Le Moigne, P. (2017). Evaluation of Gridded Meteorological Datasets for Hydrological Modeling. Journal of Hydrometeorology, 18(11), 3027-3041. doi:10.1175/jhm-d-17-0018.1 es_ES
dc.description.references Quintana-Seguí, P., Le Moigne, P., Durand, Y., Martin, E., Habets, F., Baillon, M., … Morel, S. (2008). Analysis of Near-Surface Atmospheric Variables: Validation of the SAFRAN Analysis over France. Journal of Applied Meteorology and Climatology, 47(1), 92-107. doi:10.1175/2007jamc1636.1 es_ES
dc.description.references Quintana-Seguí, P. (2016). Meteorological Analysis Systems in North-East Spain: Validation of SAFRAN and SPAN. Journal of Environmental Informatics. doi:10.3808/jei.201600335 es_ES
dc.description.references EEA Report UWWTD Data Sourceshttps://www.eea.europa.eu/themes/water/european-waters/water-use-and-environmental-pressures/uwwtd/uwwtd-data-sources es_ES
dc.description.references Zessner, M., & Lindtner, S. (2005). Estimations of municipal point source pollution in the context of river basin management. Water Science and Technology, 52(9), 175-182. doi:10.2166/wst.2005.0313 es_ES
dc.description.references Loubier, S., Campardon, M., & Morardet, S. (2013). L’irrigation diminue-t-elle en France ? Premiers enseignements du recensement agricole de 2010. Sciences Eaux & Territoires, Numéro 11(2), 12. doi:10.3917/set.011.0012 es_ES
dc.description.references Hengl, T., de Jesus, J. M., MacMillan, R. A., Batjes, N. H., Heuvelink, G. B. M., Ribeiro, E., … Gonzalez, M. R. (2014). SoilGrids1km — Global Soil Information Based on Automated Mapping. PLoS ONE, 9(8), e105992. doi:10.1371/journal.pone.0105992 es_ES
dc.description.references Abbaspour, K., Vaghefi, S., & Srinivasan, R. (2017). A Guideline for Successful Calibration and Uncertainty Analysis for Soil and Water Assessment: A Review of Papers from the 2016 International SWAT Conference. Water, 10(1), 6. doi:10.3390/w10010006 es_ES
dc.description.references Van Griensven, A., Meixner, T., Grunwald, S., Bishop, T., Diluzio, M., & Srinivasan, R. (2006). A global sensitivity analysis tool for the parameters of multi-variable catchment models. Journal of Hydrology, 324(1-4), 10-23. doi:10.1016/j.jhydrol.2005.09.008 es_ES
dc.description.references J. G. Arnold, D. N. Moriasi, P. W. Gassman, K. C. Abbaspour, M. J. White, R. Srinivasan, … M. K. Jha. (2012). SWAT: Model Use, Calibration, and Validation. Transactions of the ASABE, 55(4), 1491-1508. doi:10.13031/2013.42256 es_ES
dc.description.references Khalid, K., Ali, M. F., Rahman, N. F. A., Mispan, M. R., Haron, S. H., Othman, Z., & Bachok, M. F. (2016). Sensitivity Analysis in Watershed Model Using SUFI-2 Algorithm. Procedia Engineering, 162, 441-447. doi:10.1016/j.proeng.2016.11.086 es_ES
dc.description.references Yang, J., Reichert, P., Abbaspour, K. C., Xia, J., & Yang, H. (2008). Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China. Journal of Hydrology, 358(1-2), 1-23. doi:10.1016/j.jhydrol.2008.05.012 es_ES
dc.description.references D. N. Moriasi, J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, & T. L. Veith. (2007). Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Transactions of the ASABE, 50(3), 885-900. doi:10.13031/2013.23153 es_ES
dc.description.references Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of Hydrology, 377(1-2), 80-91. doi:10.1016/j.jhydrol.2009.08.003 es_ES
dc.description.references Kling, H., Fuchs, M., & Paulin, M. (2012). Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. Journal of Hydrology, 424-425, 264-277. doi:10.1016/j.jhydrol.2012.01.011 es_ES
dc.description.references Knoben, W. J. M., Freer, J. E., & Woods, R. A. (2019). Technical note: Inherent benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores. Hydrology and Earth System Sciences, 23(10), 4323-4331. doi:10.5194/hess-23-4323-2019 es_ES
dc.description.references Runkel, R. L., Crawford, C. G., & Cohn, T. A. (2004). Load estimator (LOADEST): a FORTRAN program for estimating constituent loads in streams and rivers. Techniques and Methods. doi:10.3133/tm4a5 es_ES
dc.description.references Boithias, L., Srinivasan, R., Sauvage, S., Macary, F., & Sánchez-Pérez, J. M. (2014). Daily Nitrate Losses: Implication on Long-Term River Quality in an Intensive Agricultural Catchment of Southwestern France. Journal of Environmental Quality, 43(1), 46-54. doi:10.2134/jeq2011.0367 es_ES
dc.description.references Meaurio, M., Zabaleta, A., Uriarte, J. A., Srinivasan, R., & Antigüedad, I. (2015). Evaluation of SWAT models performance to simulate streamflow spatial origin. The case of a small forested watershed. Journal of Hydrology, 525, 326-334. doi:10.1016/j.jhydrol.2015.03.050 es_ES
dc.description.references Mittelstet, A. R., Storm, D. E., & White, M. J. (2016). Using SWAT to enhance watershed-based plans to meet numeric water quality standards. Sustainability of Water Quality and Ecology, 7, 5-21. doi:10.1016/j.swaqe.2016.01.002 es_ES
dc.description.references Spearman, C. (1904). The Proof and Measurement of Association between Two Things. The American Journal of Psychology, 15(1), 72. doi:10.2307/1412159 es_ES
dc.description.references Taguas, E. V., Gómez, J. A., Denisi, P., & Mateos, L. (2015). Modelling the Rainfall-Runoff Relationships in a Large Olive Orchard Catchment in Southern Spain. Water Resources Management, 29(7), 2361-2375. doi:10.1007/s11269-015-0946-6 es_ES
dc.description.references Vicente, D. J., Rodríguez-Sinobas, L., Garrote, L., & Sánchez, R. (2018). Applying Water Accounting Methods Through Statistical Data and Simulation Models. Advances in Chemical Pollution, Environmental Management and Protection, 115-146. doi:10.1016/bs.apmp.2018.06.001 es_ES
dc.description.references Vautard, R., Gobiet, A., Sobolowski, S., Kjellström, E., Stegehuis, A., Watkiss, P., … Jacob, D. (2014). The European climate under a 2 °C global warming. Environmental Research Letters, 9(3), 034006. doi:10.1088/1748-9326/9/3/034006 es_ES
dc.description.references Wei, X., Sauvage, S., Le, T. P. Q., Ouillon, S., Orange, D., Vinh, V. D., & Sanchez-Perez, J.-M. (2019). A Modeling Approach to Diagnose the Impacts of Global Changes on Discharge and Suspended Sediment Concentration within the Red River Basin. Water, 11(5), 958. doi:10.3390/w11050958 es_ES
dc.description.references Jeuffroy, M.-H., Casadebaig, P., Debaeke, P., Loyce, C., & Meynard, J.-M. (2013). Agronomic model uses to predict cultivar performance in various environments and cropping systems. A review. Agronomy for Sustainable Development, 34(1), 121-137. doi:10.1007/s13593-013-0170-9 es_ES
dc.description.references Uribe, N., Corzo, G., Quintero, M., van Griensven, A., & Solomatine, D. (2018). Impact of conservation tillage on nitrogen and phosphorus runoff losses in a potato crop system in Fuquene watershed, Colombia. Agricultural Water Management, 209, 62-72. doi:10.1016/j.agwat.2018.07.006 es_ES
dc.description.references Estrela, T., Pérez-Martin, M. A., & Vargas, E. (2012). Impacts of climate change on water resources in Spain. Hydrological Sciences Journal, 57(6), 1154-1167. doi:10.1080/02626667.2012.702213 es_ES
dc.description.references Robles-Morua, A., Halvorsen, K. E., Mayer, A. S., & Vivoni, E. R. (2014). Exploring the application of participatory modeling approaches in the Sonora River Basin, Mexico. Environmental Modelling & Software, 52, 273-282. doi:10.1016/j.envsoft.2013.10.006 es_ES
dc.description.references Starkl, M., Brunner, N., López, E., & Martínez-Ruiz, J. L. (2013). A planning-oriented sustainability assessment framework for peri-urban water management in developing countries. Water Research, 47(20), 7175-7183. doi:10.1016/j.watres.2013.10.037 es_ES
dc.description.references Kim, J., Lim, K. J., & Park, Y. S. (2018). Evaluation of Regression Models of LOADEST and Eight-Parameter Model for Nitrogen Load Estimations. Water, Air, & Soil Pollution, 229(6). doi:10.1007/s11270-018-3844-8 es_ES
dc.description.references Cerro, I., Antigüedad, I., Srinavasan, R., Sauvage, S., Volk, M., & Sanchez-Perez, J. M. (2014). Simulating Land Management Options to Reduce Nitrate Pollution in an Agricultural Watershed Dominated by an Alluvial Aquifer. Journal of Environmental Quality, 43(1), 67-74. doi:10.2134/jeq2011.0393 es_ES
dc.description.references Jégo, G., Martínez, M., Antigüedad, I., Launay, M., Sanchez-Pérez, J. M., & Justes, E. (2008). Evaluation of the impact of various agricultural practices on nitrate leaching under the root zone of potato and sugar beet using the STICS soil–crop model. Science of The Total Environment, 394(2-3), 207-221. doi:10.1016/j.scitotenv.2008.01.021 es_ES
dc.description.references Olesen, J. E., Carter, T. R., Díaz-Ambrona, C. H., Fronzek, S., Heidmann, T., Hickler, T., … Sykes, M. T. (2007). Uncertainties in projected impacts of climate change on European agriculture and terrestrial ecosystems based on scenarios from regional climate models. Climatic Change, 81(S1), 123-143. doi:10.1007/s10584-006-9216-1 es_ES
dc.description.references Stahl, K., Hisdal, H., Hannaford, J., Tallaksen, L. M., van Lanen, H. A. J., Sauquet, E., … Jódar, J. (2010). Streamflow trends in Europe: evidence from a dataset of near-natural catchments. Hydrology and Earth System Sciences, 14(12), 2367-2382. doi:10.5194/hess-14-2367-2010 es_ES
dc.description.references Jeppesen, E., Kronvang, B., Olesen, J. E., Audet, J., Søndergaard, M., Hoffmann, C. C., … Özkan, K. (2010). Climate change effects on nitrogen loading from cultivated catchments in Europe: implications for nitrogen retention, ecological state of lakes and adaptation. Hydrobiologia, 663(1), 1-21. doi:10.1007/s10750-010-0547-6 es_ES
dc.description.references Peraza-Castro, M., Ruiz-Romera, E., Meaurio, M., Sauvage, S., & Sánchez-Pérez, J. M. (2018). Modelling the impact of climate and land cover change on hydrology and water quality in a forest watershed in the Basque Country (Northern Spain). Ecological Engineering, 122, 315-326. doi:10.1016/j.ecoleng.2018.07.016 es_ES
dc.description.references Pesce, M., Critto, A., Torresan, S., Giubilato, E., Santini, M., Zirino, A., … Marcomini, A. (2018). Modelling climate change impacts on nutrients and primary production in coastal waters. Science of The Total Environment, 628-629, 919-937. doi:10.1016/j.scitotenv.2018.02.131 es_ES
dc.description.references Sinnathamby, S., Douglas-Mankin, K. R., & Craige, C. (2017). Field-scale calibration of crop-yield parameters in the Soil and Water Assessment Tool (SWAT). Agricultural Water Management, 180, 61-69. doi:10.1016/j.agwat.2016.10.024 es_ES
dc.description.references Gudmundsson, L., Tallaksen, L. M., Stahl, K., Clark, D. B., Dumont, E., Hagemann, S., … Koirala, S. (2012). Comparing Large-Scale Hydrological Model Simulations to Observed Runoff Percentiles in Europe. Journal of Hydrometeorology, 13(2), 604-620. doi:10.1175/jhm-d-11-083.1 es_ES
dc.description.references Kauffeldt, A., Halldin, S., Rodhe, A., Xu, C.-Y., & Westerberg, I. K. (2013). Disinformative data in large-scale hydrological modelling. Hydrology and Earth System Sciences, 17(7), 2845-2857. doi:10.5194/hess-17-2845-2013 es_ES
dc.description.references Döll, P., Kaspar, F., & Lehner, B. (2003). A global hydrological model for deriving water availability indicators: model tuning and validation. Journal of Hydrology, 270(1-2), 105-134. doi:10.1016/s0022-1694(02)00283-4 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem