- -

Multiproject-multicenter evaluation of automatic brain tumor classification by magnetic resonance spectroscopy

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


Multiproject-multicenter evaluation of automatic brain tumor classification by magnetic resonance spectroscopy

Show full item record

Garcia-Gomez, JM.; Luts, J.; Julia-Sape, M.; Krooshof, P.; Tortajada Velert, S.; Vicente Robledo, J.; Melssen, W.... (2009). Multiproject-multicenter evaluation of automatic brain tumor classification by magnetic resonance spectroscopy. Magnetic Resonance Materials in Physics, Biology and Medicine. 22(1):5-18. https://doi.org/10.1007/s10334-008-0146-y

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/151874

Files in this item

Item Metadata

Title: Multiproject-multicenter evaluation of automatic brain tumor classification by magnetic resonance spectroscopy
Author: Garcia-Gomez, Juan M Luts, Jan Julia-Sape, Margarida Krooshof, Patrick Tortajada Velert, Salvador Vicente Robledo, Javier Melssen, Willem Fuster García, Elíes Olier, Ivan Postma, Geert Monleon, Daniel Moreno-Torres, Angel Pujol, Jesus Candiota, Ana-Paula Martínez-Bisbal, M.Carmen Suykens, Johan Buydens, Lutgarde Celda, Bernardo Van Huffel, Sabine Arus, Carles Robles Viejo, Montserrat
UPV Unit: Universitat Politècnica de València. Instituto Universitario de Aplicaciones de las Tecnologías de la Información - Institut Universitari d'Aplicacions de les Tecnologies de la Informació
Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Issued date:
[EN] Automatic brain tumor classification by MRS has been under development for more than a decade. Nonetheless, to our knowledge, there are no published evaluations of predictive models with unseen cases that are subsequently ...[+]
Subjects: Magnetic resonance spectroscopy , Pattern classification , Brain tumors , Decision support systems , Multicenter evaluation study
Copyrigths: Cerrado
Magnetic Resonance Materials in Physics, Biology and Medicine. (issn: 0968-5243 )
DOI: 10.1007/s10334-008-0146-y
Publisher version: https://doi.org/10.1007/s10334-008-0146-y
Project ID:
EC/FP6-2005-IST 027213
EC/FP6-2002-IST 508803
We would like to thank the INTERPRET and eTUMOUR partners for providing data, particularly, Carles Majos (IDI-Bellvitge), John Griffiths and Franklyn Howe (SGUL), Arend Heerschap (RU), Witold Gajewicz (MUL), Jorge Calvar ...[+]
Type: Artículo


Howe FA, Opstad KS (2003) 1H MR spectroscopy of brain tumours and masses. NMR Biomed 16(3): 123–131

Galanaud D, Nicoli F, Chinot O, Confort-Gouny S, Figarella-Branger D, Roche P, Fuentes S, Le Fur Y, Ranjeva JP, Cozzone PJ (2006) Noninvasive diagnostic assessment of brain tumors using combined in vivo MR imaging and spectroscopy. Magn Reson Med 55(6): 1236–1245

Arnold DL, De Stefano N (1997) Magnetic resonance spectroscopy in vivo: applications in neurological disorders. Ital J Neurol Sci 18(6): 321–329 [+]
Howe FA, Opstad KS (2003) 1H MR spectroscopy of brain tumours and masses. NMR Biomed 16(3): 123–131

Galanaud D, Nicoli F, Chinot O, Confort-Gouny S, Figarella-Branger D, Roche P, Fuentes S, Le Fur Y, Ranjeva JP, Cozzone PJ (2006) Noninvasive diagnostic assessment of brain tumors using combined in vivo MR imaging and spectroscopy. Magn Reson Med 55(6): 1236–1245

Arnold DL, De Stefano N (1997) Magnetic resonance spectroscopy in vivo: applications in neurological disorders. Ital J Neurol Sci 18(6): 321–329

Poptani H, Kaartinen J, Gupta RK, Niemitz M, Hiltunen Y, Kauppinen RA (1999) Diagnostic assessment of brain tumours and non-neoplastic brain disorders in vivo using proton nuclear magnetic resonance spectroscopy and artificial neural networks. J Cancer Res Clin Oncol 125(6): 343–349

Moller-Hartmann W, Herminghaus S, Krings T, Marquardt G, Lanfermann H, Pilatus U, Zanella FE (2002) Clinical application of proton magnetic resonance spectroscopy in the diagnosis of intracranial mass lesions. Neuroradiology 44(5): 371–381

Hagberg G (1998) From magnetic resonance spectroscopy to classification of tumors. A review of pattern recognition methods. NMR Biomed 11(4-5): 148–156

Tate AR, Majos C, Moreno A, Howe FA, Griffiths JR, Arús C (2003) Automated classification of short echo time in in vivo 1H brain tumor spectra: a multicenter study. Magn Reson Med 49(1): 29–36

Tate AR, Underwood J, Acosta DM, Julia-Sape M, Majos C, Moreno-Torres A, Howe FA, van der Graaf M, Lefournier V, Murphy MM, Loosemore A, Ladroue C, Wesseling P, Luc Bosson J, Cabanas ME, Simonetti AW, Gajewicz W, Calvar J, Capdevila A, Wilkins PR, Bell BA, Remy C, Heerschap A, Watson D, Griffiths JR, Arús C (2006) Development of a decision support system for diagnosis and grading of brain tumours using in vivo magnetic resonance single voxel spectra. NMR Biomed 19(4): 411–434

González-Vélez H, Mier M, Julià-Sapé M, Arvanitis T, García-Gómez J, Robles M, Lewis P, Dasmahapatra S, Dupplaw D, Peet A, Arús C, Celda B, Van Huffel S, Lluch-Ariet M (2007) HealthAgents: distributed multi-agent brain tumor diagnosis and prognosis. Appl Intell (Epub ahead of print)

Devos A, Lukas L, Suykens JAK, Vanhamme L, Tate AR, Howe FA, Majos C, Moreno-Torres A, van der Graaf M, Arús C, Van Huffel S (2004) Classification of brain tumours using short echo time 1H MR spectra. J Magn Reson 170(1): 164–175

Lukas L, Devos A, Suykens JAK, Vanhamme L, Howe FA, Majós C, Moreno-Torres A, Graaf MVD, Tate AR, Arús C, Huffel SV (2004) Brain tumor classification based on long echo proton MRS signals. Artif Intell Med 31: 73–89

Simonetti AW, Melssen WJ, Szabo de Edelenyi F, van Asten JJA, Heerschap A, Buydens LMC (2005) Combination of feature-reduced MR spectroscopic and MR imaging data for improved brain tumor classification. NMR Biomed 18(1): 34–43

Menze BH, Lichy MP, Bachert P, Kelm BM, Schlemmer HP, Hamprecht FA (2006) Optimal classification of long echo time in vivo magnetic resonance spectra in the detection of recurrent brain tumors. NMR Biomed 19(5): 599–609

Potts HWW, Wyatt JC, Altman DG (2001) Challenges in evaluating complex decision support systems: lessons from design-a-trial. In: AIME ’1: proceedings of the 8th conference on AI in medicine in Europe, pp 453–456. Springer, London

Lisboa PJ, Taktak AFG (2006) The use of artificial neural networks in decision support in cancer: a systematic review. Neural Netw 19(4): 408–415

Anagnostou T, Remzi M, Djavan B (2003) Artificial neural networks for decision-making in urologic oncology. Eur Urol 43(6): 596–603

Perner P (2006) Intelligent data analysis in medicine-recent advances. Artif Intell Med 37(1): 1–5

INTERPRET Consortium. Interpret web site. http://azizu.uab.es/INTERPRET . Accessed 28 April 2008

Julia-Sape M, Acosta D, Mier M, Arús C, Watson D (2006) A multi-centre, web-accessible and quality control-checked database of in vivo MR spectra of brain tumour patients. Magn Reson Mater Phys 19(1): 22–33

van der Graaf M, Julia-Sape M, Howe FA, Ziegler A, Majos C, Moreno-Torres A, Rijpkema M, Acosta D, Opstad KS, van der Meulen YM, Arus C, Heerschap A (2008) MRS quality assessment in a multicentre study on MRS-based classification of brain tumours. NMR Biomed 21(2): 148–158

Devos A (2005) Quantification and classification of magnetic resonance spectroscopy data and applications to brain tumour recognition. Ph.D. thesis, Faculty of Engineering, K.U.Leuven

Simonetti AW, Melssen WJ, van der Graaf M, Postma GJ, Heerschap A, Buydens LMC (2003) A chemometric approach for brain tumor classification using magnetic resonance imaging and spectroscopy. Anal Chem 75(20): 5352–5361

Devos A, Simonetti AW, van der Graaf M, Lukas L, Suykens JAK, Vanhamme L, Buydens LMC, Heerschap A, Van Huffel S (2005) The use of multivariate MR imaging intensities versus metabolic data from MR spectroscopic imaging for brain tumour classification. J Magn Reson 173(2): 218–228

Laudadio T, Martinez-Bisbal M, Celda B, Van Huffel S (2007) Fast nosological imaging using canonical correlation analysis of brain data obtained by two-dimensional turbo spectroscopic imaging. NMR Biomed 21(4): 311–321

Martinez-Bisbal MC, Celda B, Marti-Bonmati L, Ferrer P, Revert-Ventura AJ, Piquer J, Molla E, Arana R, Dosda-Munoz R (2002) The contribution of magnetic resonance spectroscopy for the classification of high grade glial tumours. The predictive value of macromolecules. Revista de Neurología 34: 309–313

Martinez-Bisbal MC, Ferrer-Luna R, Martinez-Granados B, Monleón D, Esteve V, Piquer J, Revert AJ, Mollá E, Martí-Bonmatí L, Celda B (2005) Glial tumours grading by a combination of (1)H MR short and medium echo time single voxel located by spectroscopic imaging. Magn Reson Mater Phys 18(S1): S68

Melssen W, Wehrens R, Buydens L (2006) Supervised Kohonen networks for classification problems. Chemom Intell Lab Syst 83(2): 99–113

Opstad KS, Ladroue C, Bell BA, Griffiths JR, Howe FA (2007) Linear discriminant analysis of brain tumour (1)H MR spectra: a comparison of classification using whole spectra versus metabolite quantification. NMR Biomed 20(8): 763–770

eTumour Consortium (2003) eTumour: web accessible MR decision support system for brain tumour diagnosis and prognosis, incorporating in vivo and ex vivo genomic and metabolomic data. Technical report, FP6-2002-LIFESCIHEALTH 503094, VI framework programme, EC. http://www.etumour.net . Accessed 28 April 2008

García-Gómez JM, Tortajada S, Vidal C, Julia-Sape M, Luts J, Moreno-Torres À, Van Huffel S, Arús C, Robles M (2008) The effect of combining two echo times in automatic brain tumor classification by MRS. NMR Biomed 21 (in press)

Kleihues P, Burger PC, Scheithauer BW (1993) The new WHO classification of brain tumours. Brain Pathol 3(3): 255–268

Klose U (1990) In vivo proton spectroscopy in presence of eddy currents. Magn Reson Med 14(1): 26–30

Naressi A, Couturier C, Castang I, de Beer R, Graveron-Demilly D (2001) Java-based graphical user interface for MRUI, a software package for quantitation of in vivo/medical magnetic resonance spectroscopy signals. Comput Biol Med 31(4): 269–286

Cabanes E, Confort-Gouny S, Le Fur Y, Simond G, Cozzone PJ (2001) Optimization of residual water signal removal by HLSVD on simulated short echo time proton MR spectra of the human brain. J Magn Reson 150(2): 116–125

Hoch JC, Stern AS (1996) NMR data processing. Wiley, New York

Preul MC, Caramanos Z, Collins DL, Villemure JG, Leblanc R, Olivier A, Pokrupa R, Arnold DL (1996) Accurate, noninvasive diagnosis of human brain tumors by using proton magnetic resonance spectroscopy. Nat Med 2(3): 323–325

Burges CJ (2004) Geometric methods for feature extraction and dimensional reduction: a guided tour. Technical report, Microsoft Research, University of Toronto

Fukunaga K (1990) Introduction to statistical pattern recognition, 2nd edn. Academic Press, San Diego

Comon P (1994) Independent component analysis, a new concept. Signal Process 36(3): 287–314

Cardoso J-F, Souloumiac A (1993) Blind beamforming for non Gaussian signals. IEE Proc F 140(6): 362–370

Daubechies I (1992) Ten lectures on wavelets (CBMS–NSF regional conference series in applied mathematics). Society for Industrial and Applied Mathematics. http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0898712742

Panagiotacopulos N, Lertsuntivit S, Savidge L, Lin A, Shic F, Ross B (2000) Wavelet analysis of brain tumors in clinical MRS. In: Advances in physics, electronics and signal processing applications, pp 290–296

Krzanowski, WJ (eds) (1988) Principles of multivariate analysis: a user’s perspective. Oxford University Press, New York

Fisher RA (1925) Statistical methods for research workers. Oliver and Boyd, Edinburgh

Vapnik V (1995) The nature of statistical learning theory. Springer, NY

Suykens JAK, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3): 293–300

Rosenblatt F (1958) The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev 65(6): 386–408

Melssen W, Ustun B, Buydens L (2007) SOMPLS: a supervised self-organising map—partial least squares algorithm for multivariate regression problems. Chemom Intell Lab Syst 86(1): 102–120

Valentini G, Dietterich TG (2004) Bias-variance analysis of support vector machines for the development of SVM-based ensemble methods. J Mach Learn Res 5: 725–775

Hastie T, Tibshirani R, Friedman JH (2001) The elements of statistical learning. Springer, Heidelberg

Duda R, Hart P, Stork D (2001) Pattern classification. Wiley, London

Van Gestel T, Suykens JAK, Lanckriet G, Lambrechts A, De Moor B, Vandewalle J (2002) Bayesian framework for least squares support vector machine classifiers, Gaussian processes and Kernel Fisher discriminant analysis. Neural Comput 14: 1115–1147

MacKay DJC (1992) Bayesian interpolation. Neural Comput 4(3): 415–447

Guyon I, Alamdari ARSA, Dror G, Buhmann JM (2006) Performance Prediction Challenge. In: IJCNN ’6 international joint conference on neural networks, pp 1649–1656

Ishimaru H, Morikawa M, Iwanaga S, Kaminogo M, Ochi M, Hayashi K (2001) Differentiation between high-grade glioma and metastatic brain tumor using single-voxel proton MR spectroscopy. Eur Radiol 11(9): 1784–1791

Opstad KS, Murphy MM, Wilkins PR, Bell BA, Griffiths JR, Howe FA (2004) Differentiation of metastases from high-grade gliomas using short echo time 1H spectroscopy. J Magn Reson Imaging 20(2): 187–192

Law M, Cha S, Knopp EA, Johnson G, Arnett J, Litt AW (2002) High-grade gliomas and solitary metastases: differentiation by using perfusion and proton spectroscopic MR imaging. Radiology 222(3): 715–721

Burtscher IM, Skagerberg G, Geijer B, Englund E, Stahlberg F, Holtas S (2000) Proton MR spectroscopy and preoperative diagnostic accuracy: an evaluation of intracranial mass lesions characterized by stereotactic biopsy findings. AJNR Am J Neuroradiol 21(1): 84–93

Laudadio T, Luts J, Martinez-Bisbal M, Celda B, Huffel SV (2008) Differentiation between brain metastasis and glioblastoma using MRI and two-dimensional turbo spectroscopic imaging data. In: Proceedings of the 4th European medical and biomedical engineering congress (in press)

Hochberg Y, Tamhane AC (1987) Multiple comparison procedures. Wiley, New York

Celda B, Monleon D, Martinez-Bisbal MC, Esteve V, Martinez-Granados B, Pinero E, Ferrer R, Piquer J, Marti-Bonmati L, Cervera J (2006) MRS as endogenous molecular imaging for brain and prostate tumors: FP6 project “eTUMOR” Adv Exp Med Biol 587: 285–302

Tortajada S, García-Gómez JM, Vidal C, Arús C, Julià-Sapé M, Moreno A, Robles M (2006) Improved classification by pattern recognition of brain tumours combining long and short echo time 1H-MR spectra. In: SpringerLink (ed) Book of abstracts ESMRMB 2006. J Magn Reson Mater Phys Biol Med 19(suppl 1): 168–169

García-Gómez JM, Tortajada S, Vicente J, Sáez C, Castells X, Luts J, Julià-Sapé M, Juan-Císcar A, Van Huffel S, Barcelo A, Ariño J, Arús C, Robles M (2007) Genomics and metabolomics research for brain tumour diagnosis based on machine learning. In IWANN: lecture notes in computer sicences, vol 4507/2007, pp 1012–1019

McIntyre DJO, Charlton RA, Markus HS, Howe FA (2007) Long and short echo time proton magnetic resonance spectroscopic imaging of the healthy aging brain. J Magn Reson Imaging 26(6): 1596–1606

Majos C, Julia-Sape M, Alonso J, Serrallonga M, Aguilera C, Acebes JJ, Arús C, Gili J (2004) Brain tumor classification by proton MR spectroscopy: comparison of diagnostic accuracy at short and long TE. AJNR Am J Neuroradiol 25(10): 1696–1704

Julia-Sape M, Acosta D, Majos C, Moreno-Torres A, Wesseling P, Acebes JJ, Griffiths JR, Arús C (2006) Comparison between neuroimaging classifications and histopathological diagnoses using an international multicenter brain tumor magnetic resonance imaging database. J Neurosurg 105(1): 6–14

Provencher SW (2001) Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed 14(4): 260–264

Luts J, Poullet JB, Garcia-Gomez JM, Heerschap A, Robles M, Suykens JAK, Van Huffel S (2008) Effect of feature extraction for brain tumor classification based on short echo time 1H MR spectra. Magn Reson Med 60(2): 288–298

Bishop CM (2006) Pattern recognition and machine learning (information science and statistics). Springer, Heidelberg

Davies N, Wilson M, Harris L, Natarajan K, Lateef S, Macpherson L, Sgouros S, Grundy R, Arvanitis T, Peet A (2008) Identification and characterisation of childhood cerebellar tumours by in vivo proton MRS. NMR Biomed 21(8): 908–918


This item appears in the following Collection(s)

Show full item record