- -

New possibilistic method for discovering linear local behavior using hyper-Gaussian distributed membership function

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

New possibilistic method for discovering linear local behavior using hyper-Gaussian distributed membership function

Show full item record

Barcelo-Rico, F.; Diez, J.; Bondia Company, J. (2012). New possibilistic method for discovering linear local behavior using hyper-Gaussian distributed membership function. Knowledge and Information Systems. 30(2):377-403. https://doi.org/10.1007/s10115-011-0385-5

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/151435

Files in this item

Item Metadata

Title: New possibilistic method for discovering linear local behavior using hyper-Gaussian distributed membership function
Author: Barcelo-Rico, F. Diez, José-Luís Bondia Company, Jorge
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica
Issued date:
Abstract:
[EN] This paper presents a method to find a model of a system based on the integration of a set of local models. Mainly, properties are sought for the local models: independence of clusters and interpretability of their ...[+]
Subjects: Clustering , Cost index , Gaussian , Global optimization , Possibilistic
Copyrigths: Cerrado
Source:
Knowledge and Information Systems. (issn: 0219-1377 )
DOI: 10.1007/s10115-011-0385-5
Publisher:
SPRINGER LONDON LTD
Publisher version: https://doi.org/10.1007/s10115-011-0385-5
Project ID:
MECD/DPI2008-06737-C02-01
MINISTERIO DE EDUCACION /DPI2007-66728-C02-01
MINISTERIO DE EDUCACION /AP2008-02967
Thanks:
The authors acknowledge the partial funding of this work by the projects: the national projects DPI2007-66728-C02-01 and DPI2008-06737-C02-01. The first author is recipient of a fellowship from the Spanish Ministry of ...[+]
Type: Artículo

References

Aronovich L, Splieger I (2010) Bulk construction of dynamic clustered metric trees. Knowl Inf Syst 22(2): 211–244

Barcelo-Rico F, Diez J, Bondia J (2010) A comparative study of codification techniques for clustering heart disease database. Biomed Signal Process Control. doi: 10.1016/j.bspc.2010.07.004

Bezdek JC (1981) Pattern recognition with fuzzy objective functions algorithms. Plenum Press, New York [+]
Aronovich L, Splieger I (2010) Bulk construction of dynamic clustered metric trees. Knowl Inf Syst 22(2): 211–244

Barcelo-Rico F, Diez J, Bondia J (2010) A comparative study of codification techniques for clustering heart disease database. Biomed Signal Process Control. doi: 10.1016/j.bspc.2010.07.004

Bezdek JC (1981) Pattern recognition with fuzzy objective functions algorithms. Plenum Press, New York

Bezdek JC, Pal NR (1998) Some new indexes of cluster validity. IEEE Trans Syst Man Cybern Part B Cybern 28: 301–315

Bezdek J, Ehrlich R, Full W (1984) Fcm: The fuzzy c-means clustering algorithm. Comput Geosci 10: 191–203

Cheng K, Liu L (2009) “best k”: critical clustering structures in categorical datasets. Knowl Inf Syst 20(1): 1–33

de Oliveira J, Pedrycz W (2007) Advances in fuzzy clustering and its applications. Wiley, New York

De Carlo LT (1997) On the meaning and use of Kurtosis. Psychol Methods 2: 292–307

Diez JL (2003) Técnicas de agrupamiento para identificacin y control por modelos locales. PhD thesis, Universitat Politècnica de València

Diez JL, Navarro JL, Sala A (2007) A fuzzy clustering algorithm enhancing local model interpretability. Soft Comput Fusion Found Method Appl 11: 973–983

Diez JL, Sala A, Navarro JL (2005) Target shape possibilistic clustering applied to local-model identification. Engineering Applications of Artificial Intelligence 4th

Kim EY, Kim SY, Ashlock D, Nam D (2009) Multi-k: accurate classification of microarray subtypes using ensemble k-means clustering. BMC Bioinform 10: 260

Egea JA, Rodriguez-Fernandez M, Banga JR, Mart R (2007) Scatter search for chemical and bio-process optimization. J Global Optim 37: 481–503

Egea-Larrosa JA (2008) New Heuristics for Global Optimization of Complex bioprocesses. PhD thesis, Universidade de Vigo

Gustafson EE, Kessel WC (1978) Fuzzy clustering with a fuzzy covariance matrix. In: IEEE conference on decision and control, pp 761–766

Hartigan J, Wong MA (1979) A K-means clustering algorithm. JR Stat Soc Ser C 28: 100–108

Hathaway R, Bezdek J (1993) Switching regression models and fuzzy clustering. IEEE Trans Fuzzy Syst 1(3): 195–204

Abonyi J, Babuska R, Szeifert F (2002) Modified gath-geva fuzzy clustering for identification of takagi-sugeno fuzzy models. IEEE Trans Syst Man Cybern Part B Cybern 32(5): 612–621

Krishnapuram R, Keller JM (1993) A possibilistic approach to clustering. IEEE Trans Fuzzy Syst 1: 98–110

Emami MR, Turksen IB, Goldenberg AA (1998) Development of a systematic methodology of fuzzy logic modeling. Trans Fuzzy Syst 6: 346–366

Goebel M, Gruenwald L (1999) A survey of data mining and knowledge discovery software tools. SIGKDD Explor Newsl 1(1): 20–33

Ryoke M, Nakamori Y, Suzuki K (1995) Adaptive fuzzy clustering and fuzzy prediction models. In: Fuzzy Systems, 1995. International Joint Conference of the Fourth IEEE International Conference on Fuzzy Systems and The Second International Fuzzy Engineering Symposium., Proceedings of 1995 IEEE International Conference on vol 4

Sugeno M, Yasukawa T (1993) A fuzzy-logic based approach to qualitative modelling. Trans Fuzzy Syst 1: 7–31

Chaoji V, Hasan MA, Salem S, Zaki M (2009) Sparcl: an effective and efficient algorithm for mining arbitrary shape-based clusters. Knowl Inf Syst 21(2):201–229

[-]

This item appears in the following Collection(s)

Show full item record