- -

Hydrological Alteration Index as an Indicator of the Calibration Complexity of Water Quantity and Quality Modeling in the Context of Global Change

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Hydrological Alteration Index as an Indicator of the Calibration Complexity of Water Quantity and Quality Modeling in the Context of Global Change

Mostrar el registro completo del ítem

Cakir, R.; Raimonet, M.; Sauvage, S.; Paredes Arquiola, J.; Grusson, Y.; Roset, L.; Meaurio, M.... (2020). Hydrological Alteration Index as an Indicator of the Calibration Complexity of Water Quantity and Quality Modeling in the Context of Global Change. Water. 12(1):1-33. https://doi.org/10.3390/w12010115

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/151319

Ficheros en el ítem

Metadatos del ítem

Título: Hydrological Alteration Index as an Indicator of the Calibration Complexity of Water Quantity and Quality Modeling in the Context of Global Change
Autor: Cakir, Roxelane Raimonet, Mélanie Sauvage, Sabine Paredes Arquiola, Javier Grusson, Youen Roset, Laure Meaurio, Maite Navarro, Enrique Sevilla-Callejo, Miguel Lechuga-Crespo, Juan Luis Gomiz Pascual, Juan Jesús Bodoque, Jose María Sánchez-Pérez, José Miguel
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Fecha difusión:
Resumen:
[EN] Modeling is a useful way to understand human and climate change impacts on the water resources of agricultural watersheds. Calibration and validation methodologies are crucial in forecasting assessments. This study ...[+]
Palabras clave: SWAT , Calibration , Large-scale , Water resource , Quality , Global change
Derechos de uso: Reconocimiento (by)
Fuente:
Water. (issn: 2073-4441 )
DOI: 10.3390/w12010115
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/w12010115
Código del Proyecto:
info:eu-repo/grantAgreement/EC/Interreg Sudoe/SOE1%2FP5%2FF0026/EU/Développment d'une plateforme de gestion des ressources en eau à l'étiage sur le territoire SUDOE/AGUAMOD/
Agradecimientos:
This project was supported by the Université Toulouse III Paul Sabatier and by the Ministry of Higher Education and Research. This study was performed as part of the EU Interreg SUDOE IVB program (AGUAMOD SOE1/P5/F0026 ...[+]
Tipo: Artículo

References

Eliasson, J. (2014). The rising pressure of global water shortages. Nature, 517(7532), 6-6. doi:10.1038/517006a

Mekonnen, M. M., & Hoekstra, A. Y. (2016). Four billion people facing severe water scarcity. Science Advances, 2(2), e1500323. doi:10.1126/sciadv.1500323

Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., … Davies, P. M. (2010). Global threats to human water security and river biodiversity. Nature, 467(7315), 555-561. doi:10.1038/nature09440 [+]
Eliasson, J. (2014). The rising pressure of global water shortages. Nature, 517(7532), 6-6. doi:10.1038/517006a

Mekonnen, M. M., & Hoekstra, A. Y. (2016). Four billion people facing severe water scarcity. Science Advances, 2(2), e1500323. doi:10.1126/sciadv.1500323

Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., … Davies, P. M. (2010). Global threats to human water security and river biodiversity. Nature, 467(7315), 555-561. doi:10.1038/nature09440

Raimonet, M., Thieu, V., Silvestre, M., Oudin, L., Rabouille, C., Vautard, R., & Garnier, J. (2018). Landward Perspective of Coastal Eutrophication Potential Under Future Climate Change: The Seine River Case (France). Frontiers in Marine Science, 5. doi:10.3389/fmars.2018.00136

Roudier, P., Andersson, J. C. M., Donnelly, C., Feyen, L., Greuell, W., & Ludwig, F. (2015). Projections of future floods and hydrological droughts in Europe under a +2°C global warming. Climatic Change, 135(2), 341-355. doi:10.1007/s10584-015-1570-4

Fu, B., Merritt, W. S., Croke, B. F. W., Weber, T. R., & Jakeman, A. J. (2019). A review of catchment-scale water quality and erosion models and a synthesis of future prospects. Environmental Modelling & Software, 114, 75-97. doi:10.1016/j.envsoft.2018.12.008

Abbaspour, K. C., Rouholahnejad, E., Vaghefi, S., Srinivasan, R., Yang, H., & Kløve, B. (2015). A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of Hydrology, 524, 733-752. doi:10.1016/j.jhydrol.2015.03.027

Grusson, Y., Anctil, F., Sauvage, S., & Pérez, J. M. S. (2018). Coevolution of Hydrological Cycle Components under Climate Change: The Case of the Garonne River in France. Water, 10(12), 1870. doi:10.3390/w10121870

Biancamaria, S., Mballo, M., Le Moigne, P., Sánchez Pérez, J. M., Espitalier-Noël, G., Grusson, Y., … Sauvage, S. (2019). Total water storage variability from GRACE mission and hydrological models for a 50,000 km2 temperate watershed: the Garonne River basin (France). Journal of Hydrology: Regional Studies, 24, 100609. doi:10.1016/j.ejrh.2019.100609

Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria. (2015). Transactions of the ASABE, 58(6), 1763-1785. doi:10.13031/trans.58.10715

Holzworth, D. P., Huth, N. I., deVoil, P. G., Zurcher, E. J., Herrmann, N. I., McLean, G., … Keating, B. A. (2014). APSIM – Evolution towards a new generation of agricultural systems simulation. Environmental Modelling & Software, 62, 327-350. doi:10.1016/j.envsoft.2014.07.009

Wade, A. J., Durand, P., Beaujouan, V., Wessel, W. W., Raat, K. J., Whitehead, P. G., … Lepisto, A. (2002). A nitrogen model for European catchments: INCA, new model structure and equations. Hydrology and Earth System Sciences, 6(3), 559-582. doi:10.5194/hess-6-559-2002

Arnold, J. G., Srinivasan, R., Muttiah, R. S., & Williams, J. R. (1998). LARGE AREA HYDROLOGIC MODELING AND ASSESSMENT PART I: MODEL DEVELOPMENT. Journal of the American Water Resources Association, 34(1), 73-89. doi:10.1111/j.1752-1688.1998.tb05961.x

Ruelland, D., Billen, G., Brunstein, D., & Garnier, J. (2007). SENEQUE: A multi-scaling GIS interface to the Riverstrahler model of the biogeochemical functioning of river systems. Science of The Total Environment, 375(1-3), 257-273. doi:10.1016/j.scitotenv.2006.12.014

Sparrow, A. D., Friedel, M. H., & Smith, D. M. S. (1997). A landscape-scale model of shrub and herbage dynamics in Central Australia, validated by satellite data. Ecological Modelling, 97(3), 197-216. doi:10.1016/s0304-3800(96)01904-7

Oeurng, C., Sauvage, S., & Sánchez-Pérez, J.-M. (2011). Assessment of hydrology, sediment and particulate organic carbon yield in a large agricultural catchment using the SWAT model. Journal of Hydrology, 401(3-4), 145-153. doi:10.1016/j.jhydrol.2011.02.017

Volk, M., Sauvage, S., Sánchez-Pérez, J.-M., & Biegerd, K. (2016). Development and applications of the SWAT model to support sustainable river basin management on different scales. Sustainability of Water Quality and Ecology, 8, 1-3. doi:10.1016/j.swaqe.2016.12.001

Gassman, P. W., Sadeghi, A. M., & Srinivasan, R. (2014). Applications of the SWAT Model Special Section: Overview and Insights. Journal of Environmental Quality, 43(1), 1-8. doi:10.2134/jeq2013.11.0466

Arnold, J. G., Srinivasan, R., Muttiah, R. S., & Allen, P. M. (1999). CONTINENTAL SCALE SIMULATION OF THE HYDROLOGIC BALANCE. Journal of the American Water Resources Association, 35(5), 1037-1051. doi:10.1111/j.1752-1688.1999.tb04192.x

Zalasiewicz, J., Waters, C., Summerhayes, C., & Williams, M. (2018). The Anthropocene. Geology Today, 34(5), 177-181. doi:10.1111/gto.12244

Volk, M., Bosch, D., Nangia, V., & Narasimhan, B. (2016). SWAT: Agricultural water and nonpoint source pollution management at a watershed scale. Agricultural Water Management, 175, 1-3. doi:10.1016/j.agwat.2016.06.013

Volk, M. (2015). Modelling ecosystem services: Current approaches, challenges and perspectives. Sustainability of Water Quality and Ecology, 5, 1-2. doi:10.1016/j.swaqe.2015.05.002

Grizzetti, B., Pistocchi, A., Liquete, C., Udias, A., Bouraoui, F., & van de Bund, W. (2017). Human pressures and ecological status of European rivers. Scientific Reports, 7(1). doi:10.1038/s41598-017-00324-3

Richter, B. D., Baumgartner, J. V., Powell, J., & Braun, D. P. (1996). A Method for Assessing Hydrologic Alteration within Ecosystems. Conservation Biology, 10(4), 1163-1174. doi:10.1046/j.1523-1739.1996.10041163.x

EEA Report European Waters—Assessment of Status and Pressures 2018https://www.eea.europa.eu/publications/state-of-water

The Statistical Office of the European Union Water use by NUTS 2 regions—Eurostathttps://ec.europa.eu/eurostat/web/products-datasets/-/env_watuse_r2

Romero, E., Garnier, J., Lassaletta, L., Billen, G., Le Gendre, R., Riou, P., & Cugier, P. (2012). Large-scale patterns of river inputs in southwestern Europe: seasonal and interannual variations and potential eutrophication effects at the coastal zone. Biogeochemistry, 113(1-3), 481-505. doi:10.1007/s10533-012-9778-0

Gao, Y., Vogel, R. M., Kroll, C. N., Poff, N. L., & Olden, J. D. (2009). Development of representative indicators of hydrologic alteration. Journal of Hydrology, 374(1-2), 136-147. doi:10.1016/j.jhydrol.2009.06.009

Richter, B. D., Mathews, R., Harrison, D. L., & Wigington, R. (2003). ECOLOGICALLY SUSTAINABLE WATER MANAGEMENT: MANAGING RIVER FLOWS FOR ECOLOGICAL INTEGRITY. Ecological Applications, 13(1), 206-224. doi:10.1890/1051-0761(2003)013[0206:eswmmr]2.0.co;2

Richter, B. D., Baumgartner, J. V., Braun, D. P., & Powell, J. (1998). A spatial assessment of hydrologic alteration within a river network. Regulated Rivers: Research & Management, 14(4), 329-340. doi:10.1002/(sici)1099-1646(199807/08)14:4<329::aid-rrr505>3.0.co;2-e

Bioclimatic map of Europe, bioclimates, University of León, E-24071, Spainhttps://www.globalbioclimatics.org/form/maps.htm

AQUASTAThttp://www.fao.org/nr/water/aquastat/data/query/results.html

Cunge, J. A. (1969). On The Subject Of A Flood Propagation Computation Method (Musklngum Method). Journal of Hydraulic Research, 7(2), 205-230. doi:10.1080/00221686909500264

George H. Hargreaves, & Zohrab A. Samani. (1985). Reference Crop Evapotranspiration from Temperature. Applied Engineering in Agriculture, 1(2), 96-99. doi:10.13031/2013.26773

Hargreaves, G. H., & Allen, R. G. (2003). History and Evaluation of Hargreaves Evapotranspiration Equation. Journal of Irrigation and Drainage Engineering, 129(1), 53-63. doi:10.1061/(asce)0733-9437(2003)129:1(53)

P. W. Gassman, M. R. Reyes, C. H. Green, & J. G. Arnold. (2007). The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions. Transactions of the ASABE, 50(4), 1211-1250. doi:10.13031/2013.23637

Battude, M., Al Bitar, A., Brut, A., Tallec, T., Huc, M., Cros, J., … Demarez, V. (2017). Modeling water needs and total irrigation depths of maize crop in the south west of France using high spatial and temporal resolution satellite imagery. Agricultural Water Management, 189, 123-136. doi:10.1016/j.agwat.2017.04.018

Gilmore, E. C., & Rogers, J. S. (1958). Heat Units as a Method of Measuring Maturity in Corn 1. Agronomy Journal, 50(10), 611-615. doi:10.2134/agronj1958.00021962005000100014x

Climate and the efficiency of crop production in Britain. (1977). Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 281(980), 277-294. doi:10.1098/rstb.1977.0140

Gesch, D., Farr, T., Slater, J., Muller, J.-P., & Cook, S. (2006). New products from the shuttle radar topography mission. Eos, Transactions American Geophysical Union, 87(18), 174. doi:10.1029/2006eo180003

Häggmark, L., Ivarsson, K.-I., Gollvik, S., & Olofsson, P.-O. (2000). Mesan, an operational mesoscale analysis system. Tellus A: Dynamic Meteorology and Oceanography, 52(1), 2-20. doi:10.3402/tellusa.v52i1.12250

Landelius, T., Dahlgren, P., Gollvik, S., Jansson, A., & Olsson, E. (2016). A high‐resolution regional reanalysis for Europe. Part 2: 2D analysis of surface temperature, precipitation and wind. Quarterly Journal of the Royal Meteorological Society, 142(698), 2132-2142. doi:10.1002/qj.2813

Raimonet, M., Oudin, L., Thieu, V., Silvestre, M., Vautard, R., Rabouille, C., & Le Moigne, P. (2017). Evaluation of Gridded Meteorological Datasets for Hydrological Modeling. Journal of Hydrometeorology, 18(11), 3027-3041. doi:10.1175/jhm-d-17-0018.1

Quintana-Seguí, P., Le Moigne, P., Durand, Y., Martin, E., Habets, F., Baillon, M., … Morel, S. (2008). Analysis of Near-Surface Atmospheric Variables: Validation of the SAFRAN Analysis over France. Journal of Applied Meteorology and Climatology, 47(1), 92-107. doi:10.1175/2007jamc1636.1

Quintana-Seguí, P. (2016). Meteorological Analysis Systems in North-East Spain: Validation of SAFRAN and SPAN. Journal of Environmental Informatics. doi:10.3808/jei.201600335

EEA Report UWWTD Data Sourceshttps://www.eea.europa.eu/themes/water/european-waters/water-use-and-environmental-pressures/uwwtd/uwwtd-data-sources

Zessner, M., & Lindtner, S. (2005). Estimations of municipal point source pollution in the context of river basin management. Water Science and Technology, 52(9), 175-182. doi:10.2166/wst.2005.0313

Loubier, S., Campardon, M., & Morardet, S. (2013). L’irrigation diminue-t-elle en France ? Premiers enseignements du recensement agricole de 2010. Sciences Eaux & Territoires, Numéro 11(2), 12. doi:10.3917/set.011.0012

Hengl, T., de Jesus, J. M., MacMillan, R. A., Batjes, N. H., Heuvelink, G. B. M., Ribeiro, E., … Gonzalez, M. R. (2014). SoilGrids1km — Global Soil Information Based on Automated Mapping. PLoS ONE, 9(8), e105992. doi:10.1371/journal.pone.0105992

Abbaspour, K., Vaghefi, S., & Srinivasan, R. (2017). A Guideline for Successful Calibration and Uncertainty Analysis for Soil and Water Assessment: A Review of Papers from the 2016 International SWAT Conference. Water, 10(1), 6. doi:10.3390/w10010006

Van Griensven, A., Meixner, T., Grunwald, S., Bishop, T., Diluzio, M., & Srinivasan, R. (2006). A global sensitivity analysis tool for the parameters of multi-variable catchment models. Journal of Hydrology, 324(1-4), 10-23. doi:10.1016/j.jhydrol.2005.09.008

J. G. Arnold, D. N. Moriasi, P. W. Gassman, K. C. Abbaspour, M. J. White, R. Srinivasan, … M. K. Jha. (2012). SWAT: Model Use, Calibration, and Validation. Transactions of the ASABE, 55(4), 1491-1508. doi:10.13031/2013.42256

Khalid, K., Ali, M. F., Rahman, N. F. A., Mispan, M. R., Haron, S. H., Othman, Z., & Bachok, M. F. (2016). Sensitivity Analysis in Watershed Model Using SUFI-2 Algorithm. Procedia Engineering, 162, 441-447. doi:10.1016/j.proeng.2016.11.086

Yang, J., Reichert, P., Abbaspour, K. C., Xia, J., & Yang, H. (2008). Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China. Journal of Hydrology, 358(1-2), 1-23. doi:10.1016/j.jhydrol.2008.05.012

D. N. Moriasi, J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, & T. L. Veith. (2007). Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Transactions of the ASABE, 50(3), 885-900. doi:10.13031/2013.23153

Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of Hydrology, 377(1-2), 80-91. doi:10.1016/j.jhydrol.2009.08.003

Kling, H., Fuchs, M., & Paulin, M. (2012). Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. Journal of Hydrology, 424-425, 264-277. doi:10.1016/j.jhydrol.2012.01.011

Knoben, W. J. M., Freer, J. E., & Woods, R. A. (2019). Technical note: Inherent benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores. Hydrology and Earth System Sciences, 23(10), 4323-4331. doi:10.5194/hess-23-4323-2019

Runkel, R. L., Crawford, C. G., & Cohn, T. A. (2004). Load estimator (LOADEST): a FORTRAN program for estimating constituent loads in streams and rivers. Techniques and Methods. doi:10.3133/tm4a5

Boithias, L., Srinivasan, R., Sauvage, S., Macary, F., & Sánchez-Pérez, J. M. (2014). Daily Nitrate Losses: Implication on Long-Term River Quality in an Intensive Agricultural Catchment of Southwestern France. Journal of Environmental Quality, 43(1), 46-54. doi:10.2134/jeq2011.0367

Meaurio, M., Zabaleta, A., Uriarte, J. A., Srinivasan, R., & Antigüedad, I. (2015). Evaluation of SWAT models performance to simulate streamflow spatial origin. The case of a small forested watershed. Journal of Hydrology, 525, 326-334. doi:10.1016/j.jhydrol.2015.03.050

Mittelstet, A. R., Storm, D. E., & White, M. J. (2016). Using SWAT to enhance watershed-based plans to meet numeric water quality standards. Sustainability of Water Quality and Ecology, 7, 5-21. doi:10.1016/j.swaqe.2016.01.002

Spearman, C. (1904). The Proof and Measurement of Association between Two Things. The American Journal of Psychology, 15(1), 72. doi:10.2307/1412159

Taguas, E. V., Gómez, J. A., Denisi, P., & Mateos, L. (2015). Modelling the Rainfall-Runoff Relationships in a Large Olive Orchard Catchment in Southern Spain. Water Resources Management, 29(7), 2361-2375. doi:10.1007/s11269-015-0946-6

Vicente, D. J., Rodríguez-Sinobas, L., Garrote, L., & Sánchez, R. (2018). Applying Water Accounting Methods Through Statistical Data and Simulation Models. Advances in Chemical Pollution, Environmental Management and Protection, 115-146. doi:10.1016/bs.apmp.2018.06.001

Vautard, R., Gobiet, A., Sobolowski, S., Kjellström, E., Stegehuis, A., Watkiss, P., … Jacob, D. (2014). The European climate under a 2 °C global warming. Environmental Research Letters, 9(3), 034006. doi:10.1088/1748-9326/9/3/034006

Wei, X., Sauvage, S., Le, T. P. Q., Ouillon, S., Orange, D., Vinh, V. D., & Sanchez-Perez, J.-M. (2019). A Modeling Approach to Diagnose the Impacts of Global Changes on Discharge and Suspended Sediment Concentration within the Red River Basin. Water, 11(5), 958. doi:10.3390/w11050958

Jeuffroy, M.-H., Casadebaig, P., Debaeke, P., Loyce, C., & Meynard, J.-M. (2013). Agronomic model uses to predict cultivar performance in various environments and cropping systems. A review. Agronomy for Sustainable Development, 34(1), 121-137. doi:10.1007/s13593-013-0170-9

Uribe, N., Corzo, G., Quintero, M., van Griensven, A., & Solomatine, D. (2018). Impact of conservation tillage on nitrogen and phosphorus runoff losses in a potato crop system in Fuquene watershed, Colombia. Agricultural Water Management, 209, 62-72. doi:10.1016/j.agwat.2018.07.006

Estrela, T., Pérez-Martin, M. A., & Vargas, E. (2012). Impacts of climate change on water resources in Spain. Hydrological Sciences Journal, 57(6), 1154-1167. doi:10.1080/02626667.2012.702213

Robles-Morua, A., Halvorsen, K. E., Mayer, A. S., & Vivoni, E. R. (2014). Exploring the application of participatory modeling approaches in the Sonora River Basin, Mexico. Environmental Modelling & Software, 52, 273-282. doi:10.1016/j.envsoft.2013.10.006

Starkl, M., Brunner, N., López, E., & Martínez-Ruiz, J. L. (2013). A planning-oriented sustainability assessment framework for peri-urban water management in developing countries. Water Research, 47(20), 7175-7183. doi:10.1016/j.watres.2013.10.037

Kim, J., Lim, K. J., & Park, Y. S. (2018). Evaluation of Regression Models of LOADEST and Eight-Parameter Model for Nitrogen Load Estimations. Water, Air, & Soil Pollution, 229(6). doi:10.1007/s11270-018-3844-8

Cerro, I., Antigüedad, I., Srinavasan, R., Sauvage, S., Volk, M., & Sanchez-Perez, J. M. (2014). Simulating Land Management Options to Reduce Nitrate Pollution in an Agricultural Watershed Dominated by an Alluvial Aquifer. Journal of Environmental Quality, 43(1), 67-74. doi:10.2134/jeq2011.0393

Jégo, G., Martínez, M., Antigüedad, I., Launay, M., Sanchez-Pérez, J. M., & Justes, E. (2008). Evaluation of the impact of various agricultural practices on nitrate leaching under the root zone of potato and sugar beet using the STICS soil–crop model. Science of The Total Environment, 394(2-3), 207-221. doi:10.1016/j.scitotenv.2008.01.021

Olesen, J. E., Carter, T. R., Díaz-Ambrona, C. H., Fronzek, S., Heidmann, T., Hickler, T., … Sykes, M. T. (2007). Uncertainties in projected impacts of climate change on European agriculture and terrestrial ecosystems based on scenarios from regional climate models. Climatic Change, 81(S1), 123-143. doi:10.1007/s10584-006-9216-1

Stahl, K., Hisdal, H., Hannaford, J., Tallaksen, L. M., van Lanen, H. A. J., Sauquet, E., … Jódar, J. (2010). Streamflow trends in Europe: evidence from a dataset of near-natural catchments. Hydrology and Earth System Sciences, 14(12), 2367-2382. doi:10.5194/hess-14-2367-2010

Jeppesen, E., Kronvang, B., Olesen, J. E., Audet, J., Søndergaard, M., Hoffmann, C. C., … Özkan, K. (2010). Climate change effects on nitrogen loading from cultivated catchments in Europe: implications for nitrogen retention, ecological state of lakes and adaptation. Hydrobiologia, 663(1), 1-21. doi:10.1007/s10750-010-0547-6

Peraza-Castro, M., Ruiz-Romera, E., Meaurio, M., Sauvage, S., & Sánchez-Pérez, J. M. (2018). Modelling the impact of climate and land cover change on hydrology and water quality in a forest watershed in the Basque Country (Northern Spain). Ecological Engineering, 122, 315-326. doi:10.1016/j.ecoleng.2018.07.016

Pesce, M., Critto, A., Torresan, S., Giubilato, E., Santini, M., Zirino, A., … Marcomini, A. (2018). Modelling climate change impacts on nutrients and primary production in coastal waters. Science of The Total Environment, 628-629, 919-937. doi:10.1016/j.scitotenv.2018.02.131

Sinnathamby, S., Douglas-Mankin, K. R., & Craige, C. (2017). Field-scale calibration of crop-yield parameters in the Soil and Water Assessment Tool (SWAT). Agricultural Water Management, 180, 61-69. doi:10.1016/j.agwat.2016.10.024

Gudmundsson, L., Tallaksen, L. M., Stahl, K., Clark, D. B., Dumont, E., Hagemann, S., … Koirala, S. (2012). Comparing Large-Scale Hydrological Model Simulations to Observed Runoff Percentiles in Europe. Journal of Hydrometeorology, 13(2), 604-620. doi:10.1175/jhm-d-11-083.1

Kauffeldt, A., Halldin, S., Rodhe, A., Xu, C.-Y., & Westerberg, I. K. (2013). Disinformative data in large-scale hydrological modelling. Hydrology and Earth System Sciences, 17(7), 2845-2857. doi:10.5194/hess-17-2845-2013

Döll, P., Kaspar, F., & Lehner, B. (2003). A global hydrological model for deriving water availability indicators: model tuning and validation. Journal of Hydrology, 270(1-2), 105-134. doi:10.1016/s0022-1694(02)00283-4

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem