- -

A Modular Synthetic Device to Calibrate Promoters

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Modular Synthetic Device to Calibrate Promoters

Mostrar el registro completo del ítem

Gamermann, D.; Montagud Aquino, A.; Aparicio, P.; Navarro-Peris, E.; Triana, J.; Villatoro, F.; Urchueguía Schölzel, JF.... (2012). A Modular Synthetic Device to Calibrate Promoters. Journal of Biological System. 20(1):37-55. https://doi.org/10.1142/S0218339012500015

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/152279

Ficheros en el ítem

Metadatos del ítem

Título: A Modular Synthetic Device to Calibrate Promoters
Autor: Gamermann, Daniel Montagud Aquino, Arnau Aparicio, P. Navarro-Peris, Emilio Triana, J. Villatoro, F.R. Urchueguía Schölzel, Javier Fermín Fernández de Córdoba, Pedro
Entidad UPV: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] In this contribution, a design of a synthetic calibration genetic circuit to characterize the relative strength of different sensing promoters is proposed and its specifications and performance are analyzed via an ...[+]
Palabras clave: Calibration , Effective Modeling of Gene Circuits , Gene Promoter , Parameter Analysis , Synthetic Biology , Synthetic Genetic Circuits
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Biological System. (issn: 0218-3390 )
DOI: 10.1142/S0218339012500015
Editorial:
WORLD SCIENTIFIC PUBL CO PTE LTD
Versión del editor: https://doi.org/10.1142/S0218339012500015
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//TIN2009-12359/ES/Integracion De Bases De Datos Biologicas Con Nuevas Herramientas De Computo En Biologia Sintetica Orientadas A La Produccion De Biocombustibles/
Agradecimientos:
This work has been funded by MICINN TIN2009-12359 project ArtBioCom, the Spanish Ministerio de Educacion y Ciencia through the program Juan de la Cierva, the FPI grant program of the Generalitat Valenciana and the Beca de ...[+]
Tipo: Artículo

References

Elowitz, M. B., & Leibler, S. (2000). A synthetic oscillatory network of transcriptional regulators. Nature, 403(6767), 335-338. doi:10.1038/35002125

Becskei, A., & Serrano, L. (2000). Engineering stability in gene networks by autoregulation. Nature, 405(6786), 590-593. doi:10.1038/35014651

Monod, J., & Jacob, F. (1961). General Conclusions: Teleonomic Mechanisms in Cellular Metabolism, Growth, and Differentiation. Cold Spring Harbor Symposia on Quantitative Biology, 26(0), 389-401. doi:10.1101/sqb.1961.026.01.048 [+]
Elowitz, M. B., & Leibler, S. (2000). A synthetic oscillatory network of transcriptional regulators. Nature, 403(6767), 335-338. doi:10.1038/35002125

Becskei, A., & Serrano, L. (2000). Engineering stability in gene networks by autoregulation. Nature, 405(6786), 590-593. doi:10.1038/35014651

Monod, J., & Jacob, F. (1961). General Conclusions: Teleonomic Mechanisms in Cellular Metabolism, Growth, and Differentiation. Cold Spring Harbor Symposia on Quantitative Biology, 26(0), 389-401. doi:10.1101/sqb.1961.026.01.048

Ishiura, M. (1998). Expression of a Gene Cluster kaiABC as a Circadian Feedback Process in Cyanobacteria. Science, 281(5382), 1519-1523. doi:10.1126/science.281.5382.1519

Gardner, T. S., Cantor, C. R., & Collins, J. J. (2000). Construction of a genetic toggle switch in Escherichia coli. Nature, 403(6767), 339-342. doi:10.1038/35002131

Stricker, J., Cookson, S., Bennett, M. R., Mather, W. H., Tsimring, L. S., & Hasty, J. (2008). A fast, robust and tunable synthetic gene oscillator. Nature, 456(7221), 516-519. doi:10.1038/nature07389

Becskei, A. (2001). Positive feedback in eukaryotic gene networks: cell differentiation by graded to binary response conversion. The EMBO Journal, 20(10), 2528-2535. doi:10.1093/emboj/20.10.2528

Sayut, D. J., Niu, Y., & Sun, L. (2006). Construction and Engineering of Positive Feedback Loops. ACS Chemical Biology, 1(11), 692-696. doi:10.1021/cb6004245

Weber, W., & Fussenegger, M. (2006). Pharmacologic transgene control systems for gene therapy. The Journal of Gene Medicine, 8(5), 535-556. doi:10.1002/jgm.903

Walz, D., & Caplan, S. R. (1995). Chemical oscillations arise solely from kinetic nonlinearity and hence can occur near equilibrium. Biophysical Journal, 69(5), 1698-1707. doi:10.1016/s0006-3495(95)80039-1

Santos, C. N. S., & Stephanopoulos, G. (2008). Combinatorial engineering of microbes for optimizing cellular phenotype. Current Opinion in Chemical Biology, 12(2), 168-176. doi:10.1016/j.cbpa.2008.01.017

Alper, H., Fischer, C., Nevoigt, E., & Stephanopoulos, G. (2005). Tuning genetic control through promoter engineering. Proceedings of the National Academy of Sciences, 102(36), 12678-12683. doi:10.1073/pnas.0504604102

Liang, S.-T., Bipatnath, M., Xu, Y.-C., Chen, S.-L., Dennis, P., Ehrenberg, M., & Bremer, H. (1999). Activities of constitutive promoters in Escherichia coli 1 1Edited by D. E. Draper. Journal of Molecular Biology, 292(1), 19-37. doi:10.1006/jmbi.1999.3056

Smolke, C. D., & Keasling, J. D. (2002). Effect of gene location, mRNA secondary structures, and RNase sites on expression of two genes in an engineered operon. Biotechnology and Bioengineering, 80(7), 762-776. doi:10.1002/bit.10434

Khlebnikov, A., Skaug, T., & Keasling, J. D. (2002). Modulation of gene expression from the arabinose-inducible araBAD promoter. Journal of Industrial Microbiology and Biotechnology, 29(1), 34-37. doi:10.1038/sj.jim.7000259

Cox, R. S., Surette, M. G., & Elowitz, M. B. (2007). Programming gene expression with combinatorial promoters. Molecular Systems Biology, 3(1), 145. doi:10.1038/msb4100187

Chu, D., Zabet, N. R., & Mitavskiy, B. (2009). Models of transcription factor binding: Sensitivity of activation functions to model assumptions. Journal of Theoretical Biology, 257(3), 419-429. doi:10.1016/j.jtbi.2008.11.026

Chesi, G. (2011). Robustness analysis of genetic regulatory networks affected by model uncertainty. Automatica, 47(6), 1131-1138. doi:10.1016/j.automatica.2010.10.012

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem