- -

Gas confinement in compartmentalized coordination polymers for highly selective sorption

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Gas confinement in compartmentalized coordination polymers for highly selective sorption

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Giménez-Marqués, Mónica es_ES
dc.contributor.author Calvo Galve, Néstor es_ES
dc.contributor.author Palomino Roca, Miguel es_ES
dc.contributor.author Valencia Valencia, Susana es_ES
dc.contributor.author Rey Garcia, Fernando es_ES
dc.contributor.author SASTRE NAVARRO, GERMAN IGNACIO es_ES
dc.contributor.author Vitorica-Yrezabal, Iñigo J. es_ES
dc.contributor.author Jiménez-Ruiz, Mónica es_ES
dc.contributor.author Rodríguez-Velamazán, J. Alberto es_ES
dc.contributor.author González, Miguel A. es_ES
dc.contributor.author Jorda Moret, Jose Luis es_ES
dc.contributor.author Coronado, Eugenio es_ES
dc.contributor.author Minguez Espallargas, Guillermo es_ES
dc.date.accessioned 2020-10-09T03:31:20Z
dc.date.available 2020-10-09T03:31:20Z
dc.date.issued 2017-04-01 es_ES
dc.identifier.issn 2041-6520 es_ES
dc.identifier.uri http://hdl.handle.net/10251/151439
dc.description.abstract [EN] Discrimination between different gases is an essential aspect for industrial and environmental applications involving sensing and separation. Several classes of porous materials have been used in this context, including zeolites and more recently MOFs. However, to reach high selectivities for the separation of gas mixtures is a challenging task that often requires the understanding of the specific interactions established between the porous framework and the gases. Here we propose an approach to obtain an enhanced selectivity based on the use of compartmentalized coordination polymers, named CCP-1 and CCP-2, which are crystalline materials comprising isolated discrete cavities. These compartmentalized materials are excellent candidates for the selective separation of CO2 from methane and nitrogen. A complete understanding of the sorption process is accomplished with the use of complementary experimental techniques including X-ray diffraction, adsorption studies, inelastic- and quasi-elastic neutron scattering, magnetic measurements and molecular dynamics calculations. es_ES
dc.description.sponsorship Financial support from the Spanish MINECO (CTQ2014-59209-P, MAT2014-56143-R and MAT2015-71842-P), the Generalitat Valenciana (Prometeo and ISIC-Nano programs), the EU (ERC-2016-CoG 724681-S-CAGE) and the VLC/Campus Program is gratefully acknowledged. We thank the Spanish government for the provision of a Severo Ochoa project (SEV-2012-0267) and a Maria de Maeztu project (MDM-2015-0538). M. G.-M. thanks MICINN for a predoctoral FPU grant and the EU for a Marie Sklodowska-Curie postdoctoral fellowship (H2020-MSCA-IF-EF-658224). N. C. G. thanks the Generalitat Valenciana for a VALi+d predoctoral fellowship. J. A. R. -V. acknowledges CSIC for a JAE-doc contract. G. S. thanks SGAI-CSIC for computing time. G. M. E. acknowledges the Blaise Pascal International Chair for financial support and the Ramon y Cajal Programme. J. M. Martinez-Agudo and G. Agusti from the University of Valencia are gratefully acknowledged for magnetic measurements. We are grateful to Institut Laue-Langevin for neutron beam time allocation for INS and QENS experiments (DOI: 10.5291/ILL-DATA.7-05-426). Authors thank ALBA Synchrotron for beam time allocation at BL04-MSPD beamline for HR-PXDR measurements, as well as the collaboration of ALBA staff during the experiment (proposal 2015091491) es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Chemical Science es_ES
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.title Gas confinement in compartmentalized coordination polymers for highly selective sorption es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/C6SC05122G es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/658224/EU/Rational design of novel heterometallic MOFs for their use in heterogeneous catalysis for cascade reactions/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2015-71842-P/ES/SINTESIS Y CARACTERIZACION AVANZADA DE NUEVOS MATERIALES ZEOLITICOS Y APLICACIONES EN ADSORCION, MEDIOAMBIENTE Y EN LA CONSERVACION DE ALIMENTOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2014-59209-P/ES/OLIMEROS DE COORDINACION MAGNETICOS SENSIBLES A ESTIMULOS QUIMICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/724681/EU/Smart Coordination Polymers with Compartmentalized Pockets for Adaptive Guest Entrance/
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2014-56143-R/ES/INGENIERIA MOLECULAR EN MATERIALES 2D Y EN DISPOSITIVOS ESPINTRONICOS HIBRIDOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MDM-2015-0538/ES/INSTITUTO DE CIENCIA MOLECULAR/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Giménez-Marqués, M.; Calvo Galve, N.; Palomino Roca, M.; Valencia Valencia, S.; Rey Garcia, F.; Sastre Navarro, GI.; Vitorica-Yrezabal, IJ.... (2017). Gas confinement in compartmentalized coordination polymers for highly selective sorption. Chemical Science. 8(4):3109-3120. https://doi.org/10.1039/C6SC05122G es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/C6SC05122G es_ES
dc.description.upvformatpinicio 3109 es_ES
dc.description.upvformatpfin 3120 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 4 es_ES
dc.identifier.pmid 28507686 es_ES
dc.identifier.pmcid PMC5412580 es_ES
dc.relation.pasarela S\332594 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references G. E. Keller , A. E.Marcinkowsky, S. K.Verma and K. D.Williamson, in Separation and Purification Technology, ed. N. N. Li and J. M. Calo, Marcel Dekker, New York, 1992 es_ES
dc.description.references Morris, R. E., & Wheatley, P. S. (2008). Gas Storage in Nanoporous Materials. Angewandte Chemie International Edition, 47(27), 4966-4981. doi:10.1002/anie.200703934 es_ES
dc.description.references DeCoste, J. B., & Peterson, G. W. (2014). Metal–Organic Frameworks for Air Purification of Toxic Chemicals. Chemical Reviews, 114(11), 5695-5727. doi:10.1021/cr4006473 es_ES
dc.description.references Li, J.-R., Sculley, J., & Zhou, H.-C. (2011). Metal–Organic Frameworks for Separations. Chemical Reviews, 112(2), 869-932. doi:10.1021/cr200190s es_ES
dc.description.references McDonald, T. M., Mason, J. A., Kong, X., Bloch, E. D., Gygi, D., Dani, A., … Long, J. R. (2015). Cooperative insertion of CO2 in diamine-appended metal-organic frameworks. Nature, 519(7543), 303-308. doi:10.1038/nature14327 es_ES
dc.description.references Xue, D.-X., Belmabkhout, Y., Shekhah, O., Jiang, H., Adil, K., Cairns, A. J., & Eddaoudi, M. (2015). Tunable Rare Earthfcu-MOF Platform: Access to Adsorption Kinetics Driven Gas/Vapor Separations via Pore Size Contraction. Journal of the American Chemical Society, 137(15), 5034-5040. doi:10.1021/ja5131403 es_ES
dc.description.references Xiang, S.-C., Zhang, Z., Zhao, C.-G., Hong, K., Zhao, X., Ding, D.-R., … Chen, B. (2011). Rationally tuned micropores within enantiopure metal-organic frameworks for highly selective separation of acetylene and ethylene. Nature Communications, 2(1). doi:10.1038/ncomms1206 es_ES
dc.description.references Yang, S., Lin, X., Lewis, W., Suyetin, M., Bichoutskaia, E., Parker, J. E., … Schröder, M. (2012). A partially interpenetrated metal–organic framework for selective hysteretic sorption of carbon dioxide. Nature Materials, 11(8), 710-716. doi:10.1038/nmat3343 es_ES
dc.description.references Southon, P. D., Liu, L., Fellows, E. A., Price, D. J., Halder, G. J., Chapman, K. W., … Kepert, C. J. (2009). Dynamic Interplay between Spin-Crossover and Host−Guest Function in a Nanoporous Metal−Organic Framework Material. Journal of the American Chemical Society, 131(31), 10998-11009. doi:10.1021/ja902187d es_ES
dc.description.references Lu, W., Wei, Z., Gu, Z.-Y., Liu, T.-F., Park, J., Park, J., … Zhou, H.-C. (2014). Tuning the structure and function of metal–organic frameworks via linker design. Chem. Soc. Rev., 43(16), 5561-5593. doi:10.1039/c4cs00003j es_ES
dc.description.references Couck, S., Denayer, J. F. M., Baron, G. V., Rémy, T., Gascon, J., & Kapteijn, F. (2009). An Amine-Functionalized MIL-53 Metal−Organic Framework with Large Separation Power for CO2and CH4. Journal of the American Chemical Society, 131(18), 6326-6327. doi:10.1021/ja900555r es_ES
dc.description.references An, J., & Rosi, N. L. (2010). Tuning MOF CO2Adsorption Properties via Cation Exchange. Journal of the American Chemical Society, 132(16), 5578-5579. doi:10.1021/ja1012992 es_ES
dc.description.references Yang, S., Lin, X., Blake, A. J., Walker, G. S., Hubberstey, P., Champness, N. R., & Schröder, M. (2009). Cation-induced kinetic trapping and enhanced hydrogen adsorption in a modulated anionic metal–organic framework. Nature Chemistry, 1(6), 487-493. doi:10.1038/nchem.333 es_ES
dc.description.references Bloch, E. D., Queen, W. L., Krishna, R., Zadrozny, J. M., Brown, C. M., & Long, J. R. (2012). Hydrocarbon Separations in a Metal-Organic Framework with Open Iron(II) Coordination Sites. Science, 335(6076), 1606-1610. doi:10.1126/science.1217544 es_ES
dc.description.references Caskey, S. R., Wong-Foy, A. G., & Matzger, A. J. (2008). Dramatic Tuning of Carbon Dioxide Uptake via Metal Substitution in a Coordination Polymer with Cylindrical Pores. Journal of the American Chemical Society, 130(33), 10870-10871. doi:10.1021/ja8036096 es_ES
dc.description.references Bae, Y.-S., Lee, C. Y., Kim, K. C., Farha, O. K., Nickias, P., Hupp, J. T., … Snurr, R. Q. (2012). High Propene/Propane Selectivity in Isostructural Metal-Organic Frameworks with High Densities of Open Metal Sites. Angewandte Chemie International Edition, 51(8), 1857-1860. doi:10.1002/anie.201107534 es_ES
dc.description.references Quartapelle Procopio, E., Fukushima, T., Barea, E., Navarro, J. A. R., Horike, S., & Kitagawa, S. (2012). A Soft Copper(II) Porous Coordination Polymer with Unprecedented Aqua Bridge and Selective Adsorption Properties. Chemistry - A European Journal, 18(41), 13117-13125. doi:10.1002/chem.201201820 es_ES
dc.description.references Fracaroli, A. M., Furukawa, H., Suzuki, M., Dodd, M., Okajima, S., Gándara, F., … Yaghi, O. M. (2014). Metal–Organic Frameworks with Precisely Designed Interior for Carbon Dioxide Capture in the Presence of Water. Journal of the American Chemical Society, 136(25), 8863-8866. doi:10.1021/ja503296c es_ES
dc.description.references An, J., Geib, S. J., & Rosi, N. L. (2010). High and Selective CO2Uptake in a Cobalt Adeninate Metal−Organic Framework Exhibiting Pyrimidine- and Amino-Decorated Pores. Journal of the American Chemical Society, 132(1), 38-39. doi:10.1021/ja909169x es_ES
dc.description.references Yang, S., Ramirez-Cuesta, A. J., Newby, R., Garcia-Sakai, V., Manuel, P., Callear, S. K., … Schröder, M. (2014). Supramolecular binding and separation of hydrocarbons within a functionalized porous metal–organic framework. Nature Chemistry, 7(2), 121-129. doi:10.1038/nchem.2114 es_ES
dc.description.references Xiang, S., He, Y., Zhang, Z., Wu, H., Zhou, W., Krishna, R., & Chen, B. (2012). Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions. Nature Communications, 3(1). doi:10.1038/ncomms1956 es_ES
dc.description.references Inokuma, Y., Yoshioka, S., Ariyoshi, J., Arai, T., Hitora, Y., Takada, K., … Fujita, M. (2013). X-ray analysis on the nanogram to microgram scale using porous complexes. Nature, 495(7442), 461-466. doi:10.1038/nature11990 es_ES
dc.description.references Coronado, E., Giménez-Marqués, M., Espallargas, G. M., & Brammer, L. (2012). Tuning the magneto-structural properties of non-porous coordination polymers by HCl chemisorption. Nature Communications, 3(1). doi:10.1038/ncomms1827 es_ES
dc.description.references Spin-crossover materials properties and applications, ed. M. Halcrow, Wiley, 2013 es_ES
dc.description.references Coronado, E., Giménez-Marqués, M., Mínguez Espallargas, G., Rey, F., & Vitórica-Yrezábal, I. J. (2013). Spin-Crossover Modification through Selective CO2 Sorption. Journal of the American Chemical Society, 135(43), 15986-15989. doi:10.1021/ja407135k es_ES
dc.description.references Calvo Galve, N., Giménez-Marqués, M., Palomino, M., Valencia, S., Rey, F., Mínguez Espallargas, G., & Coronado, E. (2016). Isostructural compartmentalized spin-crossover coordination polymers for gas confinement. Inorganic Chemistry Frontiers, 3(6), 808-813. doi:10.1039/c5qi00277j es_ES
dc.description.references Spek, A. L. (2003). Single-crystal structure validation with the programPLATON. Journal of Applied Crystallography, 36(1), 7-13. doi:10.1107/s0021889802022112 es_ES
dc.description.references Foo, M. L., Matsuda, R., Hijikata, Y., Krishna, R., Sato, H., Horike, S., … Kitagawa, S. (2016). An Adsorbate Discriminatory Gate Effect in a Flexible Porous Coordination Polymer for Selective Adsorption of CO2 over C2H2. Journal of the American Chemical Society, 138(9), 3022-3030. doi:10.1021/jacs.5b10491 es_ES
dc.description.references Mason, J. A., McDonald, T. M., Bae, T.-H., Bachman, J. E., Sumida, K., Dutton, J. J., … Long, J. R. (2015). Application of a High-Throughput Analyzer in Evaluating Solid Adsorbents for Post-Combustion Carbon Capture via Multicomponent Adsorption of CO2, N2, and H2O. Journal of the American Chemical Society, 137(14), 4787-4803. doi:10.1021/jacs.5b00838 es_ES
dc.description.references Yazaydın, A. O., Snurr, R. Q., Park, T.-H., Koh, K., Liu, J., LeVan, M. D., … Willis, R. R. (2009). Screening of Metal−Organic Frameworks for Carbon Dioxide Capture from Flue Gas Using a Combined Experimental and Modeling Approach. Journal of the American Chemical Society, 131(51), 18198-18199. doi:10.1021/ja9057234 es_ES
dc.description.references McDonald, T. M., D’Alessandro, D. M., Krishna, R., & Long, J. R. (2011). Enhanced carbon dioxide capture upon incorporation of N,N′-dimethylethylenediamine in the metal–organic framework CuBTTri. Chemical Science, 2(10), 2022. doi:10.1039/c1sc00354b es_ES
dc.description.references Herm, Z. R., Wiers, B. M., Mason, J. A., van Baten, J. M., Hudson, M. R., Zajdel, P., … Long, J. R. (2013). Separation of Hexane Isomers in a Metal-Organic Framework with Triangular Channels. Science, 340(6135), 960-964. doi:10.1126/science.1234071 es_ES
dc.description.references Krishna, R. (2012). Diffusion in porous crystalline materials. Chemical Society Reviews, 41(8), 3099. doi:10.1039/c2cs15284c es_ES
dc.description.references Horike, S., Shimomura, S., & Kitagawa, S. (2009). Soft porous crystals. Nature Chemistry, 1(9), 695-704. doi:10.1038/nchem.444 es_ES
dc.description.references Férey, G., & Serre, C. (2009). Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. Chemical Society Reviews, 38(5), 1380. doi:10.1039/b804302g es_ES
dc.description.references D’Alessandro, D. M., Smit, B., & Long, J. R. (2010). Carbon Dioxide Capture: Prospects for New Materials. Angewandte Chemie International Edition, 49(35), 6058-6082. doi:10.1002/anie.201000431 es_ES
dc.description.references Zhao, Y., Yao, K. X., Teng, B., Zhang, T., & Han, Y. (2013). A perfluorinated covalent triazine-based framework for highly selective and water–tolerant CO2 capture. Energy & Environmental Science, 6(12), 3684. doi:10.1039/c3ee42548g es_ES
dc.description.references Nugent, P., Belmabkhout, Y., Burd, S. D., Cairns, A. J., Luebke, R., Forrest, K., … Zaworotko, M. J. (2013). Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature, 495(7439), 80-84. doi:10.1038/nature11893 es_ES
dc.description.references Bastin, L., Bárcia, P. S., Hurtado, E. J., Silva, J. A. C., Rodrigues, A. E., & Chen, B. (2008). A Microporous Metal−Organic Framework for Separation of CO2/N2and CO2/CH4by Fixed-Bed Adsorption. The Journal of Physical Chemistry C, 112(5), 1575-1581. doi:10.1021/jp077618g es_ES
dc.description.references Jiang, N., Deng, Z., Liu, S., Tang, C., & Wang, G. (2016). Synthesis of metal organic framework (MOF-5) with high selectivity for CO2/N2 separation in flue gas by maximum water concentration approach. Korean Journal of Chemical Engineering, 33(9), 2747-2755. doi:10.1007/s11814-016-0092-8 es_ES
dc.description.references Couck, S., Gobechiya, E., Kirschhock, C. E. A., Serra-Crespo, P., Juan-Alcañiz, J., Martinez Joaristi, A., … Denayer, J. F. M. (2012). Adsorption and Separation of Light Gases on an Amino-Functionalized Metal-Organic Framework: An Adsorption and In Situ XRD Study. ChemSusChem, 5(4), 740-750. doi:10.1002/cssc.201100378 es_ES
dc.description.references García, E. J., Mowat, J. P. S., Wright, P. A., Pérez-Pellitero, J., Jallut, C., & Pirngruber, G. D. (2012). Role of Structure and Chemistry in Controlling Separations of CO2/CH4and CO2/CH4/CO Mixtures over Honeycomb MOFs with Coordinatively Unsaturated Metal Sites. The Journal of Physical Chemistry C, 116(50), 26636-26648. doi:10.1021/jp309526k es_ES
dc.description.references Serra-Crespo, P., Ramos-Fernandez, E. V., Gascon, J., & Kapteijn, F. (2011). Synthesis and Characterization of an Amino Functionalized MIL-101(Al): Separation and Catalytic Properties. Chemistry of Materials, 23(10), 2565-2572. doi:10.1021/cm103644b es_ES
dc.description.references Hamon, L., Llewellyn, P. L., Devic, T., Ghoufi, A., Clet, G., Guillerm, V., … Férey, G. (2009). Co-adsorption and Separation of CO2−CH4Mixtures in the Highly Flexible MIL-53(Cr) MOF. Journal of the American Chemical Society, 131(47), 17490-17499. doi:10.1021/ja907556q es_ES
dc.description.references Finsy, V., Ma, L., Alaerts, L., De Vos, D. E., Baron, G. V., & Denayer, J. F. M. (2009). Separation of CO2/CH4 mixtures with the MIL-53(Al) metal–organic framework. Microporous and Mesoporous Materials, 120(3), 221-227. doi:10.1016/j.micromeso.2008.11.007 es_ES
dc.description.references Hamon, L., Jolimaître, E., & Pirngruber, G. D. (2010). CO2and CH4Separation by Adsorption Using Cu-BTC Metal−Organic Framework. Industrial & Engineering Chemistry Research, 49(16), 7497-7503. doi:10.1021/ie902008g es_ES
dc.description.references Liu, J., Tian, J., Thallapally, P. K., & McGrail, B. P. (2012). Selective CO2 Capture from Flue Gas Using Metal–Organic Frameworks―A Fixed Bed Study. The Journal of Physical Chemistry C, 116(17), 9575-9581. doi:10.1021/jp300961j es_ES
dc.description.references Yang, Q., Vaesen, S., Ragon, F., Wiersum, A. D., Wu, D., Lago, A., … Maurin, G. (2013). A Water Stable Metal-Organic Framework with Optimal Features for CO2Capture. Angewandte Chemie International Edition, 52(39), 10316-10320. doi:10.1002/anie.201302682 es_ES
dc.description.references Nakagawa, K., Tanaka, D., Horike, S., Shimomura, S., Higuchi, M., & Kitagawa, S. (2010). Enhanced selectivity of CO2 from a ternary gas mixture in an interdigitated porous framework. Chemical Communications, 46(24), 4258. doi:10.1039/c0cc00027b es_ES
dc.description.references Ramirez-Cuesta, A. J. (2004). aCLIMAX 4.0.1, The new version of the software for analyzing and interpreting INS spectra. Computer Physics Communications, 157(3), 226-238. doi:10.1016/s0010-4655(03)00520-4 es_ES
dc.description.references Yang, S., Sun, J., Ramirez-Cuesta, A. J., Callear, S. K., David, W. I. F., Anderson, D. P., … Schröder, M. (2012). Selectivity and direct visualization of carbon dioxide and sulfur dioxide in a decorated porous host. Nature Chemistry, 4(11), 887-894. doi:10.1038/nchem.1457 es_ES
dc.description.references Carrington, E. J., Vitórica-Yrezábal, I. J., & Brammer, L. (2014). Crystallographic studies of gas sorption in metal–organic frameworks. Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials, 70(3), 404-422. doi:10.1107/s2052520614009834 es_ES
dc.description.references Miller, R. G., & Brooker, S. (2016). Reversible quantitative guest sensing via spin crossover of an iron(ii) triazole. Chemical Science, 7(4), 2501-2505. doi:10.1039/c5sc04583e es_ES
dc.description.references Rodríguez-Jiménez, S., Feltham, H. L. C., & Brooker, S. (2016). Non-Porous Iron(II)-Based Sensor: Crystallographic Insights into a Cycle of Colorful Guest-Induced Topotactic Transformations. Angewandte Chemie International Edition, 55(48), 15067-15071. doi:10.1002/anie.201608813 es_ES
dc.description.references Costa, J. S., Rodríguez-Jiménez, S., Craig, G. A., Barth, B., Beavers, C. M., Teat, S. J., & Aromí, G. (2014). Three-Way Crystal-to-Crystal Reversible Transformation and Controlled Spin Switching by a Nonporous Molecular Material. Journal of the American Chemical Society, 136(10), 3869-3874. doi:10.1021/ja411595y es_ES
dc.description.references Rodríguez-Velamazán, J. A., González, M. A., Real, J. A., Castro, M., Muñoz, M. C., Gaspar, A. B., … Kitagawa, S. (2012). A Switchable Molecular Rotator: Neutron Spectroscopy Study on a Polymeric Spin-Crossover Compound. Journal of the American Chemical Society, 134(11), 5083-5089. doi:10.1021/ja206228n es_ES
dc.description.references Bée, M. (1992). A physical insight into the elastic incoherent structure factor. Physica B: Condensed Matter, 182(4), 323-336. doi:10.1016/0921-4526(92)90034-p es_ES
dc.description.references Sastre, G., van den Bergh, J., Kapteijn, F., Denysenko, D., & Volkmer, D. (2014). Unveiling the mechanism of selective gate-driven diffusion of CO2 over N2 in MFU-4 metal–organic framework. Dalton Trans., 43(25), 9612-9619. doi:10.1039/c4dt00365a es_ES
dc.description.references Popov, A. A., Yang, S., & Dunsch, L. (2013). Endohedral Fullerenes. Chemical Reviews, 113(8), 5989-6113. doi:10.1021/cr300297r es_ES
dc.description.references Materials Studio, http://accelrys.com/products/collaborative-science/biovia-materials-studio/ es_ES
dc.description.references Perdew, J. P., Ernzerhof, M., & Burke, K. (1996). Rationale for mixing exact exchange with density functional approximations. The Journal of Chemical Physics, 105(22), 9982-9985. doi:10.1063/1.472933 es_ES
dc.description.references LAMP, the Large Array Manipulation Program, http://www.ill.fr/data_treat/lamp/lamp.html es_ES
dc.description.references Rappe, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A., & Skiff, W. M. (1992). UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American Chemical Society, 114(25), 10024-10035. doi:10.1021/ja00051a040 es_ES
dc.description.references Gale, J. D. (1997). GULP: A computer program for the symmetry-adapted simulation of solids. Journal of the Chemical Society, Faraday Transactions, 93(4), 629-637. doi:10.1039/a606455h es_ES
dc.description.references Gale, J. D., & Rohl, A. L. (2003). The General Utility Lattice Program (GULP). Molecular Simulation, 29(5), 291-341. doi:10.1080/0892702031000104887 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem