- -

New possibilistic method for discovering linear local behavior using hyper-Gaussian distributed membership function

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

New possibilistic method for discovering linear local behavior using hyper-Gaussian distributed membership function

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Barcelo-Rico, F. es_ES
dc.contributor.author Diez, José-Luís es_ES
dc.contributor.author Bondia Company, Jorge es_ES
dc.date.accessioned 2020-10-09T03:31:10Z
dc.date.available 2020-10-09T03:31:10Z
dc.date.issued 2012-02 es_ES
dc.identifier.issn 0219-1377 es_ES
dc.identifier.uri http://hdl.handle.net/10251/151435
dc.description.abstract [EN] This paper presents a method to find a model of a system based on the integration of a set of local models. Mainly, properties are sought for the local models: independence of clusters and interpretability of their validity. This has been achieved through the introduction of a possibilistic clustering for the first property and a pre-fixed shape of the membership functions for the second one. A new cost index for the clustering optimization problem has been defined consisting of two terms: one for global error and another for local errors. By giving higher importance to the local errors term, local models valid regionally can be found. To avoid local optima and numerical issues, the parameters of the models are found using global optimization. This new method has been applied to several data sets, and results show how the desired characteristics can be achieved in the resulting models. es_ES
dc.description.sponsorship The authors acknowledge the partial funding of this work by the projects: the national projects DPI2007-66728-C02-01 and DPI2008-06737-C02-01. The first author is recipient of a fellowship from the Spanish Ministry of Education (FPU AP2008-02967). The translation of this paper was funded by the Universidad Politecnica de Valencia, Spain. es_ES
dc.language Inglés es_ES
dc.publisher SPRINGER LONDON LTD es_ES
dc.relation.ispartof Knowledge and Information Systems es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Clustering es_ES
dc.subject Cost index es_ES
dc.subject Gaussian es_ES
dc.subject Global optimization es_ES
dc.subject Possibilistic es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title New possibilistic method for discovering linear local behavior using hyper-Gaussian distributed membership function es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10115-011-0385-5 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2008-06737-C02-01/ES/NUCLEO DE CONTROL EN SISTEMAS DISTRIBUIDOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//DPI2007-66728-C02-01/ES/CONTROL DE GLUCEMIA EN LAZO CERRADO EN PACIENTES CON DIABETES MELLITUS 1 Y PACIENTES CRITICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//AP2008-02967/ES/AP2008-02967/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.description.bibliographicCitation Barcelo-Rico, F.; Diez, J.; Bondia Company, J. (2012). New possibilistic method for discovering linear local behavior using hyper-Gaussian distributed membership function. Knowledge and Information Systems. 30(2):377-403. https://doi.org/10.1007/s10115-011-0385-5 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10115-011-0385-5 es_ES
dc.description.upvformatpinicio 377 es_ES
dc.description.upvformatpfin 403 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 30 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\208959 es_ES
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.description.references Aronovich L, Splieger I (2010) Bulk construction of dynamic clustered metric trees. Knowl Inf Syst 22(2): 211–244 es_ES
dc.description.references Barcelo-Rico F, Diez J, Bondia J (2010) A comparative study of codification techniques for clustering heart disease database. Biomed Signal Process Control. doi: 10.1016/j.bspc.2010.07.004 es_ES
dc.description.references Bezdek JC (1981) Pattern recognition with fuzzy objective functions algorithms. Plenum Press, New York es_ES
dc.description.references Bezdek JC, Pal NR (1998) Some new indexes of cluster validity. IEEE Trans Syst Man Cybern Part B Cybern 28: 301–315 es_ES
dc.description.references Bezdek J, Ehrlich R, Full W (1984) Fcm: The fuzzy c-means clustering algorithm. Comput Geosci 10: 191–203 es_ES
dc.description.references Cheng K, Liu L (2009) “best k”: critical clustering structures in categorical datasets. Knowl Inf Syst 20(1): 1–33 es_ES
dc.description.references de Oliveira J, Pedrycz W (2007) Advances in fuzzy clustering and its applications. Wiley, New York es_ES
dc.description.references De Carlo LT (1997) On the meaning and use of Kurtosis. Psychol Methods 2: 292–307 es_ES
dc.description.references Diez JL (2003) Técnicas de agrupamiento para identificacin y control por modelos locales. PhD thesis, Universitat Politècnica de València es_ES
dc.description.references Diez JL, Navarro JL, Sala A (2007) A fuzzy clustering algorithm enhancing local model interpretability. Soft Comput Fusion Found Method Appl 11: 973–983 es_ES
dc.description.references Diez JL, Sala A, Navarro JL (2005) Target shape possibilistic clustering applied to local-model identification. Engineering Applications of Artificial Intelligence 4th es_ES
dc.description.references Kim EY, Kim SY, Ashlock D, Nam D (2009) Multi-k: accurate classification of microarray subtypes using ensemble k-means clustering. BMC Bioinform 10: 260 es_ES
dc.description.references Egea JA, Rodriguez-Fernandez M, Banga JR, Mart R (2007) Scatter search for chemical and bio-process optimization. J Global Optim 37: 481–503 es_ES
dc.description.references Egea-Larrosa JA (2008) New Heuristics for Global Optimization of Complex bioprocesses. PhD thesis, Universidade de Vigo es_ES
dc.description.references Gustafson EE, Kessel WC (1978) Fuzzy clustering with a fuzzy covariance matrix. In: IEEE conference on decision and control, pp 761–766 es_ES
dc.description.references Hartigan J, Wong MA (1979) A K-means clustering algorithm. JR Stat Soc Ser C 28: 100–108 es_ES
dc.description.references Hathaway R, Bezdek J (1993) Switching regression models and fuzzy clustering. IEEE Trans Fuzzy Syst 1(3): 195–204 es_ES
dc.description.references Abonyi J, Babuska R, Szeifert F (2002) Modified gath-geva fuzzy clustering for identification of takagi-sugeno fuzzy models. IEEE Trans Syst Man Cybern Part B Cybern 32(5): 612–621 es_ES
dc.description.references Krishnapuram R, Keller JM (1993) A possibilistic approach to clustering. IEEE Trans Fuzzy Syst 1: 98–110 es_ES
dc.description.references Emami MR, Turksen IB, Goldenberg AA (1998) Development of a systematic methodology of fuzzy logic modeling. Trans Fuzzy Syst 6: 346–366 es_ES
dc.description.references Goebel M, Gruenwald L (1999) A survey of data mining and knowledge discovery software tools. SIGKDD Explor Newsl 1(1): 20–33 es_ES
dc.description.references Ryoke M, Nakamori Y, Suzuki K (1995) Adaptive fuzzy clustering and fuzzy prediction models. In: Fuzzy Systems, 1995. International Joint Conference of the Fourth IEEE International Conference on Fuzzy Systems and The Second International Fuzzy Engineering Symposium., Proceedings of 1995 IEEE International Conference on vol 4 es_ES
dc.description.references Sugeno M, Yasukawa T (1993) A fuzzy-logic based approach to qualitative modelling. Trans Fuzzy Syst 1: 7–31 es_ES
dc.description.references Chaoji V, Hasan MA, Salem S, Zaki M (2009) Sparcl: an effective and efficient algorithm for mining arbitrary shape-based clusters. Knowl Inf Syst 21(2):201–229 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem