Mostrar el registro sencillo del ítem
dc.contributor.author | Prades, Javier | es_ES |
dc.contributor.author | Imbernon, Baldomero | es_ES |
dc.contributor.author | Reaño González, Carlos | es_ES |
dc.contributor.author | Peña-García, Jorge | es_ES |
dc.contributor.author | Cerón-Carrasco, Jose Pedro | es_ES |
dc.contributor.author | Silla Jiménez, Federico | es_ES |
dc.contributor.author | Pérez-Sánchez, Horacio | es_ES |
dc.date.accessioned | 2020-10-14T03:30:55Z | |
dc.date.available | 2020-10-14T03:30:55Z | |
dc.date.issued | 2020-01 | es_ES |
dc.identifier.issn | 1094-3420 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/151657 | |
dc.description.abstract | [EN] The full-understanding of the dynamics of molecular systems at the atomic scale is of great relevance in the fields of chemistry, physics, materials science, and drug discovery just to name a few. Molecular dynamics (MD) is a widely used computer tool for simulating the dynamical behavior of molecules. However, the computational horsepower required by MD simulations is too high to obtain conclusive results in real-world scenarios. This is mainly motivated by two factors: (1) the long execution time required by each MD simulation (usually in the nanoseconds and microseconds scale, and beyond) and (2) the large number of simulations required in drug discovery to study the interactions between a large library of compounds and a given protein target. To deal with the former, graphics processing units (GPUs) have come up into the scene. The latter has been traditionally approached by launching large amounts of simulations in computing clusters that may contain several GPUs on each node. However, GPUs are targeted as a single node that only runs one MD instance at a time, which translates into low GPU occupancy ratios and therefore low throughput. In this work, we propose a strategy to increase the overall throughput of MD simulations by increasing the GPU occupancy through virtualized GPUs. We use the remote CUDA (rCUDA) middleware as a tool to decouple GPUs from CPUs, and thus enabling multi-tenancy of the virtual GPUs. As a working test in the drug discovery field, we studied the binding process of a novel flavonol to DNA with the GROningen MAchine for Chemical Simulations (GROMACS) MD package. Our results show that the use of rCUDA provides with a 1.21x speed-up factor compared to the CUDA counterpart version while requiring a similar power budget. | es_ES |
dc.description.sponsorship | The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was jointly supported by the Fundación Séneca (Agencia Regional de Ciencia y Tecnología, Región de Murcia) under grants (20524/PDC/18, 20813/PI/ 18, and 20988/PI/18) and by the Spanish MEC and Eur-opean Commission FEDER under grants TIN2015-66972-C5-3-R, TIN2016-78799-P, and CTQ2017-87974-R (AEI/FEDER, UE). Researchers from the Universitat Politècnica de València are supported by the Generalitat Valenciana under grant PROMETEO/2017/077. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | SAGE Publications | es_ES |
dc.relation.ispartof | International Journal of High Performance Computing Applications | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Molecular dynamics | es_ES |
dc.subject | GPU virtualization | es_ES |
dc.subject | RCUDA | es_ES |
dc.subject | GROMACS | es_ES |
dc.subject | GPU | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.title | Maximizing resource usage in multifold molecular dynamics with rCUDA | es_ES |
dc.type | Artículo | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.identifier.doi | 10.1177/1094342019857131 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2016-78799-P/ES/DESARROLLO HOLISTICO DE APLICACIONES EMERGENTES EN SISTEMAS HETEROGENEOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/f SéNeCa//20813%2FPI%2F18/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/f SéNeCa//20524%2FPDC%2F18/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/f SéNeCa//20988%2FPI%2F18/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2015-66972-C5-3-R/ES/TECNICAS PARA LA MEJORA DE LAS PRESTACIONES, FIABILIDAD Y CONSUMO DE ENERGIA DE LOS SERVIDORES. OPTIMIZACION DE APLICACIONES CIENTIFICAS, MEDICAS Y DE VISION ARTIFICIAL/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTQ2017-87974-R/ES/DESARROLLO DE TECNICAS AVANZADAS DE DESCUBRIMIENTO DE FARMACOS, SU IMPLEMENTACION EN HERRAMIENTAS SOFTWARE Y WEB, Y SU APLICACION A CONTEXTOS DE RELEVANCIA FARMACOLOGICA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F077/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors | es_ES |
dc.description.bibliographicCitation | Prades, J.; Imbernon, B.; Reaño González, C.; Peña-García, J.; Cerón-Carrasco, JP.; Silla Jiménez, F.; Pérez-Sánchez, H. (2020). Maximizing resource usage in multifold molecular dynamics with rCUDA. International Journal of High Performance Computing Applications. 34(1):5-19. https://doi.org/10.1177/1094342019857131 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | 6th Novel High Performance Computing algorithms and platforms in Bioinformatics (BIO-HPC 18) | es_ES |
dc.relation.conferencedate | Agosto 13-16,2018 | es_ES |
dc.relation.conferenceplace | Eugene, USA | es_ES |
dc.relation.publisherversion | https://doi.org/10.1177/1094342019857131 | es_ES |
dc.description.upvformatpinicio | 5 | es_ES |
dc.description.upvformatpfin | 19 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 34 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\399161 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Educación y Ciencia | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2, 19-25. doi:10.1016/j.softx.2015.06.001 | es_ES |
dc.description.references | Banegas-Luna, A. J., Imbernón, B., Llanes Castro, A., Pérez-Garrido, A., Cerón-Carrasco, J. P., Gesing, S., … Pérez-Sánchez, H. (2018). Advances in distributed computing with modern drug discovery. Expert Opinion on Drug Discovery, 14(1), 9-22. doi:10.1080/17460441.2019.1552936 | es_ES |
dc.description.references | Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., … Woods, R. J. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26(16), 1668-1688. doi:10.1002/jcc.20290 | es_ES |
dc.description.references | Csermely, P., Korcsmáros, T., Kiss, H. J. M., London, G., & Nussinov, R. (2013). Structure and dynamics of molecular networks: A novel paradigm of drug discovery. Pharmacology & Therapeutics, 138(3), 333-408. doi:10.1016/j.pharmthera.2013.01.016 | es_ES |
dc.description.references | Franco, A. A. (2013). Multiscale modelling and numerical simulation of rechargeable lithium ion batteries: concepts, methods and challenges. RSC Advances, 3(32), 13027. doi:10.1039/c3ra23502e | es_ES |
dc.description.references | Frisch MJ, Trucks GW, Schlegel HB, et al. (2016) Gaussian 16 Revision A.03. Wallingford, CT: Gaussian. Inc. | es_ES |
dc.description.references | Halder, D., & Purkayastha, P. (2018). A flavonol that acts as a potential DNA minor groove binder as also an efficient G-quadruplex loop binder. Journal of Molecular Liquids, 265, 69-76. doi:10.1016/j.molliq.2018.05.117 | es_ES |
dc.description.references | Hess, B., Kutzner, C., van der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. Journal of Chemical Theory and Computation, 4(3), 435-447. doi:10.1021/ct700301q | es_ES |
dc.description.references | Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., & Simmerling, C. (2006). Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins: Structure, Function, and Bioinformatics, 65(3), 712-725. doi:10.1002/prot.21123 | es_ES |
dc.description.references | Imbernón, B., Cecilia, J. M., Pérez-Sánchez, H., & Giménez, D. (2017). METADOCK: A parallel metaheuristic schema for virtual screening methods. The International Journal of High Performance Computing Applications, 32(6), 789-803. doi:10.1177/1094342017697471 | es_ES |
dc.description.references | Iserte, S., Prades, J., Reano, C., & Silla, F. (2016). Increasing the Performance of Data Centers by Combining Remote GPU Virtualization with Slurm. 2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid). doi:10.1109/ccgrid.2016.26 | es_ES |
dc.description.references | Bentham Science Publisher, B. S. P. (2006). Scoring Functions for Protein-Ligand Docking. Current Protein & Peptide Science, 7(5), 407-420. doi:10.2174/138920306778559395 | es_ES |
dc.description.references | Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926-935. doi:10.1063/1.445869 | es_ES |
dc.description.references | Kitchen, D. B., Decornez, H., Furr, J. R., & Bajorath, J. (2004). Docking and scoring in virtual screening for drug discovery: methods and applications. Nature Reviews Drug Discovery, 3(11), 935-949. doi:10.1038/nrd1549 | es_ES |
dc.description.references | Lagarde, N., Zagury, J.-F., & Montes, M. (2015). Benchmarking Data Sets for the Evaluation of Virtual Ligand Screening Methods: Review and Perspectives. Journal of Chemical Information and Modeling, 55(7), 1297-1307. doi:10.1021/acs.jcim.5b00090 | es_ES |
dc.description.references | Noroozi, M., Angerson, W. J., & Lean, M. E. (1998). Effects of flavonoids and vitamin C on oxidative DNA damage to human lymphocytes. The American Journal of Clinical Nutrition, 67(6), 1210-1218. doi:10.1093/ajcn/67.6.1210 | es_ES |
dc.description.references | Patra, M., Hyvönen, M. T., Falck, E., Sabouri-Ghomi, M., Vattulainen, I., & Karttunen, M. (2007). Long-range interactions and parallel scalability in molecular simulations. Computer Physics Communications, 176(1), 14-22. doi:10.1016/j.cpc.2006.07.017 | es_ES |
dc.description.references | Pezeshgi Modarres, H., Dorokhov, B. D., Popov, V. O., Ravin, N. V., Skryabin, K. G., & Dal Peraro, M. (2015). Understanding and Engineering Thermostability in DNA Ligase from Thermococcus sp. 1519. Biochemistry, 54(19), 3076-3085. doi:10.1021/bi501227b | es_ES |
dc.description.references | Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., … Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26(16), 1781-1802. doi:10.1002/jcc.20289 | es_ES |
dc.description.references | Prades, J., Reaño, C., Silla, F., Imbernón, B., Pérez-Sánchez, H., & Cecilia, J. M. (2018). Increasing Molecular Dynamics Simulations Throughput by Virtualizing Remote GPUs with rCUDA. Proceedings of the 47th International Conference on Parallel Processing Companion - ICPP ’18. doi:10.1145/3229710.3229734 | es_ES |
dc.description.references | Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., … Lindahl, E. (2013). GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics, 29(7), 845-854. doi:10.1093/bioinformatics/btt055 | es_ES |
dc.description.references | Reano, C., & Silla, F. (2015). A Performance Comparison of CUDA Remote GPU Virtualization Frameworks. 2015 IEEE International Conference on Cluster Computing. doi:10.1109/cluster.2015.76 | es_ES |
dc.description.references | Reaño, C., Silla, F., Shainer, G., & Schultz, S. (2015). Local and Remote GPUs Perform Similar with EDR 100G InfiniBand. Proceedings of the Industrial Track of the 16th International Middleware Conference on ZZZ - Middleware Industry ’15. doi:10.1145/2830013.2830015 | es_ES |
dc.description.references | Sánchez-Linares, I., Pérez-Sánchez, H., Cecilia, J. M., & García, J. M. (2012). High-Throughput parallel blind Virtual Screening using BINDSURF. BMC Bioinformatics, 13(Suppl 14), S13. doi:10.1186/1471-2105-13-s14-s13 | es_ES |
dc.description.references | Shaw, D. E., Maragakis, P., Lindorff-Larsen, K., Piana, S., Dror, R. O., Eastwood, M. P., … Wriggers, W. (2010). Atomic-Level Characterization of the Structural Dynamics of Proteins. Science, 330(6002), 341-346. doi:10.1126/science.1187409 | es_ES |
dc.description.references | Yoo, A. B., Jette, M. A., & Grondona, M. (2003). SLURM: Simple Linux Utility for Resource Management. Lecture Notes in Computer Science, 44-60. doi:10.1007/10968987_3 | es_ES |