- -

On finite groups with many supersoluble subgroups

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On finite groups with many supersoluble subgroups

Mostrar el registro completo del ítem

Ballester-Bolinches, A.; Esteban Romero, R.; Lu, J. (2017). On finite groups with many supersoluble subgroups. Archiv der Mathematik. 109(1):3-8. https://doi.org/10.1007/s00013-017-1041-4

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/151655

Ficheros en el ítem

Metadatos del ítem

Título: On finite groups with many supersoluble subgroups
Autor: Ballester-Bolinches, A. Esteban Romero, Ramón Lu, Jiakuan
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] The solubility of a finite group with less than 6 non-supersoluble subgroups is confirmed in the paper. Moreover we prove that a finite insoluble group has exactly 6 non-supersoluble subgroups if and only if it is ...[+]
Palabras clave: Finite group , Supersoluble subgroup , Soluble group
Derechos de uso: Reserva de todos los derechos
Fuente:
Archiv der Mathematik. (issn: 0003-889X )
DOI: 10.1007/s00013-017-1041-4
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s00013-017-1041-4
Código del Proyecto:
info:eu-repo/grantAgreement/Natural Science Foundation of Guangdong Province//2015A030313791/
info:eu-repo/grantAgreement/MINECO//MTM2014-54707-C3-1-P/ES/PROPIEDADES ARITMETICAS Y ESTRUCTURALES DE GRUPOS Y SEMIGRUPOS I/
info:eu-repo/grantAgreement/NSFC//11461007/
info:eu-repo/grantAgreement/NSFC//11271085/
info:eu-repo/grantAgreement/Natural Science Foundation of Guangxi Province//2016GXNSFAA380156/
Agradecimientos:
The first and second author are supported by the Grant MTM2014-54707-C3-1-P from the Ministerio de Economia y Competitividad, Spain, and FEDER, European Union. The first author is supported by the National Natural Science ...[+]
Tipo: Artículo

References

J. Bray, D. Holt, and C. Roney-Dougal, The maximal subgroups of the low-dimensional finite classical groups, London Math. Soc. Lect. Note Ser. Cambridge Univ. Press, Cambridge, UK, 2013.

L. E. Dickson, Linear groups: With an exposition of the Galois field theory, Dover Publications Inc., New York, 1958.

K. Doerk and T. Hawkes, Finite Soluble Groups, volume 4 of De Gruyter Expositions in Mathematics. Walter de Gruyter, Berlin, New York, 1992. [+]
J. Bray, D. Holt, and C. Roney-Dougal, The maximal subgroups of the low-dimensional finite classical groups, London Math. Soc. Lect. Note Ser. Cambridge Univ. Press, Cambridge, UK, 2013.

L. E. Dickson, Linear groups: With an exposition of the Galois field theory, Dover Publications Inc., New York, 1958.

K. Doerk and T. Hawkes, Finite Soluble Groups, volume 4 of De Gruyter Expositions in Mathematics. Walter de Gruyter, Berlin, New York, 1992.

The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.8.6, November 2016. http://www.gap-system.org .

W. Gaschütz, Über modulare Darstellungen endlicher Gruppen, die von freien Gruppen induziert werden, Math. Z. 60 (1954), 274–286.

R. L. Griess and P. Schmid, The Frattini module, Arch. Math. 30 (1978), 256–266.

B. Huppert, Normalteiler und maximale Untergruppen endlicher Gruppen, Math. Z. 60 (1954), 409–434.

B. Huppert, Endliche Gruppen I, Grundlehren der Mathematischen Wissenschaften, 134, Springer Verlag, Berlin, Heidelberg, New York, 1967.

Z. Janko, Endliche Gruppen mit lauter nilpotenten zweitmaximalen Untergruppen, Math. Z. 79 (1962), 422–424.

O. J. Schmidt, Über Gruppen, deren sämtliche Teiler spezielle Gruppen sind, Mat. Sbornik 31 (1924), 366–372.

M. Suzuki, A new type of simple groups of finite order, Proc. Natl. Acad. Sci. USA 46 (1960), 868–870.

J. G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable, Bull. Amer. Math. Soc. 74 (1968), 383–437.

M. Zarrin, A generalization of Schmidt’s theorem on groups with all subgroups nilpotent, Arch. Math. (Basel) 99 (2012), 201–206.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem