- -

Automatic intensity windowing of mammographic images based on a perceptual metric

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Automatic intensity windowing of mammographic images based on a perceptual metric

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Albiol Colomer, Alberto es_ES
dc.contributor.author Corbi, Alberto es_ES
dc.contributor.author Albiol Colomer, Francisco es_ES
dc.date.accessioned 2020-10-20T03:31:17Z
dc.date.available 2020-10-20T03:31:17Z
dc.date.issued 2017-04 es_ES
dc.identifier.issn 0094-2405 es_ES
dc.identifier.uri http://hdl.handle.net/10251/152480
dc.description.abstract [EN] Purpose: Initial auto-adjustment of the window level WL and width WW applied to mammographic images. The proposed intensity windowing (IW) method is based on the maximization of the mutual information (MI) between a perceptual decomposition of the original 12-bit sources and their screen displayed 8-bit version. Besides zoom, color inversion and panning operations, IW is the most commonly performed task in daily screening and has a direct impact on diagnosis and the time involved in the process. Methods: The authors present a human visual system and perception-based algorithm named GRAIL (Gabor-relying adjustment of image levels). GRAIL initially measures a mammogram's quality based on the MI between the original instance and its Gabor-filtered derivations. From this point on, the algorithm performs an automatic intensity windowing process that outputs the WL/WW that best displays each mammogram for screening. GRAIL starts with the default, high contrast, wide dynamic range 12-bit data, and then maximizes the graphical information presented in ordinary 8-bit displays. Tests have been carried out with several mammogram databases. They comprise correlations and an ANOVA analysis with the manual IW levels established by a group of radiologists. A complete MATLAB implementation of GRAIL is available at . Results: Auto-leveled images show superior quality both perceptually and objectively compared to their full intensity range and compared to the application of other common methods like global contrast stretching (GCS). The correlations between the human determined intensity values and the ones estimated by our method surpass that of GCS. The ANOVA analysis with the upper intensity thresholds also reveals a similar outcome. GRAIL has also proven to specially perform better with images that contain micro-calcifications and/or foreign X-ray-opaque elements and with healthy BI-RADS A-type mammograms. It can also speed up the initial screening time by a mean of 4.5 s per image. Conclusions: A novel methodology is introduced that enables a quality-driven balancing of the WL/WW of mammographic images. This correction seeks the representation that maximizes the amount of graphical information contained in each image. The presented technique can contribute to the diagnosis and the overall efficiency of the breast screening session by suggesting, at the beginning, an optimal and customized windowing setting for each mammogram. (C) 2017 American Association of Physicists in Medicine es_ES
dc.description.sponsorship This work has the support of IST S.L., University of Valencia (CPI15170), Consolider (CPAN13TR01), MINETUR (TSI1001012013019) and IFIC (Severo Ochoa Centre of Excellence SEV20140398). The authors would also like to thank C. Bellot M.D., M. Brouzet M.D., C. Calabuig M.D., J. Camps M.D., J. Coloma M.D., D. Erades M.D., Mr. V. Gutierrez, J. Herrero M.D., Dr. I. Maestre, Dr. A. Neco M.D., C. Ortola M.D., A. Rubio M.D., Dr. R. Sanchez, Dr. F. Sellers, A. Segura M.D., and the Spanish Cancer Association (AECC) for their effort, participation, counseling, and commitment in this research study. The authors report no conflicts of interest in conducting the research. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Medical Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Contrast stretching es_ES
dc.subject Gabor filtering es_ES
dc.subject Human visual system es_ES
dc.subject Mammogram es_ES
dc.subject Mutual information es_ES
dc.subject Window level/width es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Automatic intensity windowing of mammographic images based on a perceptual metric es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/mp.12144 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2014-0398/ES/INSTITUTO DE FISICA CORPUSCULAR (IFIC)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UV//CPI-15-170/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CPAN-13TR01/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINETUR//TSI-100101-2013-0019/ES/PROYECTO PARA EL DESARROLLO DE UN DISPOSITIVO DE IMÁGEN DENSITOMÉTRIA PARA LA MEDICIÓN PRECISA DE LA DOSIS EFECTIVA./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Albiol Colomer, A.; Corbi, A.; Albiol Colomer, F. (2017). Automatic intensity windowing of mammographic images based on a perceptual metric. Medical Physics. 44(4):1369-1378. https://doi.org/10.1002/mp.12144 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/mp.12144 es_ES
dc.description.upvformatpinicio 1369 es_ES
dc.description.upvformatpfin 1378 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 44 es_ES
dc.description.issue 4 es_ES
dc.identifier.pmid 28160525 es_ES
dc.relation.pasarela S\353795 es_ES
dc.contributor.funder Universitat de València es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Industria, Energía y Turismo es_ES
dc.description.references Maidment, A. D. A., Fahrig, R., & Yaffe, M. J. (1993). Dynamic range requirements in digital mammography. Medical Physics, 20(6), 1621-1633. doi:10.1118/1.596949 es_ES
dc.description.references Kimpe, T., & Tuytschaever, T. (2006). Increasing the Number of Gray Shades in Medical Display Systems—How Much is Enough? Journal of Digital Imaging, 20(4), 422-432. doi:10.1007/s10278-006-1052-3 es_ES
dc.description.references ACR, AAPM, and SIIM Practice parameter for determinants of image quality in digital mammography 2014 es_ES
dc.description.references Committee DS PS3.3 information object definitions 2015 es_ES
dc.description.references Pisano, E. D., Chandramouli, J., Hemminger, B. M., Glueck, D., Johnston, R. E., Muller, K., … Pizer, S. (1997). The effect of intensity windowing on the detection of simulated masses embedded in dense portions of digitized mammograms in a laboratory setting. Journal of Digital Imaging, 10(4), 174-182. doi:10.1007/bf03168840 es_ES
dc.description.references Börjesson, S., Håkansson, M., Båth, M., Kheddache, S., Svensson, S., Tingberg, A., … Månsson, L. G. (2005). A software tool for increased efficiency in observer performance studies in radiology. Radiation Protection Dosimetry, 114(1-3), 45-52. doi:10.1093/rpd/nch550 es_ES
dc.description.references Sahidan, S. I., Mashor, M. Y., Wahab, A. S. W., Salleh, Z., & Ja’afar, H. (s. f.). Local and Global Contrast Stretching For Color Contrast Enhancement on Ziehl-Neelsen Tissue Section Slide Images. 4th Kuala Lumpur International Conference on Biomedical Engineering 2008, 583-586. doi:10.1007/978-3-540-69139-6_146 es_ES
dc.description.references Ganesan, K., Acharya, U. R., Chua, C. K., Min, L. C., Abraham, K. T., & Ng, K.-H. (2013). Computer-Aided Breast Cancer Detection Using Mammograms: A Review. IEEE Reviews in Biomedical Engineering, 6, 77-98. doi:10.1109/rbme.2012.2232289 es_ES
dc.description.references Papadopoulos, A., Fotiadis, D. I., & Costaridou, L. (2008). Improvement of microcalcification cluster detection in mammography utilizing image enhancement techniques. Computers in Biology and Medicine, 38(10), 1045-1055. doi:10.1016/j.compbiomed.2008.07.006 es_ES
dc.description.references Panetta, K., Yicong Zhou, Agaian, S., & Hongwei Jia. (2011). Nonlinear Unsharp Masking for Mammogram Enhancement. IEEE Transactions on Information Technology in Biomedicine, 15(6), 918-928. doi:10.1109/titb.2011.2164259 es_ES
dc.description.references Rogowska, J., Preston, K., & Sashin, D. (1988). Evaluation of digital unsharp masking and local contrast stretching as applied to chest radiographs. IEEE Transactions on Biomedical Engineering, 35(10), 817-827. doi:10.1109/10.7288 es_ES
dc.description.references Ramponi, G. (1998). Rational unsharp masking technique. Journal of Electronic Imaging, 7(2), 333. doi:10.1117/1.482649 es_ES
dc.description.references Rangayyan, R. M., Liang Shen, Yiping Shen, Desautels, J. E. L., Bryant, H., Terry, T. J., … Rose, M. S. (1997). Improvement of sensitivity of breast cancer diagnosis with adaptive neighborhood contrast enhancement of mammograms. IEEE Transactions on Information Technology in Biomedicine, 1(3), 161-170. doi:10.1109/4233.654859 es_ES
dc.description.references Tang, J., Liu, X., & Sun, Q. (2009). A Direct Image Contrast Enhancement Algorithm in the Wavelet Domain for Screening Mammograms. IEEE Journal of Selected Topics in Signal Processing, 3(1), 74-80. doi:10.1109/jstsp.2008.2011108 es_ES
dc.description.references LINGURARU, M., MARIAS, K., ENGLISH, R., & BRADY, M. (2006). A biologically inspired algorithm for microcalcification cluster detection. Medical Image Analysis, 10(6), 850-862. doi:10.1016/j.media.2006.07.004 es_ES
dc.description.references Tsai, D.-Y., Lee, Y., & Matsuyama, E. (2007). Information Entropy Measure for Evaluation of Image Quality. Journal of Digital Imaging, 21(3), 338-347. doi:10.1007/s10278-007-9044-5 es_ES
dc.description.references Sheikh, H. R., & Bovik, A. C. (2006). Image information and visual quality. IEEE Transactions on Image Processing, 15(2), 430-444. doi:10.1109/tip.2005.859378 es_ES
dc.description.references Tourassi, G. D., Vargas-Voracek, R., Catarious, D. M., & Floyd, C. E. (2003). Computer-assisted detection of mammographic masses: A template matching scheme based on mutual information. Medical Physics, 30(8), 2123-2130. doi:10.1118/1.1589494 es_ES
dc.description.references Tourassi, G. D., Harrawood, B., Singh, S., Lo, J. Y., & Floyd, C. E. (2006). Evaluation of information-theoretic similarity measures for content-based retrieval and detection of masses in mammograms. Medical Physics, 34(1), 140-150. doi:10.1118/1.2401667 es_ES
dc.description.references Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Transactions on Image Processing, 13(4), 600-612. doi:10.1109/tip.2003.819861 es_ES
dc.description.references Choi LK Goodall T Bovik AC Perceptual Image Enhancement. Encyclopedia of Image Processing es_ES
dc.description.references Fogel, I., & Sagi, D. (1989). Gabor filters as texture discriminator. Biological Cybernetics, 61(2). doi:10.1007/bf00204594 es_ES
dc.description.references Jain, A. K., Ratha, N. K., & Lakshmanan, S. (1997). Object detection using gabor filters. Pattern Recognition, 30(2), 295-309. doi:10.1016/s0031-3203(96)00068-4 es_ES
dc.description.references Vazquez-Fernandez, E., Dacal-Nieto, A., Martin, F., & Torres-Guijarro, S. (2010). Entropy of Gabor Filtering for Image Quality Assessment. Image Analysis and Recognition, 52-61. doi:10.1007/978-3-642-13772-3_6 es_ES
dc.description.references Rangayyan, R. M., Ayres, F. J., & Leo Desautels, J. E. (2007). A review of computer-aided diagnosis of breast cancer: Toward the detection of subtle signs. Journal of the Franklin Institute, 344(3-4), 312-348. doi:10.1016/j.jfranklin.2006.09.003 es_ES
dc.description.references Clark, K., Vendt, B., Smith, K., Freymann, J., Kirby, J., Koppel, P., … Prior, F. (2013). The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository. Journal of Digital Imaging, 26(6), 1045-1057. doi:10.1007/s10278-013-9622-7 es_ES
dc.description.references Task Group 18 Imaging Informatics Subcommittee Assessment of display performance for medical imaging systems 2005 es_ES
dc.description.references A. C. of Radiology Committee Bi-rads atlas 5th edition 2014 es_ES
dc.description.references Hochberg, Y., & Benjamini, Y. (1990). More powerful procedures for multiple significance testing. Statistics in Medicine, 9(7), 811-818. doi:10.1002/sim.4780090710 es_ES
dc.description.references Keselman, H. J., & Keselman, J. C. (1984). The analysis of repeated measures designs in medical research. Statistics in Medicine, 3(2), 185-195. doi:10.1002/sim.4780030211 es_ES
dc.description.references Mauchly, J. W. (1940). Significance Test for Sphericity of a Normal $n$-Variate Distribution. The Annals of Mathematical Statistics, 11(2), 204-209. doi:10.1214/aoms/1177731915 es_ES
dc.description.references Samei, E., Badano, A., Chakraborty, D., Compton, K., Cornelius, C., Corrigan, K., … Willis, C. E. (2005). Assessment of display performance for medical imaging systems: Executive summary of AAPM TG18 report. Medical Physics, 32(4), 1205-1225. doi:10.1118/1.1861159 es_ES
dc.description.references Haghighat, M., Zonouz, S., & Abdel-Mottaleb, M. (2015). CloudID: Trustworthy cloud-based and cross-enterprise biometric identification. Expert Systems with Applications, 42(21), 7905-7916. doi:10.1016/j.eswa.2015.06.025 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem