- -

Using UAV-Based Systems to Monitor Air Pollution in Areas with Poor Accessibility

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Using UAV-Based Systems to Monitor Air Pollution in Areas with Poor Accessibility

Show full item record

Alvear-Alvear, Ó.; Zema, NR.; Natalizio, E.; Tavares De Araujo Cesariny Calafate, CM. (2017). Using UAV-Based Systems to Monitor Air Pollution in Areas with Poor Accessibility. Journal of Advanced Transportation. 2017:1-14. https://doi.org/10.1155/2017/8204353

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/152261

Files in this item

Item Metadata

Title: Using UAV-Based Systems to Monitor Air Pollution in Areas with Poor Accessibility
Author: Alvear-Alvear, Óscar Zema, Nicola Roberto Natalizio, Enrico Tavares De Araujo Cesariny Calafate, Carlos Miguel
UPV Unit: Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
Issued date:
Abstract:
[EN] Air pollution monitoring has recently become an issue of utmost importance in our society. Despite the fact that crowdsensing approaches could be an adequate solution for urban areas, they cannot be implemented in ...[+]
Subjects: Unmanned Aerial Vehicles
Copyrigths: Reconocimiento (by)
Source:
Journal of Advanced Transportation. (issn: 0197-6729 )
DOI: 10.1155/2017/8204353
Publisher:
John Wiley & Sons
Publisher version: https://doi.org/10.1155/2017/8204353
Thanks:
This work has been partially carried out in the framework of the DIVINA Challenge Team, which is funded under the Labex MS2T program. Labex MS2T is supported by the French Government, through the program "Investments for ...[+]
Type: Artículo

References

Seaton, A., Godden, D., MacNee, W., & Donaldson, K. (1995). Particulate air pollution and acute health effects. The Lancet, 345(8943), 176-178. doi:10.1016/s0140-6736(95)90173-6

McFrederick, Q. S., Kathilankal, J. C., & Fuentes, J. D. (2008). Air pollution modifies floral scent trails. Atmospheric Environment, 42(10), 2336-2348. doi:10.1016/j.atmosenv.2007.12.033

Mage, D., Ozolins, G., Peterson, P., Webster, A., Orthofer, R., Vandeweerd, V., & Gwynne, M. (1996). Urban air pollution in megacities of the world. Atmospheric Environment, 30(5), 681-686. doi:10.1016/1352-2310(95)00219-7 [+]
Seaton, A., Godden, D., MacNee, W., & Donaldson, K. (1995). Particulate air pollution and acute health effects. The Lancet, 345(8943), 176-178. doi:10.1016/s0140-6736(95)90173-6

McFrederick, Q. S., Kathilankal, J. C., & Fuentes, J. D. (2008). Air pollution modifies floral scent trails. Atmospheric Environment, 42(10), 2336-2348. doi:10.1016/j.atmosenv.2007.12.033

Mage, D., Ozolins, G., Peterson, P., Webster, A., Orthofer, R., Vandeweerd, V., & Gwynne, M. (1996). Urban air pollution in megacities of the world. Atmospheric Environment, 30(5), 681-686. doi:10.1016/1352-2310(95)00219-7

Mayer, H. (1999). Air pollution in cities. Atmospheric Environment, 33(24-25), 4029-4037. doi:10.1016/s1352-2310(99)00144-2

Kanaroglou, P. S., Jerrett, M., Morrison, J., Beckerman, B., Arain, M. A., Gilbert, N. L., & Brook, J. R. (2005). Establishing an air pollution monitoring network for intra-urban population exposure assessment: A location-allocation approach. Atmospheric Environment, 39(13), 2399-2409. doi:10.1016/j.atmosenv.2004.06.049

Alvear, O., Zamora, W., Calafate, C., Cano, J.-C., & Manzoni, P. (2016). An Architecture Offering Mobile Pollution Sensing with High Spatial Resolution. Journal of Sensors, 2016, 1-13. doi:10.1155/2016/1458147

Adam-Poupart, A., Brand, A., Fournier, M., Jerrett, M., & Smargiassi, A. (2014). Spatiotemporal Modeling of Ozone Levels in Quebec (Canada): A Comparison of Kriging, Land-Use Regression (LUR), and Combined Bayesian Maximum Entropy–LUR Approaches. Environmental Health Perspectives, 122(9), 970-976. doi:10.1289/ehp.1306566

Pujadas, M., Plaza, J., Terés, J., Artı́ñano, B., & Millán, M. (2000). Passive remote sensing of nitrogen dioxide as a tool for tracking air pollution in urban areas: the Madrid urban plume, a case of study. Atmospheric Environment, 34(19), 3041-3056. doi:10.1016/s1352-2310(99)00509-9

Eisenman, S. B., Miluzzo, E., Lane, N. D., Peterson, R. A., Ahn, G.-S., & Campbell, A. T. (2009). BikeNet. ACM Transactions on Sensor Networks, 6(1), 1-39. doi:10.1145/1653760.1653766

André, M. (2004). The ARTEMIS European driving cycles for measuring car pollutant emissions. Science of The Total Environment, 334-335, 73-84. doi:10.1016/j.scitotenv.2004.04.070

Hu, S.-C., Wang, Y.-C., Huang, C.-Y., & Tseng, Y.-C. (2011). Measuring air quality in city areas by vehicular wireless sensor networks. Journal of Systems and Software, 84(11), 2005-2012. doi:10.1016/j.jss.2011.06.043

Dunbabin, M., & Marques, L. (2012). Robots for Environmental Monitoring: Significant Advancements and Applications. IEEE Robotics & Automation Magazine, 19(1), 24-39. doi:10.1109/mra.2011.2181683

Hugenholtz, C. H., Moorman, B. J., Riddell, K., & Whitehead, K. (2012). Small unmanned aircraft systems for remote sensing and Earth science research. Eos, Transactions American Geophysical Union, 93(25), 236-236. doi:10.1029/2012eo250005

Pajares, G. (2015). Overview and Current Status of Remote Sensing Applications Based on Unmanned Aerial Vehicles (UAVs). Photogrammetric Engineering & Remote Sensing, 81(4), 281-330. doi:10.14358/pers.81.4.281

Colomina, I., & Molina, P. (2014). Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 92, 79-97. doi:10.1016/j.isprsjprs.2014.02.013

Anderson, K., & Gaston, K. J. (2013). Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Frontiers in Ecology and the Environment, 11(3), 138-146. doi:10.1890/120150

Zhang, C., & Kovacs, J. M. (2012). The application of small unmanned aerial systems for precision agriculture: a review. Precision Agriculture, 13(6), 693-712. doi:10.1007/s11119-012-9274-5

Bellvert, J., Zarco-Tejada, P. J., Girona, J., & Fereres, E. (2013). Mapping crop water stress index in a ‘Pinot-noir’ vineyard: comparing ground measurements with thermal remote sensing imagery from an unmanned aerial vehicle. Precision Agriculture, 15(4), 361-376. doi:10.1007/s11119-013-9334-5

Erman, A., Hoesel, L., Havinga, P., & Wu, J. (2008). Enabling mobility in heterogeneous wireless sensor networks cooperating with UAVs for mission-critical management. IEEE Wireless Communications, 15(6), 38-46. doi:10.1109/mwc.2008.4749746

Khan, A., Schaefer, D., Tao, L., Miller, D. J., Sun, K., Zondlo, M. A., … Lary, D. J. (2012). Low Power Greenhouse Gas Sensors for Unmanned Aerial Vehicles. Remote Sensing, 4(5), 1355-1368. doi:10.3390/rs4051355

Illingworth, S., Allen, G., Percival, C., Hollingsworth, P., Gallagher, M., Ricketts, H., … Roberts, G. (2014). Measurement of boundary layer ozone concentrations on-board a Skywalker unmanned aerial vehicle. Atmospheric Science Letters, n/a-n/a. doi:10.1002/asl2.496

Wang, W., Guan, X., Wang, B., & Wang, Y. (2010). A novel mobility model based on semi-random circular movement in mobile ad hoc networks. Information Sciences, 180(3), 399-413. doi:10.1016/j.ins.2009.10.001

Wan, Y., Namuduri, K., Zhou, Y., & Fu, S. (2013). A Smooth-Turn Mobility Model for Airborne Networks. IEEE Transactions on Vehicular Technology, 62(7), 3359-3370. doi:10.1109/tvt.2013.2251686

Briante, O., Loscri, V., Pace, P., Ruggeri, G., & Zema, N. R. (2015). COMVIVOR: An Evolutionary Communication Framework Based on Survivors’ Devices Reuse. Wireless Personal Communications, 85(4), 2021-2040. doi:10.1007/s11277-015-2888-y

Meier, L., Tanskanen, P., Heng, L., Lee, G. H., Fraundorfer, F., & Pollefeys, M. (2012). PIXHAWK: A micro aerial vehicle design for autonomous flight using onboard computer vision. Autonomous Robots, 33(1-2), 21-39. doi:10.1007/s10514-012-9281-4

Boussaïd, I., Lepagnot, J., & Siarry, P. (2013). A survey on optimization metaheuristics. Information Sciences, 237, 82-117. doi:10.1016/j.ins.2013.02.041

Stein, M. L. (1999). Interpolation of Spatial Data. Springer Series in Statistics. doi:10.1007/978-1-4612-1494-6

[-]

This item appears in the following Collection(s)

Show full item record