- -

Gas confinement in compartmentalized coordination polymers for highly selective sorption

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


Gas confinement in compartmentalized coordination polymers for highly selective sorption

Show full item record

Giménez-Marqués, M.; Calvo Galve, N.; Palomino Roca, M.; Valencia Valencia, S.; Rey Garcia, F.; Sastre Navarro, GI.; Vitorica-Yrezabal, IJ.... (2017). Gas confinement in compartmentalized coordination polymers for highly selective sorption. Chemical Science. 8(4):3109-3120. https://doi.org/10.1039/C6SC05122G

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/151439

Files in this item

Item Metadata

Title: Gas confinement in compartmentalized coordination polymers for highly selective sorption
Author: Giménez-Marqués, Mónica Calvo Galve, Néstor Palomino Roca, Miguel Valencia Valencia, Susana Rey Garcia, Fernando SASTRE NAVARRO, GERMAN IGNACIO Vitorica-Yrezabal, Iñigo J. Jiménez-Ruiz, Mónica Rodríguez-Velamazán, J. Alberto González, Miguel A. Jorda Moret, Jose Luis Coronado, Eugenio Minguez Espallargas, Guillermo
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Issued date:
[EN] Discrimination between different gases is an essential aspect for industrial and environmental applications involving sensing and separation. Several classes of porous materials have been used in this context, including ...[+]
Copyrigths: Reconocimiento - No comercial (by-nc)
Chemical Science. (issn: 2041-6520 )
DOI: 10.1039/C6SC05122G
The Royal Society of Chemistry
Publisher version: https://doi.org/10.1039/C6SC05122G
Project ID:
info:eu-repo/grantAgreement/EC/H2020/658224/EU/Rational design of novel heterometallic MOFs for their use in heterogeneous catalysis for cascade reactions/
info:eu-repo/grantAgreement/EC/H2020/658224/EU/Rational design of novel heterometallic MOFs for their use in heterogeneous catalysis for cascade reactions/
info:eu-repo/grantAgreement/EC/H2020/724681/EU/Smart Coordination Polymers with Compartmentalized Pockets for Adaptive Guest Entrance/
info:eu-repo/grantAgreement/MINECO//MDM-2015-0538/ES/INSTITUTO DE CIENCIA MOLECULAR/
Financial support from the Spanish MINECO (CTQ2014-59209-P, MAT2014-56143-R and MAT2015-71842-P), the Generalitat Valenciana (Prometeo and ISIC-Nano programs), the EU (ERC-2016-CoG 724681-S-CAGE) and the VLC/Campus Program ...[+]
Type: Artículo


G. E. Keller , A. E.Marcinkowsky, S. K.Verma and K. D.Williamson, in Separation and Purification Technology, ed. N. N. Li and J. M. Calo, Marcel Dekker, New York, 1992

Morris, R. E., & Wheatley, P. S. (2008). Gas Storage in Nanoporous Materials. Angewandte Chemie International Edition, 47(27), 4966-4981. doi:10.1002/anie.200703934

DeCoste, J. B., & Peterson, G. W. (2014). Metal–Organic Frameworks for Air Purification of Toxic Chemicals. Chemical Reviews, 114(11), 5695-5727. doi:10.1021/cr4006473 [+]
G. E. Keller , A. E.Marcinkowsky, S. K.Verma and K. D.Williamson, in Separation and Purification Technology, ed. N. N. Li and J. M. Calo, Marcel Dekker, New York, 1992

Morris, R. E., & Wheatley, P. S. (2008). Gas Storage in Nanoporous Materials. Angewandte Chemie International Edition, 47(27), 4966-4981. doi:10.1002/anie.200703934

DeCoste, J. B., & Peterson, G. W. (2014). Metal–Organic Frameworks for Air Purification of Toxic Chemicals. Chemical Reviews, 114(11), 5695-5727. doi:10.1021/cr4006473

Li, J.-R., Sculley, J., & Zhou, H.-C. (2011). Metal–Organic Frameworks for Separations. Chemical Reviews, 112(2), 869-932. doi:10.1021/cr200190s

McDonald, T. M., Mason, J. A., Kong, X., Bloch, E. D., Gygi, D., Dani, A., … Long, J. R. (2015). Cooperative insertion of CO2 in diamine-appended metal-organic frameworks. Nature, 519(7543), 303-308. doi:10.1038/nature14327

Xue, D.-X., Belmabkhout, Y., Shekhah, O., Jiang, H., Adil, K., Cairns, A. J., & Eddaoudi, M. (2015). Tunable Rare Earthfcu-MOF Platform: Access to Adsorption Kinetics Driven Gas/Vapor Separations via Pore Size Contraction. Journal of the American Chemical Society, 137(15), 5034-5040. doi:10.1021/ja5131403

Xiang, S.-C., Zhang, Z., Zhao, C.-G., Hong, K., Zhao, X., Ding, D.-R., … Chen, B. (2011). Rationally tuned micropores within enantiopure metal-organic frameworks for highly selective separation of acetylene and ethylene. Nature Communications, 2(1). doi:10.1038/ncomms1206

Yang, S., Lin, X., Lewis, W., Suyetin, M., Bichoutskaia, E., Parker, J. E., … Schröder, M. (2012). A partially interpenetrated metal–organic framework for selective hysteretic sorption of carbon dioxide. Nature Materials, 11(8), 710-716. doi:10.1038/nmat3343

Southon, P. D., Liu, L., Fellows, E. A., Price, D. J., Halder, G. J., Chapman, K. W., … Kepert, C. J. (2009). Dynamic Interplay between Spin-Crossover and Host−Guest Function in a Nanoporous Metal−Organic Framework Material. Journal of the American Chemical Society, 131(31), 10998-11009. doi:10.1021/ja902187d

Lu, W., Wei, Z., Gu, Z.-Y., Liu, T.-F., Park, J., Park, J., … Zhou, H.-C. (2014). Tuning the structure and function of metal–organic frameworks via linker design. Chem. Soc. Rev., 43(16), 5561-5593. doi:10.1039/c4cs00003j

Couck, S., Denayer, J. F. M., Baron, G. V., Rémy, T., Gascon, J., & Kapteijn, F. (2009). An Amine-Functionalized MIL-53 Metal−Organic Framework with Large Separation Power for CO2and CH4. Journal of the American Chemical Society, 131(18), 6326-6327. doi:10.1021/ja900555r

An, J., & Rosi, N. L. (2010). Tuning MOF CO2Adsorption Properties via Cation Exchange. Journal of the American Chemical Society, 132(16), 5578-5579. doi:10.1021/ja1012992

Yang, S., Lin, X., Blake, A. J., Walker, G. S., Hubberstey, P., Champness, N. R., & Schröder, M. (2009). Cation-induced kinetic trapping and enhanced hydrogen adsorption in a modulated anionic metal–organic framework. Nature Chemistry, 1(6), 487-493. doi:10.1038/nchem.333

Bloch, E. D., Queen, W. L., Krishna, R., Zadrozny, J. M., Brown, C. M., & Long, J. R. (2012). Hydrocarbon Separations in a Metal-Organic Framework with Open Iron(II) Coordination Sites. Science, 335(6076), 1606-1610. doi:10.1126/science.1217544

Caskey, S. R., Wong-Foy, A. G., & Matzger, A. J. (2008). Dramatic Tuning of Carbon Dioxide Uptake via Metal Substitution in a Coordination Polymer with Cylindrical Pores. Journal of the American Chemical Society, 130(33), 10870-10871. doi:10.1021/ja8036096

Bae, Y.-S., Lee, C. Y., Kim, K. C., Farha, O. K., Nickias, P., Hupp, J. T., … Snurr, R. Q. (2012). High Propene/Propane Selectivity in Isostructural Metal-Organic Frameworks with High Densities of Open Metal Sites. Angewandte Chemie International Edition, 51(8), 1857-1860. doi:10.1002/anie.201107534

Quartapelle Procopio, E., Fukushima, T., Barea, E., Navarro, J. A. R., Horike, S., & Kitagawa, S. (2012). A Soft Copper(II) Porous Coordination Polymer with Unprecedented Aqua Bridge and Selective Adsorption Properties. Chemistry - A European Journal, 18(41), 13117-13125. doi:10.1002/chem.201201820

Fracaroli, A. M., Furukawa, H., Suzuki, M., Dodd, M., Okajima, S., Gándara, F., … Yaghi, O. M. (2014). Metal–Organic Frameworks with Precisely Designed Interior for Carbon Dioxide Capture in the Presence of Water. Journal of the American Chemical Society, 136(25), 8863-8866. doi:10.1021/ja503296c

An, J., Geib, S. J., & Rosi, N. L. (2010). High and Selective CO2Uptake in a Cobalt Adeninate Metal−Organic Framework Exhibiting Pyrimidine- and Amino-Decorated Pores. Journal of the American Chemical Society, 132(1), 38-39. doi:10.1021/ja909169x

Yang, S., Ramirez-Cuesta, A. J., Newby, R., Garcia-Sakai, V., Manuel, P., Callear, S. K., … Schröder, M. (2014). Supramolecular binding and separation of hydrocarbons within a functionalized porous metal–organic framework. Nature Chemistry, 7(2), 121-129. doi:10.1038/nchem.2114

Xiang, S., He, Y., Zhang, Z., Wu, H., Zhou, W., Krishna, R., & Chen, B. (2012). Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions. Nature Communications, 3(1). doi:10.1038/ncomms1956

Inokuma, Y., Yoshioka, S., Ariyoshi, J., Arai, T., Hitora, Y., Takada, K., … Fujita, M. (2013). X-ray analysis on the nanogram to microgram scale using porous complexes. Nature, 495(7442), 461-466. doi:10.1038/nature11990

Coronado, E., Giménez-Marqués, M., Espallargas, G. M., & Brammer, L. (2012). Tuning the magneto-structural properties of non-porous coordination polymers by HCl chemisorption. Nature Communications, 3(1). doi:10.1038/ncomms1827

Spin-crossover materials properties and applications, ed. M. Halcrow, Wiley, 2013

Coronado, E., Giménez-Marqués, M., Mínguez Espallargas, G., Rey, F., & Vitórica-Yrezábal, I. J. (2013). Spin-Crossover Modification through Selective CO2 Sorption. Journal of the American Chemical Society, 135(43), 15986-15989. doi:10.1021/ja407135k

Calvo Galve, N., Giménez-Marqués, M., Palomino, M., Valencia, S., Rey, F., Mínguez Espallargas, G., & Coronado, E. (2016). Isostructural compartmentalized spin-crossover coordination polymers for gas confinement. Inorganic Chemistry Frontiers, 3(6), 808-813. doi:10.1039/c5qi00277j

Spek, A. L. (2003). Single-crystal structure validation with the programPLATON. Journal of Applied Crystallography, 36(1), 7-13. doi:10.1107/s0021889802022112

Foo, M. L., Matsuda, R., Hijikata, Y., Krishna, R., Sato, H., Horike, S., … Kitagawa, S. (2016). An Adsorbate Discriminatory Gate Effect in a Flexible Porous Coordination Polymer for Selective Adsorption of CO2 over C2H2. Journal of the American Chemical Society, 138(9), 3022-3030. doi:10.1021/jacs.5b10491

Mason, J. A., McDonald, T. M., Bae, T.-H., Bachman, J. E., Sumida, K., Dutton, J. J., … Long, J. R. (2015). Application of a High-Throughput Analyzer in Evaluating Solid Adsorbents for Post-Combustion Carbon Capture via Multicomponent Adsorption of CO2, N2, and H2O. Journal of the American Chemical Society, 137(14), 4787-4803. doi:10.1021/jacs.5b00838

Yazaydın, A. O., Snurr, R. Q., Park, T.-H., Koh, K., Liu, J., LeVan, M. D., … Willis, R. R. (2009). Screening of Metal−Organic Frameworks for Carbon Dioxide Capture from Flue Gas Using a Combined Experimental and Modeling Approach. Journal of the American Chemical Society, 131(51), 18198-18199. doi:10.1021/ja9057234

McDonald, T. M., D’Alessandro, D. M., Krishna, R., & Long, J. R. (2011). Enhanced carbon dioxide capture upon incorporation of N,N′-dimethylethylenediamine in the metal–organic framework CuBTTri. Chemical Science, 2(10), 2022. doi:10.1039/c1sc00354b

Herm, Z. R., Wiers, B. M., Mason, J. A., van Baten, J. M., Hudson, M. R., Zajdel, P., … Long, J. R. (2013). Separation of Hexane Isomers in a Metal-Organic Framework with Triangular Channels. Science, 340(6135), 960-964. doi:10.1126/science.1234071

Krishna, R. (2012). Diffusion in porous crystalline materials. Chemical Society Reviews, 41(8), 3099. doi:10.1039/c2cs15284c

Horike, S., Shimomura, S., & Kitagawa, S. (2009). Soft porous crystals. Nature Chemistry, 1(9), 695-704. doi:10.1038/nchem.444

Férey, G., & Serre, C. (2009). Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. Chemical Society Reviews, 38(5), 1380. doi:10.1039/b804302g

D’Alessandro, D. M., Smit, B., & Long, J. R. (2010). Carbon Dioxide Capture: Prospects for New Materials. Angewandte Chemie International Edition, 49(35), 6058-6082. doi:10.1002/anie.201000431

Zhao, Y., Yao, K. X., Teng, B., Zhang, T., & Han, Y. (2013). A perfluorinated covalent triazine-based framework for highly selective and water–tolerant CO2 capture. Energy & Environmental Science, 6(12), 3684. doi:10.1039/c3ee42548g

Nugent, P., Belmabkhout, Y., Burd, S. D., Cairns, A. J., Luebke, R., Forrest, K., … Zaworotko, M. J. (2013). Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature, 495(7439), 80-84. doi:10.1038/nature11893

Bastin, L., Bárcia, P. S., Hurtado, E. J., Silva, J. A. C., Rodrigues, A. E., & Chen, B. (2008). A Microporous Metal−Organic Framework for Separation of CO2/N2and CO2/CH4by Fixed-Bed Adsorption. The Journal of Physical Chemistry C, 112(5), 1575-1581. doi:10.1021/jp077618g

Jiang, N., Deng, Z., Liu, S., Tang, C., & Wang, G. (2016). Synthesis of metal organic framework (MOF-5) with high selectivity for CO2/N2 separation in flue gas by maximum water concentration approach. Korean Journal of Chemical Engineering, 33(9), 2747-2755. doi:10.1007/s11814-016-0092-8

Couck, S., Gobechiya, E., Kirschhock, C. E. A., Serra-Crespo, P., Juan-Alcañiz, J., Martinez Joaristi, A., … Denayer, J. F. M. (2012). Adsorption and Separation of Light Gases on an Amino-Functionalized Metal-Organic Framework: An Adsorption and In Situ XRD Study. ChemSusChem, 5(4), 740-750. doi:10.1002/cssc.201100378

García, E. J., Mowat, J. P. S., Wright, P. A., Pérez-Pellitero, J., Jallut, C., & Pirngruber, G. D. (2012). Role of Structure and Chemistry in Controlling Separations of CO2/CH4and CO2/CH4/CO Mixtures over Honeycomb MOFs with Coordinatively Unsaturated Metal Sites. The Journal of Physical Chemistry C, 116(50), 26636-26648. doi:10.1021/jp309526k

Serra-Crespo, P., Ramos-Fernandez, E. V., Gascon, J., & Kapteijn, F. (2011). Synthesis and Characterization of an Amino Functionalized MIL-101(Al): Separation and Catalytic Properties. Chemistry of Materials, 23(10), 2565-2572. doi:10.1021/cm103644b

Hamon, L., Llewellyn, P. L., Devic, T., Ghoufi, A., Clet, G., Guillerm, V., … Férey, G. (2009). Co-adsorption and Separation of CO2−CH4Mixtures in the Highly Flexible MIL-53(Cr) MOF. Journal of the American Chemical Society, 131(47), 17490-17499. doi:10.1021/ja907556q

Finsy, V., Ma, L., Alaerts, L., De Vos, D. E., Baron, G. V., & Denayer, J. F. M. (2009). Separation of CO2/CH4 mixtures with the MIL-53(Al) metal–organic framework. Microporous and Mesoporous Materials, 120(3), 221-227. doi:10.1016/j.micromeso.2008.11.007

Hamon, L., Jolimaître, E., & Pirngruber, G. D. (2010). CO2and CH4Separation by Adsorption Using Cu-BTC Metal−Organic Framework. Industrial & Engineering Chemistry Research, 49(16), 7497-7503. doi:10.1021/ie902008g

Liu, J., Tian, J., Thallapally, P. K., & McGrail, B. P. (2012). Selective CO2 Capture from Flue Gas Using Metal–Organic Frameworks―A Fixed Bed Study. The Journal of Physical Chemistry C, 116(17), 9575-9581. doi:10.1021/jp300961j

Yang, Q., Vaesen, S., Ragon, F., Wiersum, A. D., Wu, D., Lago, A., … Maurin, G. (2013). A Water Stable Metal-Organic Framework with Optimal Features for CO2Capture. Angewandte Chemie International Edition, 52(39), 10316-10320. doi:10.1002/anie.201302682

Nakagawa, K., Tanaka, D., Horike, S., Shimomura, S., Higuchi, M., & Kitagawa, S. (2010). Enhanced selectivity of CO2 from a ternary gas mixture in an interdigitated porous framework. Chemical Communications, 46(24), 4258. doi:10.1039/c0cc00027b

Ramirez-Cuesta, A. J. (2004). aCLIMAX 4.0.1, The new version of the software for analyzing and interpreting INS spectra. Computer Physics Communications, 157(3), 226-238. doi:10.1016/s0010-4655(03)00520-4

Yang, S., Sun, J., Ramirez-Cuesta, A. J., Callear, S. K., David, W. I. F., Anderson, D. P., … Schröder, M. (2012). Selectivity and direct visualization of carbon dioxide and sulfur dioxide in a decorated porous host. Nature Chemistry, 4(11), 887-894. doi:10.1038/nchem.1457

Carrington, E. J., Vitórica-Yrezábal, I. J., & Brammer, L. (2014). Crystallographic studies of gas sorption in metal–organic frameworks. Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials, 70(3), 404-422. doi:10.1107/s2052520614009834

Miller, R. G., & Brooker, S. (2016). Reversible quantitative guest sensing via spin crossover of an iron(ii) triazole. Chemical Science, 7(4), 2501-2505. doi:10.1039/c5sc04583e

Rodríguez-Jiménez, S., Feltham, H. L. C., & Brooker, S. (2016). Non-Porous Iron(II)-Based Sensor: Crystallographic Insights into a Cycle of Colorful Guest-Induced Topotactic Transformations. Angewandte Chemie International Edition, 55(48), 15067-15071. doi:10.1002/anie.201608813

Costa, J. S., Rodríguez-Jiménez, S., Craig, G. A., Barth, B., Beavers, C. M., Teat, S. J., & Aromí, G. (2014). Three-Way Crystal-to-Crystal Reversible Transformation and Controlled Spin Switching by a Nonporous Molecular Material. Journal of the American Chemical Society, 136(10), 3869-3874. doi:10.1021/ja411595y

Rodríguez-Velamazán, J. A., González, M. A., Real, J. A., Castro, M., Muñoz, M. C., Gaspar, A. B., … Kitagawa, S. (2012). A Switchable Molecular Rotator: Neutron Spectroscopy Study on a Polymeric Spin-Crossover Compound. Journal of the American Chemical Society, 134(11), 5083-5089. doi:10.1021/ja206228n

Bée, M. (1992). A physical insight into the elastic incoherent structure factor. Physica B: Condensed Matter, 182(4), 323-336. doi:10.1016/0921-4526(92)90034-p

Sastre, G., van den Bergh, J., Kapteijn, F., Denysenko, D., & Volkmer, D. (2014). Unveiling the mechanism of selective gate-driven diffusion of CO2 over N2 in MFU-4 metal–organic framework. Dalton Trans., 43(25), 9612-9619. doi:10.1039/c4dt00365a

Popov, A. A., Yang, S., & Dunsch, L. (2013). Endohedral Fullerenes. Chemical Reviews, 113(8), 5989-6113. doi:10.1021/cr300297r

Materials Studio, http://accelrys.com/products/collaborative-science/biovia-materials-studio/

Perdew, J. P., Ernzerhof, M., & Burke, K. (1996). Rationale for mixing exact exchange with density functional approximations. The Journal of Chemical Physics, 105(22), 9982-9985. doi:10.1063/1.472933

LAMP, the Large Array Manipulation Program, http://www.ill.fr/data_treat/lamp/lamp.html

Rappe, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A., & Skiff, W. M. (1992). UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American Chemical Society, 114(25), 10024-10035. doi:10.1021/ja00051a040

Gale, J. D. (1997). GULP: A computer program for the symmetry-adapted simulation of solids. Journal of the Chemical Society, Faraday Transactions, 93(4), 629-637. doi:10.1039/a606455h

Gale, J. D., & Rohl, A. L. (2003). The General Utility Lattice Program (GULP). Molecular Simulation, 29(5), 291-341. doi:10.1080/0892702031000104887




This item appears in the following Collection(s)

Show full item record