Mostrar el registro sencillo del ítem
dc.contributor.author | Barcelo-Rico, F. | es_ES |
dc.contributor.author | Diez, José-Luís | es_ES |
dc.contributor.author | Bondia Company, Jorge | es_ES |
dc.date.accessioned | 2020-10-09T03:31:10Z | |
dc.date.available | 2020-10-09T03:31:10Z | |
dc.date.issued | 2012-02 | es_ES |
dc.identifier.issn | 0219-1377 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/151435 | |
dc.description.abstract | [EN] This paper presents a method to find a model of a system based on the integration of a set of local models. Mainly, properties are sought for the local models: independence of clusters and interpretability of their validity. This has been achieved through the introduction of a possibilistic clustering for the first property and a pre-fixed shape of the membership functions for the second one. A new cost index for the clustering optimization problem has been defined consisting of two terms: one for global error and another for local errors. By giving higher importance to the local errors term, local models valid regionally can be found. To avoid local optima and numerical issues, the parameters of the models are found using global optimization. This new method has been applied to several data sets, and results show how the desired characteristics can be achieved in the resulting models. | es_ES |
dc.description.sponsorship | The authors acknowledge the partial funding of this work by the projects: the national projects DPI2007-66728-C02-01 and DPI2008-06737-C02-01. The first author is recipient of a fellowship from the Spanish Ministry of Education (FPU AP2008-02967). The translation of this paper was funded by the Universidad Politecnica de Valencia, Spain. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | SPRINGER LONDON LTD | es_ES |
dc.relation.ispartof | Knowledge and Information Systems | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Clustering | es_ES |
dc.subject | Cost index | es_ES |
dc.subject | Gaussian | es_ES |
dc.subject | Global optimization | es_ES |
dc.subject | Possibilistic | es_ES |
dc.subject.classification | INGENIERIA DE SISTEMAS Y AUTOMATICA | es_ES |
dc.title | New possibilistic method for discovering linear local behavior using hyper-Gaussian distributed membership function | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10115-011-0385-5 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//DPI2008-06737-C02-01/ES/NUCLEO DE CONTROL EN SISTEMAS DISTRIBUIDOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//DPI2007-66728-C02-01/ES/CONTROL DE GLUCEMIA EN LAZO CERRADO EN PACIENTES CON DIABETES MELLITUS 1 Y PACIENTES CRITICOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//AP2008-02967/ES/AP2008-02967/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica | es_ES |
dc.description.bibliographicCitation | Barcelo-Rico, F.; Diez, J.; Bondia Company, J. (2012). New possibilistic method for discovering linear local behavior using hyper-Gaussian distributed membership function. Knowledge and Information Systems. 30(2):377-403. https://doi.org/10.1007/s10115-011-0385-5 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s10115-011-0385-5 | es_ES |
dc.description.upvformatpinicio | 377 | es_ES |
dc.description.upvformatpfin | 403 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 30 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.pasarela | S\208959 | es_ES |
dc.contributor.funder | Ministerio de Educación y Ciencia | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | |
dc.description.references | Aronovich L, Splieger I (2010) Bulk construction of dynamic clustered metric trees. Knowl Inf Syst 22(2): 211–244 | es_ES |
dc.description.references | Barcelo-Rico F, Diez J, Bondia J (2010) A comparative study of codification techniques for clustering heart disease database. Biomed Signal Process Control. doi: 10.1016/j.bspc.2010.07.004 | es_ES |
dc.description.references | Bezdek JC (1981) Pattern recognition with fuzzy objective functions algorithms. Plenum Press, New York | es_ES |
dc.description.references | Bezdek JC, Pal NR (1998) Some new indexes of cluster validity. IEEE Trans Syst Man Cybern Part B Cybern 28: 301–315 | es_ES |
dc.description.references | Bezdek J, Ehrlich R, Full W (1984) Fcm: The fuzzy c-means clustering algorithm. Comput Geosci 10: 191–203 | es_ES |
dc.description.references | Cheng K, Liu L (2009) “best k”: critical clustering structures in categorical datasets. Knowl Inf Syst 20(1): 1–33 | es_ES |
dc.description.references | de Oliveira J, Pedrycz W (2007) Advances in fuzzy clustering and its applications. Wiley, New York | es_ES |
dc.description.references | De Carlo LT (1997) On the meaning and use of Kurtosis. Psychol Methods 2: 292–307 | es_ES |
dc.description.references | Diez JL (2003) Técnicas de agrupamiento para identificacin y control por modelos locales. PhD thesis, Universitat Politècnica de València | es_ES |
dc.description.references | Diez JL, Navarro JL, Sala A (2007) A fuzzy clustering algorithm enhancing local model interpretability. Soft Comput Fusion Found Method Appl 11: 973–983 | es_ES |
dc.description.references | Diez JL, Sala A, Navarro JL (2005) Target shape possibilistic clustering applied to local-model identification. Engineering Applications of Artificial Intelligence 4th | es_ES |
dc.description.references | Kim EY, Kim SY, Ashlock D, Nam D (2009) Multi-k: accurate classification of microarray subtypes using ensemble k-means clustering. BMC Bioinform 10: 260 | es_ES |
dc.description.references | Egea JA, Rodriguez-Fernandez M, Banga JR, Mart R (2007) Scatter search for chemical and bio-process optimization. J Global Optim 37: 481–503 | es_ES |
dc.description.references | Egea-Larrosa JA (2008) New Heuristics for Global Optimization of Complex bioprocesses. PhD thesis, Universidade de Vigo | es_ES |
dc.description.references | Gustafson EE, Kessel WC (1978) Fuzzy clustering with a fuzzy covariance matrix. In: IEEE conference on decision and control, pp 761–766 | es_ES |
dc.description.references | Hartigan J, Wong MA (1979) A K-means clustering algorithm. JR Stat Soc Ser C 28: 100–108 | es_ES |
dc.description.references | Hathaway R, Bezdek J (1993) Switching regression models and fuzzy clustering. IEEE Trans Fuzzy Syst 1(3): 195–204 | es_ES |
dc.description.references | Abonyi J, Babuska R, Szeifert F (2002) Modified gath-geva fuzzy clustering for identification of takagi-sugeno fuzzy models. IEEE Trans Syst Man Cybern Part B Cybern 32(5): 612–621 | es_ES |
dc.description.references | Krishnapuram R, Keller JM (1993) A possibilistic approach to clustering. IEEE Trans Fuzzy Syst 1: 98–110 | es_ES |
dc.description.references | Emami MR, Turksen IB, Goldenberg AA (1998) Development of a systematic methodology of fuzzy logic modeling. Trans Fuzzy Syst 6: 346–366 | es_ES |
dc.description.references | Goebel M, Gruenwald L (1999) A survey of data mining and knowledge discovery software tools. SIGKDD Explor Newsl 1(1): 20–33 | es_ES |
dc.description.references | Ryoke M, Nakamori Y, Suzuki K (1995) Adaptive fuzzy clustering and fuzzy prediction models. In: Fuzzy Systems, 1995. International Joint Conference of the Fourth IEEE International Conference on Fuzzy Systems and The Second International Fuzzy Engineering Symposium., Proceedings of 1995 IEEE International Conference on vol 4 | es_ES |
dc.description.references | Sugeno M, Yasukawa T (1993) A fuzzy-logic based approach to qualitative modelling. Trans Fuzzy Syst 1: 7–31 | es_ES |
dc.description.references | Chaoji V, Hasan MA, Salem S, Zaki M (2009) Sparcl: an effective and efficient algorithm for mining arbitrary shape-based clusters. Knowl Inf Syst 21(2):201–229 | es_ES |