- -

A Modular Synthetic Device to Calibrate Promoters

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A Modular Synthetic Device to Calibrate Promoters

Show simple item record

Files in this item

dc.contributor.author Gamermann, Daniel es_ES
dc.contributor.author Montagud Aquino, Arnau es_ES
dc.contributor.author Aparicio, P. es_ES
dc.contributor.author Navarro-Peris, Emilio es_ES
dc.contributor.author Triana, J. es_ES
dc.contributor.author Villatoro, F.R. es_ES
dc.contributor.author Urchueguía Schölzel, Javier Fermín es_ES
dc.contributor.author Fernández de Córdoba, Pedro es_ES
dc.date.accessioned 2020-10-17T03:32:50Z
dc.date.available 2020-10-17T03:32:50Z
dc.date.issued 2012-03 es_ES
dc.identifier.issn 0218-3390 es_ES
dc.identifier.uri http://hdl.handle.net/10251/152279
dc.description.abstract [EN] In this contribution, a design of a synthetic calibration genetic circuit to characterize the relative strength of different sensing promoters is proposed and its specifications and performance are analyzed via an effective mathematical model. Our calibrator device possesses certain novel and useful features like modularity (and thus the possibility of being used in many different biological contexts), simplicity, being based on a single cell, high sensitivity and fast response. To uncover the critical model parameters and the corresponding parameter domain at which the calibrator performance will be optimal, a sensitivity analysis of the model parameters was carried out over a given range of sensing protein concentrations (acting as input). Our analysis suggests that the half saturation constants for repression, sensing and difference in binding cooperativity (Hill coefficients) for repression are the key to the performance of the proposed device. They furthermore are determinant for the sensing speed of the device, showing that it is possible to produce detectable differences in the repression protein concentrations and in turn in the corresponding fluorescence in less than two hours. This analysis paves the way for the design, experimental construction and validation of a new family of functional genetic circuits for the purpose of calibrating promoters. es_ES
dc.description.sponsorship This work has been funded by MICINN TIN2009-12359 project ArtBioCom, the Spanish Ministerio de Educacion y Ciencia through the program Juan de la Cierva, the FPI grant program of the Generalitat Valenciana and the Beca de recerca predoctoral from the Universitat Rovira i Virgili. The authors would also like to thank the Valencia iGEM 2007 team and Enrique O'Connor and his group from the Centro de Investigacion Prncipe Felipe in the Universidad de Valencia for useful discussions. es_ES
dc.language Inglés es_ES
dc.publisher WORLD SCIENTIFIC PUBL CO PTE LTD es_ES
dc.relation.ispartof Journal of Biological System es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Calibration es_ES
dc.subject Effective Modeling of Gene Circuits es_ES
dc.subject Gene Promoter es_ES
dc.subject Parameter Analysis es_ES
dc.subject Synthetic Biology es_ES
dc.subject Synthetic Genetic Circuits es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title A Modular Synthetic Device to Calibrate Promoters es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1142/S0218339012500015 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TIN2009-12359/ES/Integracion De Bases De Datos Biologicas Con Nuevas Herramientas De Computo En Biologia Sintetica Orientadas A La Produccion De Biocombustibles/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Gamermann, D.; Montagud Aquino, A.; Aparicio, P.; Navarro-Peris, E.; Triana, J.; Villatoro, F.; Urchueguía Schölzel, JF.... (2012). A Modular Synthetic Device to Calibrate Promoters. Journal of Biological System. 20(1):37-55. https://doi.org/10.1142/S0218339012500015 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1142/S0218339012500015 es_ES
dc.description.upvformatpinicio 37 es_ES
dc.description.upvformatpfin 55 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\224392 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Universitat Rovira i Virgili es_ES
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Elowitz, M. B., & Leibler, S. (2000). A synthetic oscillatory network of transcriptional regulators. Nature, 403(6767), 335-338. doi:10.1038/35002125 es_ES
dc.description.references Becskei, A., & Serrano, L. (2000). Engineering stability in gene networks by autoregulation. Nature, 405(6786), 590-593. doi:10.1038/35014651 es_ES
dc.description.references Monod, J., & Jacob, F. (1961). General Conclusions: Teleonomic Mechanisms in Cellular Metabolism, Growth, and Differentiation. Cold Spring Harbor Symposia on Quantitative Biology, 26(0), 389-401. doi:10.1101/sqb.1961.026.01.048 es_ES
dc.description.references Ishiura, M. (1998). Expression of a Gene Cluster kaiABC as a Circadian Feedback Process in Cyanobacteria. Science, 281(5382), 1519-1523. doi:10.1126/science.281.5382.1519 es_ES
dc.description.references Gardner, T. S., Cantor, C. R., & Collins, J. J. (2000). Construction of a genetic toggle switch in Escherichia coli. Nature, 403(6767), 339-342. doi:10.1038/35002131 es_ES
dc.description.references Stricker, J., Cookson, S., Bennett, M. R., Mather, W. H., Tsimring, L. S., & Hasty, J. (2008). A fast, robust and tunable synthetic gene oscillator. Nature, 456(7221), 516-519. doi:10.1038/nature07389 es_ES
dc.description.references Becskei, A. (2001). Positive feedback in eukaryotic gene networks: cell differentiation by graded to binary response conversion. The EMBO Journal, 20(10), 2528-2535. doi:10.1093/emboj/20.10.2528 es_ES
dc.description.references Sayut, D. J., Niu, Y., & Sun, L. (2006). Construction and Engineering of Positive Feedback Loops. ACS Chemical Biology, 1(11), 692-696. doi:10.1021/cb6004245 es_ES
dc.description.references Weber, W., & Fussenegger, M. (2006). Pharmacologic transgene control systems for gene therapy. The Journal of Gene Medicine, 8(5), 535-556. doi:10.1002/jgm.903 es_ES
dc.description.references Walz, D., & Caplan, S. R. (1995). Chemical oscillations arise solely from kinetic nonlinearity and hence can occur near equilibrium. Biophysical Journal, 69(5), 1698-1707. doi:10.1016/s0006-3495(95)80039-1 es_ES
dc.description.references Santos, C. N. S., & Stephanopoulos, G. (2008). Combinatorial engineering of microbes for optimizing cellular phenotype. Current Opinion in Chemical Biology, 12(2), 168-176. doi:10.1016/j.cbpa.2008.01.017 es_ES
dc.description.references Alper, H., Fischer, C., Nevoigt, E., & Stephanopoulos, G. (2005). Tuning genetic control through promoter engineering. Proceedings of the National Academy of Sciences, 102(36), 12678-12683. doi:10.1073/pnas.0504604102 es_ES
dc.description.references Liang, S.-T., Bipatnath, M., Xu, Y.-C., Chen, S.-L., Dennis, P., Ehrenberg, M., & Bremer, H. (1999). Activities of constitutive promoters in Escherichia coli 1 1Edited by D. E. Draper. Journal of Molecular Biology, 292(1), 19-37. doi:10.1006/jmbi.1999.3056 es_ES
dc.description.references Smolke, C. D., & Keasling, J. D. (2002). Effect of gene location, mRNA secondary structures, and RNase sites on expression of two genes in an engineered operon. Biotechnology and Bioengineering, 80(7), 762-776. doi:10.1002/bit.10434 es_ES
dc.description.references Khlebnikov, A., Skaug, T., & Keasling, J. D. (2002). Modulation of gene expression from the arabinose-inducible araBAD promoter. Journal of Industrial Microbiology and Biotechnology, 29(1), 34-37. doi:10.1038/sj.jim.7000259 es_ES
dc.description.references Cox, R. S., Surette, M. G., & Elowitz, M. B. (2007). Programming gene expression with combinatorial promoters. Molecular Systems Biology, 3(1), 145. doi:10.1038/msb4100187 es_ES
dc.description.references Chu, D., Zabet, N. R., & Mitavskiy, B. (2009). Models of transcription factor binding: Sensitivity of activation functions to model assumptions. Journal of Theoretical Biology, 257(3), 419-429. doi:10.1016/j.jtbi.2008.11.026 es_ES
dc.description.references Chesi, G. (2011). Robustness analysis of genetic regulatory networks affected by model uncertainty. Automatica, 47(6), 1131-1138. doi:10.1016/j.automatica.2010.10.012 es_ES


This item appears in the following Collection(s)

Show simple item record