dc.contributor.author |
Garcia-Gomez, Juan M
|
es_ES |
dc.contributor.author |
Luts, Jan
|
es_ES |
dc.contributor.author |
Julia-Sape, Margarida
|
es_ES |
dc.contributor.author |
Krooshof, Patrick
|
es_ES |
dc.contributor.author |
Tortajada Velert, Salvador
|
es_ES |
dc.contributor.author |
Vicente Robledo, Javier
|
es_ES |
dc.contributor.author |
Melssen, Willem
|
es_ES |
dc.contributor.author |
Fuster García, Elíes
|
es_ES |
dc.contributor.author |
Olier, Ivan
|
es_ES |
dc.contributor.author |
Postma, Geert
|
es_ES |
dc.contributor.author |
Monleon, Daniel
|
es_ES |
dc.contributor.author |
Moreno-Torres, Angel
|
es_ES |
dc.contributor.author |
Pujol, Jesus
|
es_ES |
dc.contributor.author |
Candiota, Ana-Paula
|
es_ES |
dc.contributor.author |
Martínez-Bisbal, M.Carmen
|
es_ES |
dc.contributor.author |
Suykens, Johan
|
es_ES |
dc.contributor.author |
Buydens, Lutgarde
|
es_ES |
dc.contributor.author |
Celda, Bernardo
|
es_ES |
dc.contributor.author |
Van Huffel, Sabine
|
es_ES |
dc.contributor.author |
Arus, Carles
|
es_ES |
dc.contributor.author |
Robles Viejo, Montserrat
|
es_ES |
dc.date.accessioned |
2020-10-15T03:31:17Z |
|
dc.date.available |
2020-10-15T03:31:17Z |
|
dc.date.issued |
2009-02 |
es_ES |
dc.identifier.issn |
0968-5243 |
es_ES |
dc.identifier.uri |
http://hdl.handle.net/10251/151874 |
|
dc.description.abstract |
[EN] Automatic brain tumor classification by MRS has been under development for more than a decade. Nonetheless, to our knowledge, there are no published evaluations of predictive models with unseen cases that are subsequently acquired in different centers. The multicenter eTUMOUR project (2004-2009), which builds upon previous expertise from the INTERPRET project (2000-2002) has allowed such an evaluation to take place.
A total of 253 pairwise classifiers for glioblastoma, meningioma, metastasis, and low-grade glial diagnosis were inferred based on 211 SV short TE INTERPRET MR spectra obtained at 1.5 T (PRESS or STEAM, 20-32 ms) and automatically pre-processed. Afterwards, the classifiers were tested with 97 spectra, which were subsequently compiled during eTUMOUR.
In our results based on subsequently acquired spectra, accuracies of around 90% were achieved for most of the pairwise discrimination problems. The exception was for the glioblastoma versus metastasis discrimination, which was below 78%. A more clear definition of metastases may be obtained by other approaches, such as MRSI + MRI.
The prediction of the tumor type of in-vivo MRS is possible using classifiers developed from previously acquired data, in different hospitals with different instrumentation under the same acquisition protocols. This methodology may find application for assisting in the diagnosis of new brain tumor cases and for the quality control of multicenter MRS databases. |
es_ES |
dc.description.sponsorship |
We would like to thank the INTERPRET and eTUMOUR partners for providing data, particularly, Carles Majos (IDI-Bellvitge), John Griffiths and Franklyn Howe (SGUL), Arend Heerschap (RU), Witold Gajewicz (MUL), Jorge Calvar (FLENI), and Antoni Capdevila (H. de Sant Joan de Deu). This work was partially funded by the European Commission: eTUMOUR (contract no. FP62002-LIFESCIHEALTH 503094), the HEALTHAGENTS EC project (HEALTHAGENTS) (contract no. FP6-2005-IST 027213), BIOPATTERN (contract no. FP6-2002-IST 508803). The authors appreciate the suggestions from the reviewers that have improved the discussion presented in this work. We also thank the following for their contributions: Programa de Apoyo a la Investigacion y Desarrollo, PAID-00-06 UPV; Research Council KUL: GOA-AMBioRICS, Centers-of-excellence optimisation; Belgian Federal Government: DWTC, IUAPV P6/04 (DYSCO 2007-2011); the following participants acknowledge the following: JVR acknowledges to Programa Torres Quevedo from Ministerio de Educacion y Ciencia, co-founded by the European Social Fund (PTQ05-02-03386). JL is a PhD student supported by an IWT grant. DM is supported by the Ministerio de Educacion y Ciencia del Gobierno de Espa a for a Ramon y Cajal 2006 Contract. BC and CA gratefully acknowledge the Ministerio de Educacion y Ciencia del Gobierno de Espa a (BC: SAF2004-06297 and SAF2007-6547; CA: SAF2005-03650). CIBER-BBN is an initiative of the "Instituto de Salud Carlos III" (ISCIII), Spain |
es_ES |
dc.language |
Inglés |
es_ES |
dc.publisher |
Springer-Verlag |
es_ES |
dc.relation.ispartof |
Magnetic Resonance Materials in Physics, Biology and Medicine |
es_ES |
dc.rights |
Reserva de todos los derechos |
es_ES |
dc.subject |
Magnetic resonance spectroscopy |
es_ES |
dc.subject |
Pattern classification |
es_ES |
dc.subject |
Brain tumors |
es_ES |
dc.subject |
Decision support systems |
es_ES |
dc.subject |
Multicenter evaluation study |
es_ES |
dc.subject.classification |
CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL |
es_ES |
dc.subject.classification |
FISICA APLICADA |
es_ES |
dc.title |
Multiproject-multicenter evaluation of automatic brain tumor classification by magnetic resonance spectroscopy |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.1007/s10334-008-0146-y |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/MEC//SAF2005-03650/ES/MEJORA DEL DIAGNOSTICO Y DE LA VALORACION PRONOSTICA DE TUMORES CEREBRALES HUMANOS IN VIVO. MODELOS ANIMALES Y CELULARES PARA LA METABOLOMICA DE LA PROGRESION TUMORAL. FASE 2/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/EC/FP6/027214/EU/Agent-based Distributed Decision Support System for brain tumour diagnosis and prognosis/HEALTHAGENTS/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/EC/FP6/503094/EU/WEB ACCESSIBLE MR DECISION SUPPORT SYSTEM FOR BRAIN TUMOUR DIAGNOSIS AND PROGNOSIS, INCORPORATING IN VIVO AND EX VIVO GENOMIC AND METABOLIMIC DATA/ETUMOUR/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/EC/FP6/508803/EU/Computational intelligence for Bio-pattern analysis in support of eHealthcare/BIOPATTERN/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/MEC//PTQ05-02-03386/ES/PTQ05-02-03386/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/MEC//SAF2004-06297/ES/DETERMINACION DE METABOLITOS EN TUMORES HUMANOS MEDIANTE HR-MAS. APLICACIONES AL DIAGNOSTICO CLINICO Y MOLECULAR/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/MEC//SAF2007-65473/ES/BIOMARCADORES MEDIANTE ANALISIS COMBINADO TRANSCRIPTOMICA, PROTEOMICA Y METABOLOMICA. APLICACION AL DIAGNOSTICO, PRONOSTICO Y SELECCION DE TRATAMIENTO EN NEOPLASIAS DE CEREBRO Y MAMA/ |
es_ES |
dc.rights.accessRights |
Cerrado |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Instituto Universitario de Aplicaciones de las Tecnologías de la Información - Institut Universitari d'Aplicacions de les Tecnologies de la Informació |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada |
es_ES |
dc.description.bibliographicCitation |
Garcia-Gomez, JM.; Luts, J.; Julia-Sape, M.; Krooshof, P.; Tortajada Velert, S.; Vicente Robledo, J.; Melssen, W.... (2009). Multiproject-multicenter evaluation of automatic brain tumor classification by magnetic resonance spectroscopy. Magnetic Resonance Materials in Physics, Biology and Medicine. 22(1):5-18. https://doi.org/10.1007/s10334-008-0146-y |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
https://doi.org/10.1007/s10334-008-0146-y |
es_ES |
dc.description.upvformatpinicio |
5 |
es_ES |
dc.description.upvformatpfin |
18 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
22 |
es_ES |
dc.description.issue |
1 |
es_ES |
dc.identifier.pmid |
18989714 |
es_ES |
dc.identifier.pmcid |
PMC2797843 |
es_ES |
dc.relation.pasarela |
S\274933 |
es_ES |
dc.contributor.funder |
European Commission |
es_ES |
dc.contributor.funder |
European Social Fund |
es_ES |
dc.contributor.funder |
Ministerio de Educación y Ciencia |
es_ES |
dc.description.references |
Howe FA, Opstad KS (2003) 1H MR spectroscopy of brain tumours and masses. NMR Biomed 16(3): 123–131 |
es_ES |
dc.description.references |
Galanaud D, Nicoli F, Chinot O, Confort-Gouny S, Figarella-Branger D, Roche P, Fuentes S, Le Fur Y, Ranjeva JP, Cozzone PJ (2006) Noninvasive diagnostic assessment of brain tumors using combined in vivo MR imaging and spectroscopy. Magn Reson Med 55(6): 1236–1245 |
es_ES |
dc.description.references |
Arnold DL, De Stefano N (1997) Magnetic resonance spectroscopy in vivo: applications in neurological disorders. Ital J Neurol Sci 18(6): 321–329 |
es_ES |
dc.description.references |
Poptani H, Kaartinen J, Gupta RK, Niemitz M, Hiltunen Y, Kauppinen RA (1999) Diagnostic assessment of brain tumours and non-neoplastic brain disorders in vivo using proton nuclear magnetic resonance spectroscopy and artificial neural networks. J Cancer Res Clin Oncol 125(6): 343–349 |
es_ES |
dc.description.references |
Moller-Hartmann W, Herminghaus S, Krings T, Marquardt G, Lanfermann H, Pilatus U, Zanella FE (2002) Clinical application of proton magnetic resonance spectroscopy in the diagnosis of intracranial mass lesions. Neuroradiology 44(5): 371–381 |
es_ES |
dc.description.references |
Hagberg G (1998) From magnetic resonance spectroscopy to classification of tumors. A review of pattern recognition methods. NMR Biomed 11(4-5): 148–156 |
es_ES |
dc.description.references |
Tate AR, Majos C, Moreno A, Howe FA, Griffiths JR, Arús C (2003) Automated classification of short echo time in in vivo 1H brain tumor spectra: a multicenter study. Magn Reson Med 49(1): 29–36 |
es_ES |
dc.description.references |
Tate AR, Underwood J, Acosta DM, Julia-Sape M, Majos C, Moreno-Torres A, Howe FA, van der Graaf M, Lefournier V, Murphy MM, Loosemore A, Ladroue C, Wesseling P, Luc Bosson J, Cabanas ME, Simonetti AW, Gajewicz W, Calvar J, Capdevila A, Wilkins PR, Bell BA, Remy C, Heerschap A, Watson D, Griffiths JR, Arús C (2006) Development of a decision support system for diagnosis and grading of brain tumours using in vivo magnetic resonance single voxel spectra. NMR Biomed 19(4): 411–434 |
es_ES |
dc.description.references |
González-Vélez H, Mier M, Julià-Sapé M, Arvanitis T, García-Gómez J, Robles M, Lewis P, Dasmahapatra S, Dupplaw D, Peet A, Arús C, Celda B, Van Huffel S, Lluch-Ariet M (2007) HealthAgents: distributed multi-agent brain tumor diagnosis and prognosis. Appl Intell (Epub ahead of print) |
es_ES |
dc.description.references |
Devos A, Lukas L, Suykens JAK, Vanhamme L, Tate AR, Howe FA, Majos C, Moreno-Torres A, van der Graaf M, Arús C, Van Huffel S (2004) Classification of brain tumours using short echo time 1H MR spectra. J Magn Reson 170(1): 164–175 |
es_ES |
dc.description.references |
Lukas L, Devos A, Suykens JAK, Vanhamme L, Howe FA, Majós C, Moreno-Torres A, Graaf MVD, Tate AR, Arús C, Huffel SV (2004) Brain tumor classification based on long echo proton MRS signals. Artif Intell Med 31: 73–89 |
es_ES |
dc.description.references |
Simonetti AW, Melssen WJ, Szabo de Edelenyi F, van Asten JJA, Heerschap A, Buydens LMC (2005) Combination of feature-reduced MR spectroscopic and MR imaging data for improved brain tumor classification. NMR Biomed 18(1): 34–43 |
es_ES |
dc.description.references |
Menze BH, Lichy MP, Bachert P, Kelm BM, Schlemmer HP, Hamprecht FA (2006) Optimal classification of long echo time in vivo magnetic resonance spectra in the detection of recurrent brain tumors. NMR Biomed 19(5): 599–609 |
es_ES |
dc.description.references |
Potts HWW, Wyatt JC, Altman DG (2001) Challenges in evaluating complex decision support systems: lessons from design-a-trial. In: AIME ’1: proceedings of the 8th conference on AI in medicine in Europe, pp 453–456. Springer, London |
es_ES |
dc.description.references |
Lisboa PJ, Taktak AFG (2006) The use of artificial neural networks in decision support in cancer: a systematic review. Neural Netw 19(4): 408–415 |
es_ES |
dc.description.references |
Anagnostou T, Remzi M, Djavan B (2003) Artificial neural networks for decision-making in urologic oncology. Eur Urol 43(6): 596–603 |
es_ES |
dc.description.references |
Perner P (2006) Intelligent data analysis in medicine-recent advances. Artif Intell Med 37(1): 1–5 |
es_ES |
dc.description.references |
INTERPRET Consortium. Interpret web site. http://azizu.uab.es/INTERPRET . Accessed 28 April 2008 |
es_ES |
dc.description.references |
Julia-Sape M, Acosta D, Mier M, Arús C, Watson D (2006) A multi-centre, web-accessible and quality control-checked database of in vivo MR spectra of brain tumour patients. Magn Reson Mater Phys 19(1): 22–33 |
es_ES |
dc.description.references |
van der Graaf M, Julia-Sape M, Howe FA, Ziegler A, Majos C, Moreno-Torres A, Rijpkema M, Acosta D, Opstad KS, van der Meulen YM, Arus C, Heerschap A (2008) MRS quality assessment in a multicentre study on MRS-based classification of brain tumours. NMR Biomed 21(2): 148–158 |
es_ES |
dc.description.references |
Devos A (2005) Quantification and classification of magnetic resonance spectroscopy data and applications to brain tumour recognition. Ph.D. thesis, Faculty of Engineering, K.U.Leuven |
es_ES |
dc.description.references |
Simonetti AW, Melssen WJ, van der Graaf M, Postma GJ, Heerschap A, Buydens LMC (2003) A chemometric approach for brain tumor classification using magnetic resonance imaging and spectroscopy. Anal Chem 75(20): 5352–5361 |
es_ES |
dc.description.references |
Devos A, Simonetti AW, van der Graaf M, Lukas L, Suykens JAK, Vanhamme L, Buydens LMC, Heerschap A, Van Huffel S (2005) The use of multivariate MR imaging intensities versus metabolic data from MR spectroscopic imaging for brain tumour classification. J Magn Reson 173(2): 218–228 |
es_ES |
dc.description.references |
Laudadio T, Martinez-Bisbal M, Celda B, Van Huffel S (2007) Fast nosological imaging using canonical correlation analysis of brain data obtained by two-dimensional turbo spectroscopic imaging. NMR Biomed 21(4): 311–321 |
es_ES |
dc.description.references |
Martinez-Bisbal MC, Celda B, Marti-Bonmati L, Ferrer P, Revert-Ventura AJ, Piquer J, Molla E, Arana R, Dosda-Munoz R (2002) The contribution of magnetic resonance spectroscopy for the classification of high grade glial tumours. The predictive value of macromolecules. Revista de Neurología 34: 309–313 |
es_ES |
dc.description.references |
Martinez-Bisbal MC, Ferrer-Luna R, Martinez-Granados B, Monleón D, Esteve V, Piquer J, Revert AJ, Mollá E, Martí-Bonmatí L, Celda B (2005) Glial tumours grading by a combination of (1)H MR short and medium echo time single voxel located by spectroscopic imaging. Magn Reson Mater Phys 18(S1): S68 |
es_ES |
dc.description.references |
Melssen W, Wehrens R, Buydens L (2006) Supervised Kohonen networks for classification problems. Chemom Intell Lab Syst 83(2): 99–113 |
es_ES |
dc.description.references |
Opstad KS, Ladroue C, Bell BA, Griffiths JR, Howe FA (2007) Linear discriminant analysis of brain tumour (1)H MR spectra: a comparison of classification using whole spectra versus metabolite quantification. NMR Biomed 20(8): 763–770 |
es_ES |
dc.description.references |
eTumour Consortium (2003) eTumour: web accessible MR decision support system for brain tumour diagnosis and prognosis, incorporating in vivo and ex vivo genomic and metabolomic data. Technical report, FP6-2002-LIFESCIHEALTH 503094, VI framework programme, EC. http://www.etumour.net . Accessed 28 April 2008 |
es_ES |
dc.description.references |
García-Gómez JM, Tortajada S, Vidal C, Julia-Sape M, Luts J, Moreno-Torres À, Van Huffel S, Arús C, Robles M (2008) The effect of combining two echo times in automatic brain tumor classification by MRS. NMR Biomed 21 (in press) |
es_ES |
dc.description.references |
Kleihues P, Burger PC, Scheithauer BW (1993) The new WHO classification of brain tumours. Brain Pathol 3(3): 255–268 |
es_ES |
dc.description.references |
Klose U (1990) In vivo proton spectroscopy in presence of eddy currents. Magn Reson Med 14(1): 26–30 |
es_ES |
dc.description.references |
Naressi A, Couturier C, Castang I, de Beer R, Graveron-Demilly D (2001) Java-based graphical user interface for MRUI, a software package for quantitation of in vivo/medical magnetic resonance spectroscopy signals. Comput Biol Med 31(4): 269–286 |
es_ES |
dc.description.references |
Cabanes E, Confort-Gouny S, Le Fur Y, Simond G, Cozzone PJ (2001) Optimization of residual water signal removal by HLSVD on simulated short echo time proton MR spectra of the human brain. J Magn Reson 150(2): 116–125 |
es_ES |
dc.description.references |
Hoch JC, Stern AS (1996) NMR data processing. Wiley, New York |
es_ES |
dc.description.references |
Preul MC, Caramanos Z, Collins DL, Villemure JG, Leblanc R, Olivier A, Pokrupa R, Arnold DL (1996) Accurate, noninvasive diagnosis of human brain tumors by using proton magnetic resonance spectroscopy. Nat Med 2(3): 323–325 |
es_ES |
dc.description.references |
Burges CJ (2004) Geometric methods for feature extraction and dimensional reduction: a guided tour. Technical report, Microsoft Research, University of Toronto |
es_ES |
dc.description.references |
Fukunaga K (1990) Introduction to statistical pattern recognition, 2nd edn. Academic Press, San Diego |
es_ES |
dc.description.references |
Comon P (1994) Independent component analysis, a new concept. Signal Process 36(3): 287–314 |
es_ES |
dc.description.references |
Cardoso J-F, Souloumiac A (1993) Blind beamforming for non Gaussian signals. IEE Proc F 140(6): 362–370 |
es_ES |
dc.description.references |
Daubechies I (1992) Ten lectures on wavelets (CBMS–NSF regional conference series in applied mathematics). Society for Industrial and Applied Mathematics. http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0898712742 |
es_ES |
dc.description.references |
Panagiotacopulos N, Lertsuntivit S, Savidge L, Lin A, Shic F, Ross B (2000) Wavelet analysis of brain tumors in clinical MRS. In: Advances in physics, electronics and signal processing applications, pp 290–296 |
es_ES |
dc.description.references |
Krzanowski, WJ (eds) (1988) Principles of multivariate analysis: a user’s perspective. Oxford University Press, New York |
es_ES |
dc.description.references |
Fisher RA (1925) Statistical methods for research workers. Oliver and Boyd, Edinburgh |
es_ES |
dc.description.references |
Vapnik V (1995) The nature of statistical learning theory. Springer, NY |
es_ES |
dc.description.references |
Suykens JAK, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3): 293–300 |
es_ES |
dc.description.references |
Rosenblatt F (1958) The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev 65(6): 386–408 |
es_ES |
dc.description.references |
Melssen W, Ustun B, Buydens L (2007) SOMPLS: a supervised self-organising map—partial least squares algorithm for multivariate regression problems. Chemom Intell Lab Syst 86(1): 102–120 |
es_ES |
dc.description.references |
Valentini G, Dietterich TG (2004) Bias-variance analysis of support vector machines for the development of SVM-based ensemble methods. J Mach Learn Res 5: 725–775 |
es_ES |
dc.description.references |
Hastie T, Tibshirani R, Friedman JH (2001) The elements of statistical learning. Springer, Heidelberg |
es_ES |
dc.description.references |
Duda R, Hart P, Stork D (2001) Pattern classification. Wiley, London |
es_ES |
dc.description.references |
Van Gestel T, Suykens JAK, Lanckriet G, Lambrechts A, De Moor B, Vandewalle J (2002) Bayesian framework for least squares support vector machine classifiers, Gaussian processes and Kernel Fisher discriminant analysis. Neural Comput 14: 1115–1147 |
es_ES |
dc.description.references |
MacKay DJC (1992) Bayesian interpolation. Neural Comput 4(3): 415–447 |
es_ES |
dc.description.references |
Guyon I, Alamdari ARSA, Dror G, Buhmann JM (2006) Performance Prediction Challenge. In: IJCNN ’6 international joint conference on neural networks, pp 1649–1656 |
es_ES |
dc.description.references |
Ishimaru H, Morikawa M, Iwanaga S, Kaminogo M, Ochi M, Hayashi K (2001) Differentiation between high-grade glioma and metastatic brain tumor using single-voxel proton MR spectroscopy. Eur Radiol 11(9): 1784–1791 |
es_ES |
dc.description.references |
Opstad KS, Murphy MM, Wilkins PR, Bell BA, Griffiths JR, Howe FA (2004) Differentiation of metastases from high-grade gliomas using short echo time 1H spectroscopy. J Magn Reson Imaging 20(2): 187–192 |
es_ES |
dc.description.references |
Law M, Cha S, Knopp EA, Johnson G, Arnett J, Litt AW (2002) High-grade gliomas and solitary metastases: differentiation by using perfusion and proton spectroscopic MR imaging. Radiology 222(3): 715–721 |
es_ES |
dc.description.references |
Burtscher IM, Skagerberg G, Geijer B, Englund E, Stahlberg F, Holtas S (2000) Proton MR spectroscopy and preoperative diagnostic accuracy: an evaluation of intracranial mass lesions characterized by stereotactic biopsy findings. AJNR Am J Neuroradiol 21(1): 84–93 |
es_ES |
dc.description.references |
Laudadio T, Luts J, Martinez-Bisbal M, Celda B, Huffel SV (2008) Differentiation between brain metastasis and glioblastoma using MRI and two-dimensional turbo spectroscopic imaging data. In: Proceedings of the 4th European medical and biomedical engineering congress (in press) |
es_ES |
dc.description.references |
Hochberg Y, Tamhane AC (1987) Multiple comparison procedures. Wiley, New York |
es_ES |
dc.description.references |
Celda B, Monleon D, Martinez-Bisbal MC, Esteve V, Martinez-Granados B, Pinero E, Ferrer R, Piquer J, Marti-Bonmati L, Cervera J (2006) MRS as endogenous molecular imaging for brain and prostate tumors: FP6 project “eTUMOR” Adv Exp Med Biol 587: 285–302 |
es_ES |
dc.description.references |
Tortajada S, García-Gómez JM, Vidal C, Arús C, Julià-Sapé M, Moreno A, Robles M (2006) Improved classification by pattern recognition of brain tumours combining long and short echo time 1H-MR spectra. In: SpringerLink (ed) Book of abstracts ESMRMB 2006. J Magn Reson Mater Phys Biol Med 19(suppl 1): 168–169 |
es_ES |
dc.description.references |
García-Gómez JM, Tortajada S, Vicente J, Sáez C, Castells X, Luts J, Julià-Sapé M, Juan-Císcar A, Van Huffel S, Barcelo A, Ariño J, Arús C, Robles M (2007) Genomics and metabolomics research for brain tumour diagnosis based on machine learning. In IWANN: lecture notes in computer sicences, vol 4507/2007, pp 1012–1019 |
es_ES |
dc.description.references |
McIntyre DJO, Charlton RA, Markus HS, Howe FA (2007) Long and short echo time proton magnetic resonance spectroscopic imaging of the healthy aging brain. J Magn Reson Imaging 26(6): 1596–1606 |
es_ES |
dc.description.references |
Majos C, Julia-Sape M, Alonso J, Serrallonga M, Aguilera C, Acebes JJ, Arús C, Gili J (2004) Brain tumor classification by proton MR spectroscopy: comparison of diagnostic accuracy at short and long TE. AJNR Am J Neuroradiol 25(10): 1696–1704 |
es_ES |
dc.description.references |
Julia-Sape M, Acosta D, Majos C, Moreno-Torres A, Wesseling P, Acebes JJ, Griffiths JR, Arús C (2006) Comparison between neuroimaging classifications and histopathological diagnoses using an international multicenter brain tumor magnetic resonance imaging database. J Neurosurg 105(1): 6–14 |
es_ES |
dc.description.references |
Provencher SW (2001) Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed 14(4): 260–264 |
es_ES |
dc.description.references |
Luts J, Poullet JB, Garcia-Gomez JM, Heerschap A, Robles M, Suykens JAK, Van Huffel S (2008) Effect of feature extraction for brain tumor classification based on short echo time 1H MR spectra. Magn Reson Med 60(2): 288–298 |
es_ES |
dc.description.references |
Bishop CM (2006) Pattern recognition and machine learning (information science and statistics). Springer, Heidelberg |
es_ES |
dc.description.references |
Davies N, Wilson M, Harris L, Natarajan K, Lateef S, Macpherson L, Sgouros S, Grundy R, Arvanitis T, Peet A (2008) Identification and characterisation of childhood cerebellar tumours by in vivo proton MRS. NMR Biomed 21(8): 908–918 |
es_ES |