- -

Maximizing resource usage in multifold molecular dynamics with rCUDA

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Maximizing resource usage in multifold molecular dynamics with rCUDA

Mostrar el registro completo del ítem

Prades, J.; Imbernon, B.; Reaño González, C.; Peña-García, J.; Cerón-Carrasco, JP.; Silla Jiménez, F.; Pérez-Sánchez, H. (2020). Maximizing resource usage in multifold molecular dynamics with rCUDA. International Journal of High Performance Computing Applications. 34(1):5-19. https://doi.org/10.1177/1094342019857131

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/151657

Ficheros en el ítem

Metadatos del ítem

Título: Maximizing resource usage in multifold molecular dynamics with rCUDA
Autor: Prades, Javier Imbernon, Baldomero Reaño González, Carlos Peña-García, Jorge Cerón-Carrasco, Jose Pedro Silla Jiménez, Federico Pérez-Sánchez, Horacio
Entidad UPV: Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
Fecha difusión:
Resumen:
[EN] The full-understanding of the dynamics of molecular systems at the atomic scale is of great relevance in the fields of chemistry, physics, materials science, and drug discovery just to name a few. Molecular dynamics ...[+]
Palabras clave: Molecular dynamics , GPU virtualization , RCUDA , GROMACS , GPU
Derechos de uso: Reserva de todos los derechos
Fuente:
International Journal of High Performance Computing Applications. (issn: 1094-3420 )
DOI: 10.1177/1094342019857131
Editorial:
SAGE Publications
Versión del editor: https://doi.org/10.1177/1094342019857131
Título del congreso: 6th Novel High Performance Computing algorithms and platforms in Bioinformatics (BIO-HPC 18)
Lugar del congreso: Eugene, USA
Fecha congreso: Agosto 13-16,2018
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//TIN2016-78799-P/ES/DESARROLLO HOLISTICO DE APLICACIONES EMERGENTES EN SISTEMAS HETEROGENEOS/
...[+]
info:eu-repo/grantAgreement/MINECO//TIN2016-78799-P/ES/DESARROLLO HOLISTICO DE APLICACIONES EMERGENTES EN SISTEMAS HETEROGENEOS/
info:eu-repo/grantAgreement/f SéNeCa//20813%2FPI%2F18/
info:eu-repo/grantAgreement/f SéNeCa//20524%2FPDC%2F18/
info:eu-repo/grantAgreement/f SéNeCa//20988%2FPI%2F18/
info:eu-repo/grantAgreement/MINECO//TIN2015-66972-C5-3-R/ES/TECNICAS PARA LA MEJORA DE LAS PRESTACIONES, FIABILIDAD Y CONSUMO DE ENERGIA DE LOS SERVIDORES. OPTIMIZACION DE APLICACIONES CIENTIFICAS, MEDICAS Y DE VISION ARTIFICIAL/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTQ2017-87974-R/ES/DESARROLLO DE TECNICAS AVANZADAS DE DESCUBRIMIENTO DE FARMACOS, SU IMPLEMENTACION EN HERRAMIENTAS SOFTWARE Y WEB, Y SU APLICACION A CONTEXTOS DE RELEVANCIA FARMACOLOGICA/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F077/
[-]
Agradecimientos:
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was jointly supported by the Fundación Séneca (Agencia Regional de Ciencia y ...[+]
Tipo: Artículo Comunicación en congreso

References

Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2, 19-25. doi:10.1016/j.softx.2015.06.001

Banegas-Luna, A. J., Imbernón, B., Llanes Castro, A., Pérez-Garrido, A., Cerón-Carrasco, J. P., Gesing, S., … Pérez-Sánchez, H. (2018). Advances in distributed computing with modern drug discovery. Expert Opinion on Drug Discovery, 14(1), 9-22. doi:10.1080/17460441.2019.1552936

Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., … Woods, R. J. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26(16), 1668-1688. doi:10.1002/jcc.20290 [+]
Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2, 19-25. doi:10.1016/j.softx.2015.06.001

Banegas-Luna, A. J., Imbernón, B., Llanes Castro, A., Pérez-Garrido, A., Cerón-Carrasco, J. P., Gesing, S., … Pérez-Sánchez, H. (2018). Advances in distributed computing with modern drug discovery. Expert Opinion on Drug Discovery, 14(1), 9-22. doi:10.1080/17460441.2019.1552936

Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., … Woods, R. J. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26(16), 1668-1688. doi:10.1002/jcc.20290

Csermely, P., Korcsmáros, T., Kiss, H. J. M., London, G., & Nussinov, R. (2013). Structure and dynamics of molecular networks: A novel paradigm of drug discovery. Pharmacology & Therapeutics, 138(3), 333-408. doi:10.1016/j.pharmthera.2013.01.016

Franco, A. A. (2013). Multiscale modelling and numerical simulation of rechargeable lithium ion batteries: concepts, methods and challenges. RSC Advances, 3(32), 13027. doi:10.1039/c3ra23502e

Frisch MJ, Trucks GW, Schlegel HB, et al. (2016) Gaussian 16 Revision A.03. Wallingford, CT: Gaussian. Inc.

Halder, D., & Purkayastha, P. (2018). A flavonol that acts as a potential DNA minor groove binder as also an efficient G-quadruplex loop binder. Journal of Molecular Liquids, 265, 69-76. doi:10.1016/j.molliq.2018.05.117

Hess, B., Kutzner, C., van der Spoel, D., & Lindahl, E. (2008). GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. Journal of Chemical Theory and Computation, 4(3), 435-447. doi:10.1021/ct700301q

Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., & Simmerling, C. (2006). Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins: Structure, Function, and Bioinformatics, 65(3), 712-725. doi:10.1002/prot.21123

Imbernón, B., Cecilia, J. M., Pérez-Sánchez, H., & Giménez, D. (2017). METADOCK: A parallel metaheuristic schema for virtual screening methods. The International Journal of High Performance Computing Applications, 32(6), 789-803. doi:10.1177/1094342017697471

Iserte, S., Prades, J., Reano, C., & Silla, F. (2016). Increasing the Performance of Data Centers by Combining Remote GPU Virtualization with Slurm. 2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid). doi:10.1109/ccgrid.2016.26

Bentham Science Publisher, B. S. P. (2006). Scoring Functions for Protein-Ligand Docking. Current Protein & Peptide Science, 7(5), 407-420. doi:10.2174/138920306778559395

Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926-935. doi:10.1063/1.445869

Kitchen, D. B., Decornez, H., Furr, J. R., & Bajorath, J. (2004). Docking and scoring in virtual screening for drug discovery: methods and applications. Nature Reviews Drug Discovery, 3(11), 935-949. doi:10.1038/nrd1549

Lagarde, N., Zagury, J.-F., & Montes, M. (2015). Benchmarking Data Sets for the Evaluation of Virtual Ligand Screening Methods: Review and Perspectives. Journal of Chemical Information and Modeling, 55(7), 1297-1307. doi:10.1021/acs.jcim.5b00090

Noroozi, M., Angerson, W. J., & Lean, M. E. (1998). Effects of flavonoids and vitamin C on oxidative DNA damage to human lymphocytes. The American Journal of Clinical Nutrition, 67(6), 1210-1218. doi:10.1093/ajcn/67.6.1210

Patra, M., Hyvönen, M. T., Falck, E., Sabouri-Ghomi, M., Vattulainen, I., & Karttunen, M. (2007). Long-range interactions and parallel scalability in molecular simulations. Computer Physics Communications, 176(1), 14-22. doi:10.1016/j.cpc.2006.07.017

Pezeshgi Modarres, H., Dorokhov, B. D., Popov, V. O., Ravin, N. V., Skryabin, K. G., & Dal Peraro, M. (2015). Understanding and Engineering Thermostability in DNA Ligase from Thermococcus sp. 1519. Biochemistry, 54(19), 3076-3085. doi:10.1021/bi501227b

Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., … Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26(16), 1781-1802. doi:10.1002/jcc.20289

Prades, J., Reaño, C., Silla, F., Imbernón, B., Pérez-Sánchez, H., & Cecilia, J. M. (2018). Increasing Molecular Dynamics Simulations Throughput by Virtualizing Remote GPUs with rCUDA. Proceedings of the 47th International Conference on Parallel Processing Companion - ICPP ’18. doi:10.1145/3229710.3229734

Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., … Lindahl, E. (2013). GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics, 29(7), 845-854. doi:10.1093/bioinformatics/btt055

Reano, C., & Silla, F. (2015). A Performance Comparison of CUDA Remote GPU Virtualization Frameworks. 2015 IEEE International Conference on Cluster Computing. doi:10.1109/cluster.2015.76

Reaño, C., Silla, F., Shainer, G., & Schultz, S. (2015). Local and Remote GPUs Perform Similar with EDR 100G InfiniBand. Proceedings of the Industrial Track of the 16th International Middleware Conference on ZZZ - Middleware Industry ’15. doi:10.1145/2830013.2830015

Sánchez-Linares, I., Pérez-Sánchez, H., Cecilia, J. M., & García, J. M. (2012). High-Throughput parallel blind Virtual Screening using BINDSURF. BMC Bioinformatics, 13(Suppl 14), S13. doi:10.1186/1471-2105-13-s14-s13

Shaw, D. E., Maragakis, P., Lindorff-Larsen, K., Piana, S., Dror, R. O., Eastwood, M. P., … Wriggers, W. (2010). Atomic-Level Characterization of the Structural Dynamics of Proteins. Science, 330(6002), 341-346. doi:10.1126/science.1187409

Yoo, A. B., Jette, M. A., & Grondona, M. (2003). SLURM: Simple Linux Utility for Resource Management. Lecture Notes in Computer Science, 44-60. doi:10.1007/10968987_3

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem