- -

FloatX: A C++ Library for Customized Floating-Point Arithmetic

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

FloatX: A C++ Library for Customized Floating-Point Arithmetic

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Flegar, Goran es_ES
dc.contributor.author Scheidegger, Florian es_ES
dc.contributor.author Novakovic, Vedran es_ES
dc.contributor.author Mariani, Giovani es_ES
dc.contributor.author Tomás Domínguez, Andrés Enrique es_ES
dc.contributor.author Malossi, Cristiano es_ES
dc.contributor.author Quintana-Ortí, Enrique S. es_ES
dc.date.accessioned 2020-10-17T03:31:54Z
dc.date.available 2020-10-17T03:31:54Z
dc.date.issued 2019-12 es_ES
dc.identifier.issn 0098-3500 es_ES
dc.identifier.uri http://hdl.handle.net/10251/152256
dc.description "© ACM, 2019. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in ACM Transactions on Mathematical Software, {45, 4, (2019)} https://dl.acm.org/doi/10.1145/3368086" es_ES
dc.description.abstract [EN] We present FloatX (Float eXtended), a C++ framework to investigate the effect of leveraging customized floating-point formats in numerical applications. FloatX formats are based on binary IEEE 754 with smaller significand and exponent bit counts specified by the user. Among other properties, FloatX facilitates an incremental transformation of the code, relies on hardware-supported floating-point types as back-end to preserve efficiency, and incurs no storage overhead. The article discusses in detail the design principles, programming interface, and datatype casting rules behind FloatX. Furthermore, it demonstrates FloatX's usage and benefits via several case studies from well-known numerical dense linear algebra libraries, such as BLAS and LAPACK; the Ginkgo library for sparse linear systems; and two neural network applications related with image processing and text recognition. es_ES
dc.description.sponsorship This work was supported by the CICYT projects TIN2014-53495-R and TIN2017-82972-R of the MINECO and FEDER, and the EU H2020 project 732631 "OPRECOMP. Open Transprecision Computing." es_ES
dc.language Inglés es_ES
dc.publisher Association for Computing Machinery es_ES
dc.relation.ispartof ACM Transactions on Mathematical Software es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject ACM proceedings es_ES
dc.subject LATEX es_ES
dc.subject Text tagging es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title FloatX: A C++ Library for Customized Floating-Point Arithmetic es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1145/3368086 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/732631/EU/Open transPREcision COMPuting/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2014-53495-R/ES/COMPUTACION HETEROGENEA DE BAJO CONSUMO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-82972-R/ES/TECNICAS ALGORITMICAS PARA COMPUTACION DE ALTO RENDIMIENTO CONSCIENTE DEL CONSUMO ENERGETICO Y RESISTENTE A ERRORES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Flegar, G.; Scheidegger, F.; Novakovic, V.; Mariani, G.; Tomás Domínguez, AE.; Malossi, C.; Quintana-Ortí, ES. (2019). FloatX: A C++ Library for Customized Floating-Point Arithmetic. ACM Transactions on Mathematical Software. 45(4):1-23. https://doi.org/10.1145/3368086 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1145/3368086 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 23 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 45 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\400466 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Edward Anderson Zhaojun Bai L. Susan Blackford James Demmesl Jack J. Dongarra Jeremy Du Croz Sven Hammarling Anne Greenbaum Alan McKenney and Danny C. Sorensen. 1999. LAPACK Users’ Guide (3rd ed.). SIAM. Edward Anderson Zhaojun Bai L. Susan Blackford James Demmesl Jack J. Dongarra Jeremy Du Croz Sven Hammarling Anne Greenbaum Alan McKenney and Danny C. Sorensen. 1999. LAPACK Users’ Guide (3rd ed.). SIAM. es_ES
dc.description.references Bekas, C., Curioni, A., & Fedulova, I. (2011). Low-cost data uncertainty quantification. Concurrency and Computation: Practice and Experience, 24(8), 908-920. doi:10.1002/cpe.1770 es_ES
dc.description.references Boldo, S., & Melquiond, G. (2008). Emulation of a FMA and Correctly Rounded Sums: Proved Algorithms Using Rounding to Odd. IEEE Transactions on Computers, 57(4), 462-471. doi:10.1109/tc.2007.70819 es_ES
dc.description.references Buttari, A., Dongarra, J., Langou, J., Langou, J., Luszczek, P., & Kurzak, J. (2007). Mixed Precision Iterative Refinement Techniques for the Solution of Dense Linear Systems. The International Journal of High Performance Computing Applications, 21(4), 457-466. doi:10.1177/1094342007084026 es_ES
dc.description.references Dongarra, J. J., Du Croz, J., Hammarling, S., & Duff, I. S. (1990). A set of level 3 basic linear algebra subprograms. ACM Transactions on Mathematical Software, 16(1), 1-17. doi:10.1145/77626.79170 es_ES
dc.description.references Figueroa, S. A. (1995). When is double rounding innocuous? ACM SIGNUM Newsletter, 30(3), 21-26. doi:10.1145/221332.221334 es_ES
dc.description.references Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., & Zimmermann, P. (2007). MPFR. ACM Transactions on Mathematical Software, 33(2), 13. doi:10.1145/1236463.1236468 es_ES
dc.description.references Mark Gates Piotr Luszczek Ahmad Abdelfattah Jakub Kurzak Jack Dongarra Konstantin Arturov Cris Cecka and Chip Freitag. 2017. C++ API for BLAS and LAPACK. Technical Report 2 ICL-UT-17-03. Mark Gates Piotr Luszczek Ahmad Abdelfattah Jakub Kurzak Jack Dongarra Konstantin Arturov Cris Cecka and Chip Freitag. 2017. C++ API for BLAS and LAPACK. Technical Report 2 ICL-UT-17-03. es_ES
dc.description.references John Hauser. Accessed March 2019. Berkeley SoftFloat project home page. Retrieved from http://www.jhauser.us/arithmetic/SoftFloat.html. John Hauser. Accessed March 2019. Berkeley SoftFloat project home page. Retrieved from http://www.jhauser.us/arithmetic/SoftFloat.html. es_ES
dc.description.references Nicholas J. Higham. 2002. Accuracy and Stability of Numerical Algorithms (2nd ed.). Society for Industrial and Applied Mathematics Philadelphia PA. Nicholas J. Higham. 2002. Accuracy and Stability of Numerical Algorithms (2nd ed.). Society for Industrial and Applied Mathematics Philadelphia PA. es_ES
dc.description.references Parker Hill Babak Zamirai Shengshuo Lu Yu-Wei Chao Michael Laurenzano Mehrzad Samadi Marios Papaefthymiou Scott Mahlke Thomas Wenisch Jia Deng Lingjia Tang and Jason Mars. 2018. Rethinking numerical representations for deep neural networks. arXiv e-prints (Aug 2018). arXiv:1808.02513. Retrieved from https://openreview.net/forum?id=BJ_MGwqlg8noteId=BJ_MGwqlg. Parker Hill Babak Zamirai Shengshuo Lu Yu-Wei Chao Michael Laurenzano Mehrzad Samadi Marios Papaefthymiou Scott Mahlke Thomas Wenisch Jia Deng Lingjia Tang and Jason Mars. 2018. Rethinking numerical representations for deep neural networks. arXiv e-prints (Aug 2018). arXiv:1808.02513. Retrieved from https://openreview.net/forum?id=BJ_MGwqlg8noteId=BJ_MGwqlg. es_ES
dc.description.references Parker Hill Babak Zamirai Shengshuo Lu Yu-Wei Chao Michael Laurenzano Mehrzad Samadi Marios Papaefthymiou Scott Mahlke Thomas Wenisch Jia Deng etal 2018. Rethinking numerical representations for deep neural networks. 2018. Parker Hill Babak Zamirai Shengshuo Lu Yu-Wei Chao Michael Laurenzano Mehrzad Samadi Marios Papaefthymiou Scott Mahlke Thomas Wenisch Jia Deng et al. 2018. Rethinking numerical representations for deep neural networks. 2018. es_ES
dc.description.references IBM. 2015. Engineering and Scientific Subroutine Library. Retrieved from http://www-03.ibm.com/systems/power/software/essl/. IBM. 2015. Engineering and Scientific Subroutine Library. Retrieved from http://www-03.ibm.com/systems/power/software/essl/. es_ES
dc.description.references IEEE. 2008. IEEE Standard for Floating-point Arithmetic. IEEE Std 754-2008 (Aug. 2008) 1--70. DOI:https://doi.org/10.1109/IEEESTD.2008.4610935 IEEE. 2008. IEEE Standard for Floating-point Arithmetic. IEEE Std 754-2008 (Aug. 2008) 1--70. DOI:https://doi.org/10.1109/IEEESTD.2008.4610935 es_ES
dc.description.references Intel. 2015. Math Kernel Library. Retrieved from https://software.intel.com/en-us/intel-mkl. Intel. 2015. Math Kernel Library. Retrieved from https://software.intel.com/en-us/intel-mkl. es_ES
dc.description.references ISO. 2017. ISO International Standard ISO/IEC 14882:2017(E)—Programming Language C++. Retrieved from https://isocpp.org/std/the-standard. Visited June 2018. ISO. 2017. ISO International Standard ISO/IEC 14882:2017(E)—Programming Language C++. Retrieved from https://isocpp.org/std/the-standard. Visited June 2018. es_ES
dc.description.references Lefevre, V. (2013). SIPE: Small Integer Plus Exponent. 2013 IEEE 21st Symposium on Computer Arithmetic. doi:10.1109/arith.2013.22 es_ES
dc.description.references Liu, Z., Luo, P., Wang, X., & Tang, X. (2015). Deep Learning Face Attributes in the Wild. 2015 IEEE International Conference on Computer Vision (ICCV). doi:10.1109/iccv.2015.425 es_ES
dc.description.references Érik Martin-Dorel Guillaume Melquiond and Jean-Michel Muller. 2013. Some issues related to double rounding. BIT Num. Math. 53 4 (01 Dec. 2013) 897--924. DOI:https://doi.org/10.1007/s10543-013-0436-2 Érik Martin-Dorel Guillaume Melquiond and Jean-Michel Muller. 2013. Some issues related to double rounding. BIT Num. Math. 53 4 (01 Dec. 2013) 897--924. DOI:https://doi.org/10.1007/s10543-013-0436-2 es_ES
dc.description.references Sparsh Mittal. 2016. A survey of techniques for approximate computing. ACM Comput. Surv. 48 4 Article 62 (Mar. 2016) 33 pages. DOI:https://doi.org/10.1145/2893356 Sparsh Mittal. 2016. A survey of techniques for approximate computing. ACM Comput. Surv. 48 4 Article 62 (Mar. 2016) 33 pages. DOI:https://doi.org/10.1145/2893356 es_ES
dc.description.references NVIDIA. 2016. cuBLAS. Retrieved from https://developer.nvidia.com/cublas. NVIDIA. 2016. cuBLAS. Retrieved from https://developer.nvidia.com/cublas. es_ES
dc.description.references D. O’Leary. 2006. Matrix factorization for information retrieval. Lecture notes for a course on Advanced Numerical Analysis. University of Maryland. Retrieved from https://www.cs.umd.edu/users/oleary/a600/yahoo.pdf. D. O’Leary. 2006. Matrix factorization for information retrieval. Lecture notes for a course on Advanced Numerical Analysis. University of Maryland. Retrieved from https://www.cs.umd.edu/users/oleary/a600/yahoo.pdf. es_ES
dc.description.references OpenBLAS. 2015. Retrieved from http://www.openblas.net. OpenBLAS. 2015. Retrieved from http://www.openblas.net. es_ES
dc.description.references Palmer, T. (2015). Modelling: Build imprecise supercomputers. Nature, 526(7571), 32-33. doi:10.1038/526032a es_ES
dc.description.references Alec Radford Luke Metz and Soumith Chintala. 2015. Unsupervised representation learning with deep convolutional generative adversarial networks. Retrieved from Arxiv Preprint Arxiv:1511.06434 (2015). Alec Radford Luke Metz and Soumith Chintala. 2015. Unsupervised representation learning with deep convolutional generative adversarial networks. Retrieved from Arxiv Preprint Arxiv:1511.06434 (2015). es_ES
dc.description.references Rubio-González, C., Nguyen, C., Nguyen, H. D., Demmel, J., Kahan, W., Sen, K., … Hough, D. (2013). Precimonious. Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis on - SC ’13. doi:10.1145/2503210.2503296 es_ES
dc.description.references Rump, S. M. (2017). IEEE754 Precision- k base-β Arithmetic Inherited by Precision- m Base-β Arithmetic for k < m. ACM Transactions on Mathematical Software, 43(3), 1-15. doi:10.1145/2785965 es_ES
dc.description.references Rybalkin, V., Wehn, N., Yousefi, M. R., & Stricker, D. (2017). Hardware architecture of Bidirectional Long Short-Term Memory Neural Network for Optical Character Recognition. Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017. doi:10.23919/date.2017.7927210 es_ES
dc.description.references Giuseppe Tagliavini Stefan Mach Davide Rossi Andrea Marongiu and Luca Benini. 2017. A transprecision floating-point platform for ultra-low power computing. Retrieved from Arxiv Preprint Arxiv:1711.10374 (2017). Giuseppe Tagliavini Stefan Mach Davide Rossi Andrea Marongiu and Luca Benini. 2017. A transprecision floating-point platform for ultra-low power computing. Retrieved from Arxiv Preprint Arxiv:1711.10374 (2017). es_ES
dc.description.references Tobias Thornes. (2016). Can reducing precision improve accuracy in weather and climate models? Weather 71 6 (02 June 2016) 147--150. DOI:https://doi.org/10.1002/wea.2732 Tobias Thornes. (2016). Can reducing precision improve accuracy in weather and climate models? Weather 71 6 (02 June 2016) 147--150. DOI:https://doi.org/10.1002/wea.2732 es_ES
dc.description.references Van Zee, F. G., & van de Geijn, R. A. (2015). BLIS: A Framework for Rapidly Instantiating BLAS Functionality. ACM Transactions on Mathematical Software, 41(3), 1-33. doi:10.1145/2764454 es_ES
dc.description.references Todd L. Veldhuizen. 2003. C++ Templates are Turing Complete. Technical Report. Todd L. Veldhuizen. 2003. C++ Templates are Turing Complete. Technical Report. es_ES
dc.description.references Qiang Xu Todd Mytkowicz and Nam Sung Kim. 2015. Approximate computing: A survey. IEEE Des. Test 33 (01 2015) 8--22. Qiang Xu Todd Mytkowicz and Nam Sung Kim. 2015. Approximate computing: A survey. IEEE Des. Test 33 (01 2015) 8--22. es_ES
dc.description.references Ziv, A. (1991). Fast evaluation of elementary mathematical functions with correctly rounded last bit. ACM Transactions on Mathematical Software, 17(3), 410-423. doi:10.1145/114697.116813 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem