- -

A monolithic integrated photonic microwave filter

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A monolithic integrated photonic microwave filter

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sanchez Fandiño, Javier Antonio es_ES
dc.contributor.author Muñoz Muñoz, Pascual es_ES
dc.contributor.author Doménech Gómez, José David es_ES
dc.contributor.author Capmany Francoy, José es_ES
dc.date.accessioned 2020-10-17T03:32:36Z
dc.date.available 2020-10-17T03:32:36Z
dc.date.issued 2017-02 es_ES
dc.identifier.issn 1749-4885 es_ES
dc.identifier.uri http://hdl.handle.net/10251/152273
dc.description.abstract [EN] Meeting the increasing demand for capacity in wireless networks requires the harnessing of higher regions in the radiofrequency spectrum, reducing cell size, as well as more compact, agile and power-efficient base stations that are capable of smoothly interfacing the radio and fibre segments. Fully functional microwave photonic chips are promising candidates in attempts to meet these goals. In recent years, many integrated microwave photonic chips have been reported in different technologies. To the best of our knowledge, none has monolithically integrated all the main active and passive optoelectronic components. Here, we report the first demonstration of a tunable microwave photonics filter that is monolithically integrated into an indium phosphide chip. The reconfigurable radiofrequency photonic filter includes all the necessary elements (for example, lasers, modulators and photodetectors), and its response can be tuned by means of control electric currents. This is an important step in demonstrating the feasibility of integrated and programmable microwave photonic processors. es_ES
dc.description.sponsorship The authors acknowledge financial support from the Spanish Centro para el Desarrollo Tecnologico Industrial (CDTI) through the NEOTEC start-up programme, the European Commission through the 7th Research Framework Programme project, Photonic Advanced Research and Development for Integrated Generic Manufacturing (FP7-PARADIGM), the Generalitat Valenciana through the Programa para grupos de Investigacion de Excelencia (PROMETEO) project code 2013/012, the Spanish Ministerio de Economia y Comercio (MINECO) via project TEC2013-42332-P, PIF4ESP, and the Unwersitat Politecnica de Valencia (UPVOV) through projects 10-3E-492 and 08-3E-008 funded by the Fondos Europeos de Desarrollo Regional (FEDER). J.S. Fandino acknowledges financial support from Formacion de Profesorado Universitario (FPU) grant AP2010-1595. es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Nature Photonics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Signal processor es_ES
dc.subject Access networks es_ES
dc.subject Chip es_ES
dc.subject Modulation es_ES
dc.subject Generation es_ES
dc.subject Gratings es_ES
dc.subject Shaper es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title A monolithic integrated photonic microwave filter es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/NPHOTON.2016.233 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/257210/EU/Photonic Advanced Research And Development for Integrated Generic Manufacturing/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//UPOV10-3E-492/ES/Instrumentación para la caracterización de sistemas y componentes en comunicaciones ópticas avanzadas/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//UPOV08-3E-008/ES/INSTRUMENTACION AVANZADA PARA COMUNICACIONES OPTICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2013-42332-P/ES/PHOTONIC INTEGRATED FILTERS FOR ENHANCED SIGNAL PROCESSING/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ME//AP2010-1595/ES/AP2010-1595/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F012/ES/TECNOLOGIAS DE NUEVA GENERACION EN FOTONICA DE MICROONDAS (NEXT GENERATION MICROWAVE PHOTONIC TECHNOLOGIES)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Sanchez Fandiño, JA.; Muñoz Muñoz, P.; Doménech Gómez, JD.; Capmany Francoy, J. (2017). A monolithic integrated photonic microwave filter. Nature Photonics. 11(2):124-129. https://doi.org/10.1038/NPHOTON.2016.233 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/NPHOTON.2016.233 es_ES
dc.description.upvformatpinicio 124 es_ES
dc.description.upvformatpfin 129 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\344335 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Educación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Centro para el Desarrollo Tecnológico Industrial es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Novak, D. et al. Radio-over-fiber technologies for emerging wireless systems. IEEE J. Quantum Electron. 52, 1–11 (2016). es_ES
dc.description.references Waterhouse, R. & Novak, D. Realizing 5G: microwave photonics for 5G mobile wireless systems. IEEE Microw. Mag. 16, 84–92 (2015). es_ES
dc.description.references Won, R. Microwave photonics shines. Nat. Photon. 5, 736 (2011). es_ES
dc.description.references Capmany, J. & Novak, D. Microwave photonics combines two worlds. Nat. Photon. 1, 319–330 (2007). es_ES
dc.description.references Yao, J. Microwave photonics. J. Lightw. Technol. 27, 314–335 (2009). es_ES
dc.description.references Andrews, J. G. et al. What will 5G be? IEEE J. Sel. Areas Commun. 32, 1065–1082 (2014). es_ES
dc.description.references Gosh, A., et al. Millimetre-wave enhanced local area systems: a high-data-rate approach for future wireless networks. IEEE J. Sel. Areas Commun. 32, 1152–1163 (2014). es_ES
dc.description.references Marpaung, D. et al. Integrated microwave photonics. Laser Photon. Rev. 7, 506–538 (2013). es_ES
dc.description.references Iezekiel, S., Burla, M., Klamkin, J., Marpaung, D. & Capmany, J. RF engineering meets optoelectronics: progress in integrated microwave photonics. IEEE Microw. Mag. 16, 28–45 (2015). es_ES
dc.description.references Mitchell, J. E. Integrated wireless backhaul over optical access networks. J. Lightw. Technol. 32, 3373–3382 (2014). es_ES
dc.description.references Liu, C., Wang, J., Cheng, L., Zhu, M. & Chang, G.-K. Key microwave-photonics technologies for next-generation cloud-based radio access networks. J. Lightw. Technol. 32, 3452–3460 (2014). es_ES
dc.description.references Norberg, E. J., Guzzon, R. S., Parker, J. S., Johansson, L. A. & Coldren, L. A. Programmable photonic microwave filters monolithically integrated in InP/InGaAsP. J. Lightw. Technol. 29, 1611–1619 (2011). es_ES
dc.description.references Guzzon, R., Norberg, E., Parker, J., Johansson, L. & Coldren, L. Integrated InP–InGaAsP tuneable coupled ring optical bandpass filters with zero insertion loss. Opt. Express 19, 7816–7826 (2011). es_ES
dc.description.references Fandiño, J. S. & Muñoz, P. Photonics-based microwave frequency measurement using a double-sideband suppressed-carrier modulation and an InP integrated ring-assisted Mach–Zehnder interferometer filter. Opt. Lett. 38, 4316–4319 (2013). es_ES
dc.description.references Burla, M. et al. On-chip ultra-wideband microwave photonic phase shifter and true time delay line based on a single phase-shifted waveguide Bragg grating. In IEEE International Topical Meeting on Microwave Photonics 92–95 (IEEE, 2013). es_ES
dc.description.references Shi, W., Veerasubramanian, V., Patel, D. & Plant, D. Tuneable nanophotonic delay lines using linearly chirped contradirectioinal couplers with uniform Bragg gratings. Opt. Lett. 39, 701–703 (2014). es_ES
dc.description.references Guan, B. et al. CMOS compatible reconfigurable silicon photonic lattice filters using cascaded unit cells for RF-photonic processing. IEEE J. Sel. Top. Quantum Electron. 20, 359–368 (2014). es_ES
dc.description.references Khan, M. H. et al. Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper. Nat. Photon. 4, 117–122 (2010). es_ES
dc.description.references Pagani, M. et al. Instantaneous frequency measurement system using four-wave mixing in an ultra-compact long silicon waveguide. In Proc. 41st European Conf. on Optical Communication (ECOC) 1–3 (IEEE, 2015). es_ES
dc.description.references Khilo, A. et al. Photonic ADC: overcoming the bottleneck of electronic jitter. Opt. Express 20, 4454–4469 (2012). es_ES
dc.description.references Wang, J. et al. Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip. Nat. Commun. 6, 5957 (2015). es_ES
dc.description.references Marpaung, D. et al. Si3N4 ring resonator-based microwave photonic notch filter with an ultrahigh peak rejection. Opt. Express 21, 23286–23294 (2013). es_ES
dc.description.references Zhuang, L. et al. Ring resonator-based on-chip modulation transformer for high-performance phase-modulated microwave photonic links. Opt. Express 21, 25999–26013 (2013). es_ES
dc.description.references Marpaung, D., Chevalier, L., Burla, M. & Roeloffzen, C. Impulse radio ultrawideband pulse shaper based on a programmable photonic chip frequency discriminator. Opt. Express 19, 24838–24848 (2011). es_ES
dc.description.references Marpaung, D. On-chip photonic-assisted instantaneous microwave frequency measurement system. IEEE Photon. Technol. Lett. 25, 837–840 (2013). es_ES
dc.description.references Burla, M. et al. On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing. Opt. Express 19, 21475–21484 (2011). es_ES
dc.description.references Tan, K. et al. Photonic-chip-based all-optical ultra-wideband pulse generation via XPM and birefringence in a chalcogenide waveguide. Opt. Express 21, 2003–2011 (2013). es_ES
dc.description.references Pagani, M. et al. Tuneable wideband microwave photonic phase shifter using on-chip stimulated Brillouin scattering. Opt. Express 22, 28810–28818 (2014). es_ES
dc.description.references Pérez, D., Gasulla, I. & Capmany, J. Software-defined reconfigurable microwave photonics processor. Opt. Express 23, 14640–14654 (2015). es_ES
dc.description.references Capmany, J., Gasulla, I. & Pérez, D. Microwave photonics: the programmable processor. Nat. Photon. 10, 6–8 (2016). es_ES
dc.description.references Zhuang, L., Roeloffzen, C. G. H., Hoekman, M., Boller, K.-J. & Lowery, A. J. Programmable photonic signal processor chip for radiofrequency applications. Optica 2, 854–859 (2015). es_ES
dc.description.references Roeloffzen, C. G. et al. Silicon nitride microwave photonic circuits. Opt. Express 21, 22937–22961 (2013). es_ES
dc.description.references Liu, W. et al. A fully reconfigurable photonic integrated signal processor. Nat. Photon. 10, 190–195 (2016). es_ES
dc.description.references Madsen, C. K. & Zhao, J. H. Optical Filter Design and Analysis: A Signal Processing Approach (Wiley, 1999). es_ES
dc.description.references Román, J., Frankel, M. Y. & Esman, R. D. Spectral characterization of fiber gratings with high resolution. Opt. Lett. 23, 939–941 (1998). es_ES
dc.description.references Hernández, R., Loayssa, A. & Benito, D. Optical vector network analysis based on single-sideband modulation. Opt. Eng. 43, 2418–2421 (2004). es_ES
dc.description.references Jinguji, K. & Oguma, M. Optical half-band filters. J. Lightw. Technol. 18, 252–259 (2000). es_ES
dc.description.references Madsen, C. K. Efficient architectures for exactly realizing optical filters with optimum bandpass designs. IEEE Photon. Technol. Lett. 10, 1136–1138 (1998). es_ES
dc.description.references Madsen, C. K. General IIR optical filter design for WDM applications using all-pass filters. J. Lightw. Technol. 18, 860–868 (2000). es_ES
dc.description.references Smit, M. K. et al. An introduction to InP-based generic integration technology. Semicond. Sci. Technol. 29, 083001 (2014). es_ES
dc.description.references Besse, P. A., Gini, E., Bachmann, M. & Melchior, H. New 2×2 and 1×3 multimode interference couplers with free selection of power splitting ratios. J. Lightw. Technol. 14, 2286–2293 (1996). es_ES
dc.description.references Pérez, D. et al. Figures of merit for self-beating filtered microwave photonic systems. Opt. Express 24, 10087–10102 (2016). es_ES
dc.description.references Zhuang, L. et al. Novel low-loss waveguide delay lines using Vernier ring resonators for on-chip multi-λ microwave photonic signal processors. Laser Photon. Rev. 7, 994–1002 (2013). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem