- -

On finite groups with many supersoluble subgroups

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

On finite groups with many supersoluble subgroups

Show full item record

Ballester-Bolinches, A.; Esteban Romero, R.; Lu, J. (2017). On finite groups with many supersoluble subgroups. Archiv der Mathematik. 109(1):3-8. https://doi.org/10.1007/s00013-017-1041-4

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/151655

Files in this item

Item Metadata

Title: On finite groups with many supersoluble subgroups
Author: Ballester-Bolinches, A. Esteban Romero, Ramón Lu, Jiakuan
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
[EN] The solubility of a finite group with less than 6 non-supersoluble subgroups is confirmed in the paper. Moreover we prove that a finite insoluble group has exactly 6 non-supersoluble subgroups if and only if it is ...[+]
Subjects: Finite group , Supersoluble subgroup , Soluble group
Copyrigths: Reserva de todos los derechos
Source:
Archiv der Mathematik. (issn: 0003-889X )
DOI: 10.1007/s00013-017-1041-4
Publisher:
Springer-Verlag
Publisher version: https://doi.org/10.1007/s00013-017-1041-4
Project ID:
Natural Science Foundation of Guangdong Province/2015A030313791
Ministerio de Ciencia e Innovación/MTM2014-54707-C3-1-P
NSFC/11461007
NSFC/11271085
Natural Science Foundation of Guangxi Province/2016GXNSFAA380156
Thanks:
The first and second author are supported by the Grant MTM2014-54707-C3-1-P from the Ministerio de Economia y Competitividad, Spain, and FEDER, European Union. The first author is supported by the National Natural Science ...[+]
Type: Artículo

References

J. Bray, D. Holt, and C. Roney-Dougal, The maximal subgroups of the low-dimensional finite classical groups, London Math. Soc. Lect. Note Ser. Cambridge Univ. Press, Cambridge, UK, 2013.

L. E. Dickson, Linear groups: With an exposition of the Galois field theory, Dover Publications Inc., New York, 1958.

K. Doerk and T. Hawkes, Finite Soluble Groups, volume 4 of De Gruyter Expositions in Mathematics. Walter de Gruyter, Berlin, New York, 1992. [+]
J. Bray, D. Holt, and C. Roney-Dougal, The maximal subgroups of the low-dimensional finite classical groups, London Math. Soc. Lect. Note Ser. Cambridge Univ. Press, Cambridge, UK, 2013.

L. E. Dickson, Linear groups: With an exposition of the Galois field theory, Dover Publications Inc., New York, 1958.

K. Doerk and T. Hawkes, Finite Soluble Groups, volume 4 of De Gruyter Expositions in Mathematics. Walter de Gruyter, Berlin, New York, 1992.

The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.8.6, November 2016. http://www.gap-system.org .

W. Gaschütz, Über modulare Darstellungen endlicher Gruppen, die von freien Gruppen induziert werden, Math. Z. 60 (1954), 274–286.

R. L. Griess and P. Schmid, The Frattini module, Arch. Math. 30 (1978), 256–266.

B. Huppert, Normalteiler und maximale Untergruppen endlicher Gruppen, Math. Z. 60 (1954), 409–434.

B. Huppert, Endliche Gruppen I, Grundlehren der Mathematischen Wissenschaften, 134, Springer Verlag, Berlin, Heidelberg, New York, 1967.

Z. Janko, Endliche Gruppen mit lauter nilpotenten zweitmaximalen Untergruppen, Math. Z. 79 (1962), 422–424.

O. J. Schmidt, Über Gruppen, deren sämtliche Teiler spezielle Gruppen sind, Mat. Sbornik 31 (1924), 366–372.

M. Suzuki, A new type of simple groups of finite order, Proc. Natl. Acad. Sci. USA 46 (1960), 868–870.

J. G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable, Bull. Amer. Math. Soc. 74 (1968), 383–437.

M. Zarrin, A generalization of Schmidt’s theorem on groups with all subgroups nilpotent, Arch. Math. (Basel) 99 (2012), 201–206.

[-]

This item appears in the following Collection(s)

Show full item record