- -

Maximizing resource usage in multifold molecular dynamics with rCUDA

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Maximizing resource usage in multifold molecular dynamics with rCUDA

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Prades, Javier es_ES
dc.contributor.author Imbernon, Baldomero es_ES
dc.contributor.author Reaño González, Carlos es_ES
dc.contributor.author Peña-García, Jorge es_ES
dc.contributor.author Cerón-Carrasco, Jose Pedro es_ES
dc.contributor.author Silla Jiménez, Federico es_ES
dc.contributor.author Pérez-Sánchez, Horacio es_ES
dc.date.accessioned 2020-10-14T03:30:55Z
dc.date.available 2020-10-14T03:30:55Z
dc.date.issued 2020-01 es_ES
dc.identifier.issn 1094-3420 es_ES
dc.identifier.uri http://hdl.handle.net/10251/151657
dc.description.abstract [EN] The full-understanding of the dynamics of molecular systems at the atomic scale is of great relevance in the fields of chemistry, physics, materials science, and drug discovery just to name a few. Molecular dynamics (MD) is a widely used computer tool for simulating the dynamical behavior of molecules. However, the computational horsepower required by MD simulations is too high to obtain conclusive results in real-world scenarios. This is mainly motivated by two factors: (1) the long execution time required by each MD simulation (usually in the nanoseconds and microseconds scale, and beyond) and (2) the large number of simulations required in drug discovery to study the interactions between a large library of compounds and a given protein target. To deal with the former, graphics processing units (GPUs) have come up into the scene. The latter has been traditionally approached by launching large amounts of simulations in computing clusters that may contain several GPUs on each node. However, GPUs are targeted as a single node that only runs one MD instance at a time, which translates into low GPU occupancy ratios and therefore low throughput. In this work, we propose a strategy to increase the overall throughput of MD simulations by increasing the GPU occupancy through virtualized GPUs. We use the remote CUDA (rCUDA) middleware as a tool to decouple GPUs from CPUs, and thus enabling multi-tenancy of the virtual GPUs. As a working test in the drug discovery field, we studied the binding process of a novel flavonol to DNA with the GROningen MAchine for Chemical Simulations (GROMACS) MD package. Our results show that the use of rCUDA provides with a 1.21x speed-up factor compared to the CUDA counterpart version while requiring a similar power budget. es_ES
dc.description.sponsorship The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was jointly supported by the Fundación Séneca (Agencia Regional de Ciencia y Tecnología, Región de Murcia) under grants (20524/PDC/18, 20813/PI/ 18, and 20988/PI/18) and by the Spanish MEC and Eur-opean Commission FEDER under grants TIN2015-66972-C5-3-R, TIN2016-78799-P, and CTQ2017-87974-R (AEI/FEDER, UE). Researchers from the Universitat Politècnica de València are supported by the Generalitat Valenciana under grant PROMETEO/2017/077. es_ES
dc.language Inglés es_ES
dc.publisher SAGE Publications es_ES
dc.relation.ispartof International Journal of High Performance Computing Applications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Molecular dynamics es_ES
dc.subject GPU virtualization es_ES
dc.subject RCUDA es_ES
dc.subject GROMACS es_ES
dc.subject GPU es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Maximizing resource usage in multifold molecular dynamics with rCUDA es_ES
dc.type Artículo es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.1177/1094342019857131 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2016-78799-P/ES/DESARROLLO HOLISTICO DE APLICACIONES EMERGENTES EN SISTEMAS HETEROGENEOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/f SéNeCa//20813%2FPI%2F18/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/f SéNeCa//20524%2FPDC%2F18/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/f SéNeCa//20988%2FPI%2F18/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2015-66972-C5-3-R/ES/TECNICAS PARA LA MEJORA DE LAS PRESTACIONES, FIABILIDAD Y CONSUMO DE ENERGIA DE LOS SERVIDORES. OPTIMIZACION DE APLICACIONES CIENTIFICAS, MEDICAS Y DE VISION ARTIFICIAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTQ2017-87974-R/ES/DESARROLLO DE TECNICAS AVANZADAS DE DESCUBRIMIENTO DE FARMACOS, SU IMPLEMENTACION EN HERRAMIENTAS SOFTWARE Y WEB, Y SU APLICACION A CONTEXTOS DE RELEVANCIA FARMACOLOGICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F077/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Prades, J.; Imbernon, B.; Reaño González, C.; Peña-García, J.; Cerón-Carrasco, JP.; Silla Jiménez, F.; Pérez-Sánchez, H. (2020). Maximizing resource usage in multifold molecular dynamics with rCUDA. International Journal of High Performance Computing Applications. 34(1):5-19. https://doi.org/10.1177/1094342019857131 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 6th Novel High Performance Computing algorithms and platforms in Bioinformatics (BIO-HPC 18) es_ES
dc.relation.conferencedate Agosto 13-16,2018 es_ES
dc.relation.conferenceplace Eugene, USA es_ES
dc.relation.publisherversion https://doi.org/10.1177/1094342019857131 es_ES
dc.description.upvformatpinicio 5 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 34 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\399161 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia es_ES
dc.contributor.funder Agencia Estatal de Investigación
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2, 19-25. doi:10.1016/j.softx.2015.06.001 es_ES
dc.description.references Banegas-Luna, A. J., Imbernón, B., Llanes Castro, A., Pérez-Garrido, A., Cerón-Carrasco, J. P., Gesing, S., … Pérez-Sánchez, H. (2018). Advances in distributed computing with modern drug discovery. Expert Opinion on Drug Discovery, 14(1), 9-22. doi:10.1080/17460441.2019.1552936 es_ES
dc.description.references Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., … Woods, R. J. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26(16), 1668-1688. doi:10.1002/jcc.20290 es_ES
dc.description.references Csermely, P., Korcsmáros, T., Kiss, H. J. M., London, G., & Nussinov, R. (2013). Structure and dynamics of molecular networks: A novel paradigm of drug discovery. Pharmacology & Therapeutics, 138(3), 333-408. doi:10.1016/j.pharmthera.2013.01.016 es_ES
dc.description.references Franco, A. A. (2013). Multiscale modelling and numerical simulation of rechargeable lithium ion batteries: concepts, methods and challenges. RSC Advances, 3(32), 13027. doi:10.1039/c3ra23502e es_ES
dc.description.references Frisch MJ, Trucks GW, Schlegel HB, et al. (2016) Gaussian 16 Revision A.03. Wallingford, CT: Gaussian. Inc. es_ES
dc.description.references Halder, D., & Purkayastha, P. (2018). A flavonol that acts as a potential DNA minor groove binder as also an efficient G-quadruplex loop binder. Journal of Molecular Liquids, 265, 69-76. doi:10.1016/j.molliq.2018.05.117 es_ES
dc.description.references Hess, B., Kutzner, C., van der Spoel, D., & Lindahl, E. (2008). GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. Journal of Chemical Theory and Computation, 4(3), 435-447. doi:10.1021/ct700301q es_ES
dc.description.references Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., & Simmerling, C. (2006). Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins: Structure, Function, and Bioinformatics, 65(3), 712-725. doi:10.1002/prot.21123 es_ES
dc.description.references Imbernón, B., Cecilia, J. M., Pérez-Sánchez, H., & Giménez, D. (2017). METADOCK: A parallel metaheuristic schema for virtual screening methods. The International Journal of High Performance Computing Applications, 32(6), 789-803. doi:10.1177/1094342017697471 es_ES
dc.description.references Iserte, S., Prades, J., Reano, C., & Silla, F. (2016). Increasing the Performance of Data Centers by Combining Remote GPU Virtualization with Slurm. 2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid). doi:10.1109/ccgrid.2016.26 es_ES
dc.description.references Bentham Science Publisher, B. S. P. (2006). Scoring Functions for Protein-Ligand Docking. Current Protein & Peptide Science, 7(5), 407-420. doi:10.2174/138920306778559395 es_ES
dc.description.references Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926-935. doi:10.1063/1.445869 es_ES
dc.description.references Kitchen, D. B., Decornez, H., Furr, J. R., & Bajorath, J. (2004). Docking and scoring in virtual screening for drug discovery: methods and applications. Nature Reviews Drug Discovery, 3(11), 935-949. doi:10.1038/nrd1549 es_ES
dc.description.references Lagarde, N., Zagury, J.-F., & Montes, M. (2015). Benchmarking Data Sets for the Evaluation of Virtual Ligand Screening Methods: Review and Perspectives. Journal of Chemical Information and Modeling, 55(7), 1297-1307. doi:10.1021/acs.jcim.5b00090 es_ES
dc.description.references Noroozi, M., Angerson, W. J., & Lean, M. E. (1998). Effects of flavonoids and vitamin C on oxidative DNA damage to human lymphocytes. The American Journal of Clinical Nutrition, 67(6), 1210-1218. doi:10.1093/ajcn/67.6.1210 es_ES
dc.description.references Patra, M., Hyvönen, M. T., Falck, E., Sabouri-Ghomi, M., Vattulainen, I., & Karttunen, M. (2007). Long-range interactions and parallel scalability in molecular simulations. Computer Physics Communications, 176(1), 14-22. doi:10.1016/j.cpc.2006.07.017 es_ES
dc.description.references Pezeshgi Modarres, H., Dorokhov, B. D., Popov, V. O., Ravin, N. V., Skryabin, K. G., & Dal Peraro, M. (2015). Understanding and Engineering Thermostability in DNA Ligase from Thermococcus sp. 1519. Biochemistry, 54(19), 3076-3085. doi:10.1021/bi501227b es_ES
dc.description.references Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., … Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26(16), 1781-1802. doi:10.1002/jcc.20289 es_ES
dc.description.references Prades, J., Reaño, C., Silla, F., Imbernón, B., Pérez-Sánchez, H., & Cecilia, J. M. (2018). Increasing Molecular Dynamics Simulations Throughput by Virtualizing Remote GPUs with rCUDA. Proceedings of the 47th International Conference on Parallel Processing Companion - ICPP ’18. doi:10.1145/3229710.3229734 es_ES
dc.description.references Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., … Lindahl, E. (2013). GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics, 29(7), 845-854. doi:10.1093/bioinformatics/btt055 es_ES
dc.description.references Reano, C., & Silla, F. (2015). A Performance Comparison of CUDA Remote GPU Virtualization Frameworks. 2015 IEEE International Conference on Cluster Computing. doi:10.1109/cluster.2015.76 es_ES
dc.description.references Reaño, C., Silla, F., Shainer, G., & Schultz, S. (2015). Local and Remote GPUs Perform Similar with EDR 100G InfiniBand. Proceedings of the Industrial Track of the 16th International Middleware Conference on ZZZ - Middleware Industry ’15. doi:10.1145/2830013.2830015 es_ES
dc.description.references Sánchez-Linares, I., Pérez-Sánchez, H., Cecilia, J. M., & García, J. M. (2012). High-Throughput parallel blind Virtual Screening using BINDSURF. BMC Bioinformatics, 13(Suppl 14), S13. doi:10.1186/1471-2105-13-s14-s13 es_ES
dc.description.references Shaw, D. E., Maragakis, P., Lindorff-Larsen, K., Piana, S., Dror, R. O., Eastwood, M. P., … Wriggers, W. (2010). Atomic-Level Characterization of the Structural Dynamics of Proteins. Science, 330(6002), 341-346. doi:10.1126/science.1187409 es_ES
dc.description.references Yoo, A. B., Jette, M. A., & Grondona, M. (2003). SLURM: Simple Linux Utility for Resource Management. Lecture Notes in Computer Science, 44-60. doi:10.1007/10968987_3 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem