- -

A monolithic integrated photonic microwave filter

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


A monolithic integrated photonic microwave filter

Show full item record

Sanchez Fandiño, JA.; Muñoz Muñoz, P.; Doménech Gómez, JD.; Capmany Francoy, J. (2017). A monolithic integrated photonic microwave filter. Nature Photonics. 11(2):124-129. https://doi.org/10.1038/NPHOTON.2016.233

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/152273

Files in this item

Item Metadata

Title: A monolithic integrated photonic microwave filter
Author: Sanchez Fandiño, Javier Antonio Muñoz Muñoz, Pascual Doménech Gómez, José David Capmany Francoy, José
UPV Unit: Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Issued date:
[EN] Meeting the increasing demand for capacity in wireless networks requires the harnessing of higher regions in the radiofrequency spectrum, reducing cell size, as well as more compact, agile and power-efficient base ...[+]
Subjects: Signal processor , Access networks , Chip , Modulation , Generation , Gratings , Shaper
Copyrigths: Reserva de todos los derechos
Nature Photonics. (issn: 1749-4885 )
DOI: 10.1038/NPHOTON.2016.233
Nature Publishing Group
Publisher version: https://doi.org/10.1038/NPHOTON.2016.233
Project ID:
The authors acknowledge financial support from the Spanish Centro para el Desarrollo Tecnologico Industrial (CDTI) through the NEOTEC start-up programme, the European Commission through the 7th Research Framework Programme ...[+]
Type: Artículo


Novak, D. et al. Radio-over-fiber technologies for emerging wireless systems. IEEE J. Quantum Electron. 52, 1–11 (2016).

Waterhouse, R. & Novak, D. Realizing 5G: microwave photonics for 5G mobile wireless systems. IEEE Microw. Mag. 16, 84–92 (2015).

Won, R. Microwave photonics shines. Nat. Photon. 5, 736 (2011). [+]
Novak, D. et al. Radio-over-fiber technologies for emerging wireless systems. IEEE J. Quantum Electron. 52, 1–11 (2016).

Waterhouse, R. & Novak, D. Realizing 5G: microwave photonics for 5G mobile wireless systems. IEEE Microw. Mag. 16, 84–92 (2015).

Won, R. Microwave photonics shines. Nat. Photon. 5, 736 (2011).

Capmany, J. & Novak, D. Microwave photonics combines two worlds. Nat. Photon. 1, 319–330 (2007).

Yao, J. Microwave photonics. J. Lightw. Technol. 27, 314–335 (2009).

Andrews, J. G. et al. What will 5G be? IEEE J. Sel. Areas Commun. 32, 1065–1082 (2014).

Gosh, A., et al. Millimetre-wave enhanced local area systems: a high-data-rate approach for future wireless networks. IEEE J. Sel. Areas Commun. 32, 1152–1163 (2014).

Marpaung, D. et al. Integrated microwave photonics. Laser Photon. Rev. 7, 506–538 (2013).

Iezekiel, S., Burla, M., Klamkin, J., Marpaung, D. & Capmany, J. RF engineering meets optoelectronics: progress in integrated microwave photonics. IEEE Microw. Mag. 16, 28–45 (2015).

Mitchell, J. E. Integrated wireless backhaul over optical access networks. J. Lightw. Technol. 32, 3373–3382 (2014).

Liu, C., Wang, J., Cheng, L., Zhu, M. & Chang, G.-K. Key microwave-photonics technologies for next-generation cloud-based radio access networks. J. Lightw. Technol. 32, 3452–3460 (2014).

Norberg, E. J., Guzzon, R. S., Parker, J. S., Johansson, L. A. & Coldren, L. A. Programmable photonic microwave filters monolithically integrated in InP/InGaAsP. J. Lightw. Technol. 29, 1611–1619 (2011).

Guzzon, R., Norberg, E., Parker, J., Johansson, L. & Coldren, L. Integrated InP–InGaAsP tuneable coupled ring optical bandpass filters with zero insertion loss. Opt. Express 19, 7816–7826 (2011).

Fandiño, J. S. & Muñoz, P. Photonics-based microwave frequency measurement using a double-sideband suppressed-carrier modulation and an InP integrated ring-assisted Mach–Zehnder interferometer filter. Opt. Lett. 38, 4316–4319 (2013).

Burla, M. et al. On-chip ultra-wideband microwave photonic phase shifter and true time delay line based on a single phase-shifted waveguide Bragg grating. In IEEE International Topical Meeting on Microwave Photonics 92–95 (IEEE, 2013).

Shi, W., Veerasubramanian, V., Patel, D. & Plant, D. Tuneable nanophotonic delay lines using linearly chirped contradirectioinal couplers with uniform Bragg gratings. Opt. Lett. 39, 701–703 (2014).

Guan, B. et al. CMOS compatible reconfigurable silicon photonic lattice filters using cascaded unit cells for RF-photonic processing. IEEE J. Sel. Top. Quantum Electron. 20, 359–368 (2014).

Khan, M. H. et al. Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper. Nat. Photon. 4, 117–122 (2010).

Pagani, M. et al. Instantaneous frequency measurement system using four-wave mixing in an ultra-compact long silicon waveguide. In Proc. 41st European Conf. on Optical Communication (ECOC) 1–3 (IEEE, 2015).

Khilo, A. et al. Photonic ADC: overcoming the bottleneck of electronic jitter. Opt. Express 20, 4454–4469 (2012).

Wang, J. et al. Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip. Nat. Commun. 6, 5957 (2015).

Marpaung, D. et al. Si3N4 ring resonator-based microwave photonic notch filter with an ultrahigh peak rejection. Opt. Express 21, 23286–23294 (2013).

Zhuang, L. et al. Ring resonator-based on-chip modulation transformer for high-performance phase-modulated microwave photonic links. Opt. Express 21, 25999–26013 (2013).

Marpaung, D., Chevalier, L., Burla, M. & Roeloffzen, C. Impulse radio ultrawideband pulse shaper based on a programmable photonic chip frequency discriminator. Opt. Express 19, 24838–24848 (2011).

Marpaung, D. On-chip photonic-assisted instantaneous microwave frequency measurement system. IEEE Photon. Technol. Lett. 25, 837–840 (2013).

Burla, M. et al. On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing. Opt. Express 19, 21475–21484 (2011).

Tan, K. et al. Photonic-chip-based all-optical ultra-wideband pulse generation via XPM and birefringence in a chalcogenide waveguide. Opt. Express 21, 2003–2011 (2013).

Pagani, M. et al. Tuneable wideband microwave photonic phase shifter using on-chip stimulated Brillouin scattering. Opt. Express 22, 28810–28818 (2014).

Pérez, D., Gasulla, I. & Capmany, J. Software-defined reconfigurable microwave photonics processor. Opt. Express 23, 14640–14654 (2015).

Capmany, J., Gasulla, I. & Pérez, D. Microwave photonics: the programmable processor. Nat. Photon. 10, 6–8 (2016).

Zhuang, L., Roeloffzen, C. G. H., Hoekman, M., Boller, K.-J. & Lowery, A. J. Programmable photonic signal processor chip for radiofrequency applications. Optica 2, 854–859 (2015).

Roeloffzen, C. G. et al. Silicon nitride microwave photonic circuits. Opt. Express 21, 22937–22961 (2013).

Liu, W. et al. A fully reconfigurable photonic integrated signal processor. Nat. Photon. 10, 190–195 (2016).

Madsen, C. K. & Zhao, J. H. Optical Filter Design and Analysis: A Signal Processing Approach (Wiley, 1999).

Román, J., Frankel, M. Y. & Esman, R. D. Spectral characterization of fiber gratings with high resolution. Opt. Lett. 23, 939–941 (1998).

Hernández, R., Loayssa, A. & Benito, D. Optical vector network analysis based on single-sideband modulation. Opt. Eng. 43, 2418–2421 (2004).

Jinguji, K. & Oguma, M. Optical half-band filters. J. Lightw. Technol. 18, 252–259 (2000).

Madsen, C. K. Efficient architectures for exactly realizing optical filters with optimum bandpass designs. IEEE Photon. Technol. Lett. 10, 1136–1138 (1998).

Madsen, C. K. General IIR optical filter design for WDM applications using all-pass filters. J. Lightw. Technol. 18, 860–868 (2000).

Smit, M. K. et al. An introduction to InP-based generic integration technology. Semicond. Sci. Technol. 29, 083001 (2014).

Besse, P. A., Gini, E., Bachmann, M. & Melchior, H. New 2×2 and 1×3 multimode interference couplers with free selection of power splitting ratios. J. Lightw. Technol. 14, 2286–2293 (1996).

Pérez, D. et al. Figures of merit for self-beating filtered microwave photonic systems. Opt. Express 24, 10087–10102 (2016).

Zhuang, L. et al. Novel low-loss waveguide delay lines using Vernier ring resonators for on-chip multi-λ microwave photonic signal processors. Laser Photon. Rev. 7, 994–1002 (2013).


This item appears in the following Collection(s)

Show full item record