- -

FloatX: A C++ Library for Customized Floating-Point Arithmetic

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

FloatX: A C++ Library for Customized Floating-Point Arithmetic

Mostrar el registro completo del ítem

Flegar, G.; Scheidegger, F.; Novakovic, V.; Mariani, G.; Tomás Domínguez, AE.; Malossi, C.; Quintana-Ortí, ES. (2019). FloatX: A C++ Library for Customized Floating-Point Arithmetic. ACM Transactions on Mathematical Software. 45(4):1-23. https://doi.org/10.1145/3368086

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/152256

Ficheros en el ítem

Metadatos del ítem

Título: FloatX: A C++ Library for Customized Floating-Point Arithmetic
Autor: Flegar, Goran Scheidegger, Florian Novakovic, Vedran Mariani, Giovani Tomás Domínguez, Andrés Enrique Malossi, Cristiano Quintana-Ortí, Enrique S.
Entidad UPV: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
Fecha difusión:
Resumen:
[EN] We present FloatX (Float eXtended), a C++ framework to investigate the effect of leveraging customized floating-point formats in numerical applications. FloatX formats are based on binary IEEE 754 with smaller significand ...[+]
Palabras clave: ACM proceedings , LATEX , Text tagging
Derechos de uso: Reserva de todos los derechos
Fuente:
ACM Transactions on Mathematical Software. (issn: 0098-3500 )
DOI: 10.1145/3368086
Editorial:
Association for Computing Machinery
Versión del editor: https://doi.org/10.1145/3368086
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/732631/EU/Open transPREcision COMPuting/
info:eu-repo/grantAgreement/MINECO//TIN2014-53495-R/ES/COMPUTACION HETEROGENEA DE BAJO CONSUMO/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-82972-R/ES/TECNICAS ALGORITMICAS PARA COMPUTACION DE ALTO RENDIMIENTO CONSCIENTE DEL CONSUMO ENERGETICO Y RESISTENTE A ERRORES/
Descripción: "© ACM, 2019. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in ACM Transactions on Mathematical Software, {45, 4, (2019)} https://dl.acm.org/doi/10.1145/3368086"
Agradecimientos:
This work was supported by the CICYT projects TIN2014-53495-R and TIN2017-82972-R of the MINECO and FEDER, and the EU H2020 project 732631 "OPRECOMP. Open Transprecision Computing."
Tipo: Artículo

References

Edward Anderson Zhaojun Bai L. Susan Blackford James Demmesl Jack J. Dongarra Jeremy Du Croz Sven Hammarling Anne Greenbaum Alan McKenney and Danny C. Sorensen. 1999. LAPACK Users’ Guide (3rd ed.). SIAM. Edward Anderson Zhaojun Bai L. Susan Blackford James Demmesl Jack J. Dongarra Jeremy Du Croz Sven Hammarling Anne Greenbaum Alan McKenney and Danny C. Sorensen. 1999. LAPACK Users’ Guide (3rd ed.). SIAM.

Bekas, C., Curioni, A., & Fedulova, I. (2011). Low-cost data uncertainty quantification. Concurrency and Computation: Practice and Experience, 24(8), 908-920. doi:10.1002/cpe.1770

Boldo, S., & Melquiond, G. (2008). Emulation of a FMA and Correctly Rounded Sums: Proved Algorithms Using Rounding to Odd. IEEE Transactions on Computers, 57(4), 462-471. doi:10.1109/tc.2007.70819 [+]
Edward Anderson Zhaojun Bai L. Susan Blackford James Demmesl Jack J. Dongarra Jeremy Du Croz Sven Hammarling Anne Greenbaum Alan McKenney and Danny C. Sorensen. 1999. LAPACK Users’ Guide (3rd ed.). SIAM. Edward Anderson Zhaojun Bai L. Susan Blackford James Demmesl Jack J. Dongarra Jeremy Du Croz Sven Hammarling Anne Greenbaum Alan McKenney and Danny C. Sorensen. 1999. LAPACK Users’ Guide (3rd ed.). SIAM.

Bekas, C., Curioni, A., & Fedulova, I. (2011). Low-cost data uncertainty quantification. Concurrency and Computation: Practice and Experience, 24(8), 908-920. doi:10.1002/cpe.1770

Boldo, S., & Melquiond, G. (2008). Emulation of a FMA and Correctly Rounded Sums: Proved Algorithms Using Rounding to Odd. IEEE Transactions on Computers, 57(4), 462-471. doi:10.1109/tc.2007.70819

Buttari, A., Dongarra, J., Langou, J., Langou, J., Luszczek, P., & Kurzak, J. (2007). Mixed Precision Iterative Refinement Techniques for the Solution of Dense Linear Systems. The International Journal of High Performance Computing Applications, 21(4), 457-466. doi:10.1177/1094342007084026

Dongarra, J. J., Du Croz, J., Hammarling, S., & Duff, I. S. (1990). A set of level 3 basic linear algebra subprograms. ACM Transactions on Mathematical Software, 16(1), 1-17. doi:10.1145/77626.79170

Figueroa, S. A. (1995). When is double rounding innocuous? ACM SIGNUM Newsletter, 30(3), 21-26. doi:10.1145/221332.221334

Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., & Zimmermann, P. (2007). MPFR. ACM Transactions on Mathematical Software, 33(2), 13. doi:10.1145/1236463.1236468

Mark Gates Piotr Luszczek Ahmad Abdelfattah Jakub Kurzak Jack Dongarra Konstantin Arturov Cris Cecka and Chip Freitag. 2017. C++ API for BLAS and LAPACK. Technical Report 2 ICL-UT-17-03. Mark Gates Piotr Luszczek Ahmad Abdelfattah Jakub Kurzak Jack Dongarra Konstantin Arturov Cris Cecka and Chip Freitag. 2017. C++ API for BLAS and LAPACK. Technical Report 2 ICL-UT-17-03.

John Hauser. Accessed March 2019. Berkeley SoftFloat project home page. Retrieved from http://www.jhauser.us/arithmetic/SoftFloat.html. John Hauser. Accessed March 2019. Berkeley SoftFloat project home page. Retrieved from http://www.jhauser.us/arithmetic/SoftFloat.html.

Nicholas J. Higham. 2002. Accuracy and Stability of Numerical Algorithms (2nd ed.). Society for Industrial and Applied Mathematics Philadelphia PA. Nicholas J. Higham. 2002. Accuracy and Stability of Numerical Algorithms (2nd ed.). Society for Industrial and Applied Mathematics Philadelphia PA.

Parker Hill Babak Zamirai Shengshuo Lu Yu-Wei Chao Michael Laurenzano Mehrzad Samadi Marios Papaefthymiou Scott Mahlke Thomas Wenisch Jia Deng Lingjia Tang and Jason Mars. 2018. Rethinking numerical representations for deep neural networks. arXiv e-prints (Aug 2018). arXiv:1808.02513. Retrieved from https://openreview.net/forum?id=BJ_MGwqlg8noteId=BJ_MGwqlg. Parker Hill Babak Zamirai Shengshuo Lu Yu-Wei Chao Michael Laurenzano Mehrzad Samadi Marios Papaefthymiou Scott Mahlke Thomas Wenisch Jia Deng Lingjia Tang and Jason Mars. 2018. Rethinking numerical representations for deep neural networks. arXiv e-prints (Aug 2018). arXiv:1808.02513. Retrieved from https://openreview.net/forum?id=BJ_MGwqlg8noteId=BJ_MGwqlg.

Parker Hill Babak Zamirai Shengshuo Lu Yu-Wei Chao Michael Laurenzano Mehrzad Samadi Marios Papaefthymiou Scott Mahlke Thomas Wenisch Jia Deng etal 2018. Rethinking numerical representations for deep neural networks. 2018. Parker Hill Babak Zamirai Shengshuo Lu Yu-Wei Chao Michael Laurenzano Mehrzad Samadi Marios Papaefthymiou Scott Mahlke Thomas Wenisch Jia Deng et al. 2018. Rethinking numerical representations for deep neural networks. 2018.

IBM. 2015. Engineering and Scientific Subroutine Library. Retrieved from http://www-03.ibm.com/systems/power/software/essl/. IBM. 2015. Engineering and Scientific Subroutine Library. Retrieved from http://www-03.ibm.com/systems/power/software/essl/.

IEEE. 2008. IEEE Standard for Floating-point Arithmetic. IEEE Std 754-2008 (Aug. 2008) 1--70. DOI:https://doi.org/10.1109/IEEESTD.2008.4610935 IEEE. 2008. IEEE Standard for Floating-point Arithmetic. IEEE Std 754-2008 (Aug. 2008) 1--70. DOI:https://doi.org/10.1109/IEEESTD.2008.4610935

Intel. 2015. Math Kernel Library. Retrieved from https://software.intel.com/en-us/intel-mkl. Intel. 2015. Math Kernel Library. Retrieved from https://software.intel.com/en-us/intel-mkl.

ISO. 2017. ISO International Standard ISO/IEC 14882:2017(E)—Programming Language C++. Retrieved from https://isocpp.org/std/the-standard. Visited June 2018. ISO. 2017. ISO International Standard ISO/IEC 14882:2017(E)—Programming Language C++. Retrieved from https://isocpp.org/std/the-standard. Visited June 2018.

Lefevre, V. (2013). SIPE: Small Integer Plus Exponent. 2013 IEEE 21st Symposium on Computer Arithmetic. doi:10.1109/arith.2013.22

Liu, Z., Luo, P., Wang, X., & Tang, X. (2015). Deep Learning Face Attributes in the Wild. 2015 IEEE International Conference on Computer Vision (ICCV). doi:10.1109/iccv.2015.425

Érik Martin-Dorel Guillaume Melquiond and Jean-Michel Muller. 2013. Some issues related to double rounding. BIT Num. Math. 53 4 (01 Dec. 2013) 897--924. DOI:https://doi.org/10.1007/s10543-013-0436-2 Érik Martin-Dorel Guillaume Melquiond and Jean-Michel Muller. 2013. Some issues related to double rounding. BIT Num. Math. 53 4 (01 Dec. 2013) 897--924. DOI:https://doi.org/10.1007/s10543-013-0436-2

Sparsh Mittal. 2016. A survey of techniques for approximate computing. ACM Comput. Surv. 48 4 Article 62 (Mar. 2016) 33 pages. DOI:https://doi.org/10.1145/2893356 Sparsh Mittal. 2016. A survey of techniques for approximate computing. ACM Comput. Surv. 48 4 Article 62 (Mar. 2016) 33 pages. DOI:https://doi.org/10.1145/2893356

NVIDIA. 2016. cuBLAS. Retrieved from https://developer.nvidia.com/cublas. NVIDIA. 2016. cuBLAS. Retrieved from https://developer.nvidia.com/cublas.

D. O’Leary. 2006. Matrix factorization for information retrieval. Lecture notes for a course on Advanced Numerical Analysis. University of Maryland. Retrieved from https://www.cs.umd.edu/users/oleary/a600/yahoo.pdf. D. O’Leary. 2006. Matrix factorization for information retrieval. Lecture notes for a course on Advanced Numerical Analysis. University of Maryland. Retrieved from https://www.cs.umd.edu/users/oleary/a600/yahoo.pdf.

OpenBLAS. 2015. Retrieved from http://www.openblas.net. OpenBLAS. 2015. Retrieved from http://www.openblas.net.

Palmer, T. (2015). Modelling: Build imprecise supercomputers. Nature, 526(7571), 32-33. doi:10.1038/526032a

Alec Radford Luke Metz and Soumith Chintala. 2015. Unsupervised representation learning with deep convolutional generative adversarial networks. Retrieved from Arxiv Preprint Arxiv:1511.06434 (2015). Alec Radford Luke Metz and Soumith Chintala. 2015. Unsupervised representation learning with deep convolutional generative adversarial networks. Retrieved from Arxiv Preprint Arxiv:1511.06434 (2015).

Rubio-González, C., Nguyen, C., Nguyen, H. D., Demmel, J., Kahan, W., Sen, K., … Hough, D. (2013). Precimonious. Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis on - SC ’13. doi:10.1145/2503210.2503296

Rump, S. M. (2017). IEEE754 Precision- k base-β Arithmetic Inherited by Precision- m Base-β Arithmetic for k < m. ACM Transactions on Mathematical Software, 43(3), 1-15. doi:10.1145/2785965

Rybalkin, V., Wehn, N., Yousefi, M. R., & Stricker, D. (2017). Hardware architecture of Bidirectional Long Short-Term Memory Neural Network for Optical Character Recognition. Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017. doi:10.23919/date.2017.7927210

Giuseppe Tagliavini Stefan Mach Davide Rossi Andrea Marongiu and Luca Benini. 2017. A transprecision floating-point platform for ultra-low power computing. Retrieved from Arxiv Preprint Arxiv:1711.10374 (2017). Giuseppe Tagliavini Stefan Mach Davide Rossi Andrea Marongiu and Luca Benini. 2017. A transprecision floating-point platform for ultra-low power computing. Retrieved from Arxiv Preprint Arxiv:1711.10374 (2017).

Tobias Thornes. (2016). Can reducing precision improve accuracy in weather and climate models? Weather 71 6 (02 June 2016) 147--150. DOI:https://doi.org/10.1002/wea.2732 Tobias Thornes. (2016). Can reducing precision improve accuracy in weather and climate models? Weather 71 6 (02 June 2016) 147--150. DOI:https://doi.org/10.1002/wea.2732

Van Zee, F. G., & van de Geijn, R. A. (2015). BLIS: A Framework for Rapidly Instantiating BLAS Functionality. ACM Transactions on Mathematical Software, 41(3), 1-33. doi:10.1145/2764454

Todd L. Veldhuizen. 2003. C++ Templates are Turing Complete. Technical Report. Todd L. Veldhuizen. 2003. C++ Templates are Turing Complete. Technical Report.

Qiang Xu Todd Mytkowicz and Nam Sung Kim. 2015. Approximate computing: A survey. IEEE Des. Test 33 (01 2015) 8--22. Qiang Xu Todd Mytkowicz and Nam Sung Kim. 2015. Approximate computing: A survey. IEEE Des. Test 33 (01 2015) 8--22.

Ziv, A. (1991). Fast evaluation of elementary mathematical functions with correctly rounded last bit. ACM Transactions on Mathematical Software, 17(3), 410-423. doi:10.1145/114697.116813

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem