- -

Detecting Deceptive Opinions: Intra and Cross-domain Classification using an Efficient Representation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Detecting Deceptive Opinions: Intra and Cross-domain Classification using an Efficient Representation

Mostrar el registro completo del ítem

Cagnina, L.; Rosso, P. (2017). Detecting Deceptive Opinions: Intra and Cross-domain Classification using an Efficient Representation. International Journal of Uncertainty Fuzziness and Knowledge-Based Systems. 25(2):151-174. https://doi.org/10.1142/S0218488517400165

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/152268

Ficheros en el ítem

Metadatos del ítem

Título: Detecting Deceptive Opinions: Intra and Cross-domain Classification using an Efficient Representation
Autor: Cagnina, Leticia Rosso, Paolo
Entidad UPV: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Fecha difusión:
Resumen:
[EN] Online opinions play an important role for customers and companies because of the increasing use they do to make purchase and business decisions. A consequence of that is the growing tendency to post fake reviews in ...[+]
Palabras clave: Cross-domain evaluation , Deception detection , Intra-domain evaluation , Low dimensionality representation , Opinion spam
Derechos de uso: Reserva de todos los derechos
Fuente:
International Journal of Uncertainty Fuzziness and Knowledge-Based Systems. (issn: 0218-4885 )
DOI: 10.1142/S0218488517400165
Editorial:
World Scientific
Versión del editor: https://doi.org/10.1142/S0218488517400165
Código del Proyecto:
info:eu-repo/grantAgreement/QNRF//NPRP 9-175-1-033/
Descripción: Electronic versíon of an article published as International Journal of Uncertainty Fuzziness and Knowledge-Based Systems, 25, 2, 2017, 151-174. DOI:10.1142/S0218488517400165 © copyright World Scientific Publishing Company. https://www.worldscientific.com/worldscinet/ijufks
Agradecimientos:
This publication was made possible by NPRP grant #9-175-1-033 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.
Tipo: Artículo

References

Cambria, E. (2016). Affective Computing and Sentiment Analysis. IEEE Intelligent Systems, 31(2), 102-107. doi:10.1109/mis.2016.31

Cambria, E., & Hussain, A. (2015). Sentic Computing. Cognitive Computation, 7(2), 183-185. doi:10.1007/s12559-015-9325-0

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA data mining software. ACM SIGKDD Explorations Newsletter, 11(1), 10-18. doi:10.1145/1656274.1656278 [+]
Cambria, E. (2016). Affective Computing and Sentiment Analysis. IEEE Intelligent Systems, 31(2), 102-107. doi:10.1109/mis.2016.31

Cambria, E., & Hussain, A. (2015). Sentic Computing. Cognitive Computation, 7(2), 183-185. doi:10.1007/s12559-015-9325-0

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA data mining software. ACM SIGKDD Explorations Newsletter, 11(1), 10-18. doi:10.1145/1656274.1656278

Hancock, J. T., Curry, L. E., Goorha, S., & Woodworth, M. (2007). On Lying and Being Lied To: A Linguistic Analysis of Deception in Computer-Mediated Communication. Discourse Processes, 45(1), 1-23. doi:10.1080/01638530701739181

Hernández Fusilier, D., Montes-y-Gómez, M., Rosso, P., & Guzmán Cabrera, R. (2015). Detecting positive and negative deceptive opinions using PU-learning. Information Processing & Management, 51(4), 433-443. doi:10.1016/j.ipm.2014.11.001

Mann, H. B., & Whitney, D. R. (1947). On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other. The Annals of Mathematical Statistics, 18(1), 50-60. doi:10.1214/aoms/1177730491

MONTAÑÉS, E., QUEVEDO, J. R., COMBARRO, E. F., DÍAZ, I., & RANILLA, J. (2007). A HYBRID FEATURE SELECTION METHOD FOR TEXT CATEGORIZATION. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 15(02), 133-151. doi:10.1142/s0218488507004492

Newman, M. L., Pennebaker, J. W., Berry, D. S., & Richards, J. M. (2003). Lying Words: Predicting Deception from Linguistic Styles. Personality and Social Psychology Bulletin, 29(5), 665-675. doi:10.1177/0146167203029005010

Raudys, S. J., & Jain, A. K. (1991). Small sample size effects in statistical pattern recognition: recommendations for practitioners. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(3), 252-264. doi:10.1109/34.75512

Wang, G., Xie, S., Liu, B., & Yu, P. S. (2012). Identify Online Store Review Spammers via Social Review Graph. ACM Transactions on Intelligent Systems and Technology, 3(4), 1-21. doi:10.1145/2337542.2337546

Webb, G. I. (2000). Machine Learning, 40(2), 159-196. doi:10.1023/a:1007659514849

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem