Mostrar el registro sencillo del ítem
dc.contributor.author | Ballester-Bolinches, A. | es_ES |
dc.contributor.author | Esteban Romero, Ramón | es_ES |
dc.contributor.author | Lu, Jiakuan | es_ES |
dc.date.accessioned | 2020-10-14T03:30:51Z | |
dc.date.available | 2020-10-14T03:30:51Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.issn | 0003-889X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/151655 | |
dc.description.abstract | [EN] The solubility of a finite group with less than 6 non-supersoluble subgroups is confirmed in the paper. Moreover we prove that a finite insoluble group has exactly 6 non-supersoluble subgroups if and only if it is isomorphic to A5 or SL2 (5). Furthermore, it is shown that a finite insoluble group has exactly 22 non-nilpotent subgroups if and only if it is isomorphic to A5 or SL2 (5). This confirms a conjecture of Zarrin (Arch Math (Basel) 99:201 206, 2012). | es_ES |
dc.description.sponsorship | The first and second author are supported by the Grant MTM2014-54707-C3-1-P from the Ministerio de Economia y Competitividad, Spain, and FEDER, European Union. The first author is supported by the National Natural Science Foundation of China (11271085) and a Project of Natural Science Foundation of Guangdong Province (2015A030313791). The third author is supported by the National Natural Science Foundation of China (11461007), and the Guangxi Natural Science Foundation Program (2016GXNSFAA380156). This research has been done during a visit of the third author to the Departament de Matematiques of the Universitat de Valencia. He expresses his gratitude to this institution. We thank the anonymous referee for his/her comments that have helped us to improve the presentation of the paper. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Archiv der Mathematik | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Finite group | es_ES |
dc.subject | Supersoluble subgroup | es_ES |
dc.subject | Soluble group | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | On finite groups with many supersoluble subgroups | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00013-017-1041-4 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Natural Science Foundation of Guangdong Province//2015A030313791/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2014-54707-C3-1-P/ES/PROPIEDADES ARITMETICAS Y ESTRUCTURALES DE GRUPOS Y SEMIGRUPOS I/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NSFC//11461007/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NSFC//11271085/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Natural Science Foundation of Guangxi Province//2016GXNSFAA380156/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Ballester-Bolinches, A.; Esteban Romero, R.; Lu, J. (2017). On finite groups with many supersoluble subgroups. Archiv der Mathematik. 109(1):3-8. https://doi.org/10.1007/s00013-017-1041-4 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s00013-017-1041-4 | es_ES |
dc.description.upvformatpinicio | 3 | es_ES |
dc.description.upvformatpfin | 8 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 109 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\336141 | es_ES |
dc.contributor.funder | National Natural Science Foundation of China | es_ES |
dc.contributor.funder | Natural Science Foundation of Guangxi Province | es_ES |
dc.contributor.funder | Natural Science Foundation of Guangdong Province | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | J. Bray, D. Holt, and C. Roney-Dougal, The maximal subgroups of the low-dimensional finite classical groups, London Math. Soc. Lect. Note Ser. Cambridge Univ. Press, Cambridge, UK, 2013. | es_ES |
dc.description.references | L. E. Dickson, Linear groups: With an exposition of the Galois field theory, Dover Publications Inc., New York, 1958. | es_ES |
dc.description.references | K. Doerk and T. Hawkes, Finite Soluble Groups, volume 4 of De Gruyter Expositions in Mathematics. Walter de Gruyter, Berlin, New York, 1992. | es_ES |
dc.description.references | The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.8.6, November 2016. http://www.gap-system.org . | es_ES |
dc.description.references | W. Gaschütz, Über modulare Darstellungen endlicher Gruppen, die von freien Gruppen induziert werden, Math. Z. 60 (1954), 274–286. | es_ES |
dc.description.references | R. L. Griess and P. Schmid, The Frattini module, Arch. Math. 30 (1978), 256–266. | es_ES |
dc.description.references | B. Huppert, Normalteiler und maximale Untergruppen endlicher Gruppen, Math. Z. 60 (1954), 409–434. | es_ES |
dc.description.references | B. Huppert, Endliche Gruppen I, Grundlehren der Mathematischen Wissenschaften, 134, Springer Verlag, Berlin, Heidelberg, New York, 1967. | es_ES |
dc.description.references | Z. Janko, Endliche Gruppen mit lauter nilpotenten zweitmaximalen Untergruppen, Math. Z. 79 (1962), 422–424. | es_ES |
dc.description.references | O. J. Schmidt, Über Gruppen, deren sämtliche Teiler spezielle Gruppen sind, Mat. Sbornik 31 (1924), 366–372. | es_ES |
dc.description.references | M. Suzuki, A new type of simple groups of finite order, Proc. Natl. Acad. Sci. USA 46 (1960), 868–870. | es_ES |
dc.description.references | J. G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable, Bull. Amer. Math. Soc. 74 (1968), 383–437. | es_ES |
dc.description.references | M. Zarrin, A generalization of Schmidt’s theorem on groups with all subgroups nilpotent, Arch. Math. (Basel) 99 (2012), 201–206. | es_ES |