- -

Low-Cost Optical Mapping Systems for Panoramic Imaging of Complex Arrhythmias and Drug-Action in Translational Heart Models

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Low-Cost Optical Mapping Systems for Panoramic Imaging of Complex Arrhythmias and Drug-Action in Translational Heart Models

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Lee, Peter es_ES
dc.contributor.author Calvo Saiz, Conrado Javier es_ES
dc.contributor.author Alfonso-Almazán, José M. es_ES
dc.contributor.author Quintanilla, Jorge G. es_ES
dc.contributor.author Chorro Gasco, Francisco J. es_ES
dc.contributor.author Yan, Ping es_ES
dc.contributor.author Loew, Leslie M. es_ES
dc.contributor.author Filgueiras-Rama, David es_ES
dc.contributor.author Millet Roig, José es_ES
dc.date.accessioned 2020-10-21T03:31:29Z
dc.date.available 2020-10-21T03:31:29Z
dc.date.issued 2017-02-27 es_ES
dc.identifier.issn 2045-2322 es_ES
dc.identifier.uri http://hdl.handle.net/10251/152718
dc.description.abstract [EN] Panoramic optical mapping is the primary method for imaging electrophysiological activity from the entire outer surface of Langendorff-perfused hearts. To date, it is the only method of simultaneously measuring multiple key electrophysiological parameters, such as transmembrane voltage and intracellular free calcium, at high spatial and temporal resolution. Despite the impact it has already had on the fields of cardiac arrhythmias and whole-heart computational modeling, present-day system designs precludes its adoption by the broader cardiovascular research community because of their high costs. Taking advantage of recent technological advances, we developed and validated low-cost optical mapping systems for panoramic imaging using Langendorff-perfused pig hearts, a clinically-relevant model in basic research and bioengineering. By significantly lowering financial thresholds, this powerful cardiac electrophysiology imaging modality may gain wider use in research and, even, teaching laboratories, which we substantiated using the lower-cost Langendorff-perfused rabbit heart model. es_ES
dc.description.sponsorship The CNIC is supported by the Ministry of Economy, Industry and Competitiveness (MINECO) and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (MINECO award SEV-2015-0505). This work was also partially supported by the following sources: Spanish Society of Cardiology (D.F.R.); Jesus Serra Foundation (D.F.R.); Carlos III Health Institute/European Regional Development Fund (ERDF) Grants: CB16/11/00458 (D.F.R., J.G.Q.), FIS PI12/00993 (C.J.C., J.M.), FIS PI15/00748 (C.J.C., J.M.) and FIS PI15/01408 (F.J.C); Generalitat Valenciana Grants GV/2015/019 (C.J.C.) and PROMETEO/2014/037 (C.J.C., F.J.C., J.M.). We thank Daniel Garcia-Leon for his assistance during the Langendorff-perfused heart experiments es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject 3-Dimensional Surface Reconstruction es_ES
dc.subject Persistent Atril-Fibrillation es_ES
dc.subject Tachycardia es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Low-Cost Optical Mapping Systems for Panoramic Imaging of Complex Arrhythmias and Drug-Action in Translational Heart Models es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/srep43217 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F037/ES/ESTUDIO MEDIANTE TÉCNICAS CARTOGRÁFICAS AVANZADAS DE LOS MECANISMOS BÁSICOS IMPLICADOS EN LAS ARRITMIAS MALIGNAS Y EN SU CONTROL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2015-0505/ES/CENTRO NACIONAL DE INVESTIGACIONES CARDIOVASCULARES CARLOS III/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CB16%2F11%2F00458/ES/ENFERMEDADES CARDIOVASCULARES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//PI15%2F01408/ES/Efectos de la inhibición de la desacetilación de las histonas en el remodelado post-infarto del sustrato arritmogénico/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GV%2F2015%2F019/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//PI12%2F00993/ES/Utilidad de la estabilización de la homeostasis del calcio intracelular en el control de los procesos fibrilatorios/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//PI15%2F00748/ES/Efectos de la inhibición de la desacetilación de las histonas en el remodelado postinfarto del sustrato arritmogénico/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Lee, P.; Calvo Saiz, CJ.; Alfonso-Almazán, JM.; Quintanilla, JG.; Chorro Gasco, FJ.; Yan, P.; Loew, LM.... (2017). Low-Cost Optical Mapping Systems for Panoramic Imaging of Complex Arrhythmias and Drug-Action in Translational Heart Models. Scientific Reports. 7:1-14. https://doi.org/10.1038/srep43217 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/srep43217 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.identifier.pmid 28240274 es_ES
dc.identifier.pmcid PMC5327492 es_ES
dc.relation.pasarela S\324272 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.contributor.funder Conselleria d'Educació, Investigació, Cultura i Esport de la Generalitat Valenciana es_ES
dc.description.references Boukens, B. J. & Efimov, I. R. A century of optocardiography. IEEE Rev. Biomed. Eng. 7, 115–125 (2014). es_ES
dc.description.references Herron, T. J., Lee, P. & Jalife, J. Optical imaging of voltage and calcium in cardiac cells & tissues. Circulation Research 110, 609–623 (2012). es_ES
dc.description.references Trayanova, N. A. Whole-heart modeling : Applications to cardiac electrophysiology and electromechanics. Circulation Research 108, 113–128 (2011). es_ES
dc.description.references Lin, S. F. & Wikswo, J. P. Panoramic optical imaging of electrical propagation in isolated heart. J. Biomed. Opt. 4, 200–7 (1999). es_ES
dc.description.references Bray, M. A., Lin, S. F. & Wikswo, J. P. Jr, Three-dimensional surface reconstruction and fluorescent visualization of cardiac activation. IEEE Trans. Biomed. Eng. 47, 1382–1391 (2000). es_ES
dc.description.references Kay, M. W., Amison, P. M. & Rogers, J. M. Three-dimensional surface reconstruction and panoramic optical mapping of large hearts. IEEE Trans. Biomed. Eng. 51, 1219–1229 (2004). es_ES
dc.description.references Ripplinger, C. M., Lou, Q., Li, W., Hadley, J. & Efimov, I. R. Panoramic imaging reveals basic mechanisms of induction and termination of ventricular tachycardia in rabbit heart with chronic infarction: Implications for low-voltage cardioversion. Hear. Rhythm 6, 87–97 (2009). es_ES
dc.description.references Mironov, S. F., Vetter, F. J. & Pertsov, A. M. Fluorescence imaging of cardiac propagation: spectral properties and filtering of optical action potentials. AJP - Hear. Circ. Physiol. 291, H327–335 (2006). es_ES
dc.description.references Chorro, F. J. et al. [Time-frequency analysis of ventricular fibrillation. An experimental study]. Rev. española Cardiol. 59, 869–78 (2006). es_ES
dc.description.references Gray, R. a, Pertsov, a M. & Jalife, J. Spatial and temporal organization during cardiac fibrillation. Nature 392, 75–78 (1998). es_ES
dc.description.references Kay, M. W. & Rogers, J. M. Epicardial rotors in panoramic optical maps of fibrillating swine ventricles. in Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings 2268–2271 doi: 10.1109/IEMBS.2006.260635 (2006). es_ES
dc.description.references Bayly, P. V. et al. A quantitative measurement of spatial order in ventricular fibrillation. J. Cardiovasc. Electrophysiol. 4, 533–46 (1993). es_ES
dc.description.references Huang, J. et al. Evolution of the organization of epicardial activation patterns during ventricular fibrillation. J. Cardiovasc. Electrophysiol. 9, 1291–1304 (1998). es_ES
dc.description.references Fluhler, E., Burnham, V. G. & Loew, L. M. Spectra, membrane binding, and potentiometric responses of new charge shift probes. Biochemistry 24, 5749–5755 (1985). es_ES
dc.description.references Lee, M. H. et al. Effects of diacetyl monoxime and cytochalasin D on ventricular fibrillation in swine right ventricles. Am. J. Physiol. Heart Circ. Physiol. 280, H2689–H2696 (2001). es_ES
dc.description.references Evertson, D. W. et al. High-resolution high-speed panoramic cardiac imaging system. IEEE Trans. Biomed. Eng. 55, 1241–1243 (2008). es_ES
dc.description.references Bers, D. M. Cardiac excitation-contraction coupling. Nature 415, 198–205 (2002). es_ES
dc.description.references Choi, B. R. & Salama, G. Simultaneous maps of optical action potentials and calcium transients in guinea-pig hearts: mechanisms underlying concordant alternans. J. Physiol. 529Pt 1, 171–188 (2000). es_ES
dc.description.references Warren, M., Huizar, J. F., Shvedko, A. G. & Zaitsev, A. V. Spatiotemporal relationship between intracellular Ca2+ dynamics and wave fragmentation during ventricular fibrillation in isolated blood-perfused pig hearts. Circ. Res. 101, (2007). es_ES
dc.description.references Visweswaran, R., McIntyre, S. D., Ramkrishnan, K., Zhao, X. & Tolkacheva, E. G. Spatiotemporal evolution and prediction of [Ca2+]i and APD alternans in isolated rabbit hearts. J. Cardiovasc. Electrophysiol. 24, 1287–1295 (2013). es_ES
dc.description.references Jaimes, R. 3rd et al. A Technical Review of Optical Mapping of Intracellular Calcium within Myocardial Tissue. Am. J. Physiol. Heart Circ. Physiol. ajpheart.00665.2015 (2016). doi: 10.1152/ajpheart.00665.2015. es_ES
dc.description.references Himmel, H. M. et al. Field and action potential recordings in heart slices: Correlation with established in vitro and in vivo models. Br. J. Pharmacol. 166, 276–296 (2012). es_ES
dc.description.references Levi, a J. & Issberner, J. Effect on the fura-2 transient of rapidly blocking the Ca2+ channel in electrically stimulated rabbit heart cells. J. Physiol. 493, (Pt 1, 19–37 (1996). es_ES
dc.description.references Lee, P. et al. Simultaneous measurement and modulation of multiple physiological parameters in the isolated heart using optical techniques. Pflugers Arch. 464, 403–14 (2012). es_ES
dc.description.references Kanlop, N. & Sakai, T. Optical mapping study of blebbistatin-induced chaotic electrical activities in isolated rat atrium preparations. J. Physiol. Sci. 60, 109–117 (2010). es_ES
dc.description.references Swift, L. M. et al. Properties of blebbistatin for cardiac optical mapping and other imaging applications. Pflugers Arch. Eur. J. Physiol. 464, 503–512 (2012). es_ES
dc.description.references Worley, S. J. et al. A new sock electrode for recording epicardial activation from the human heart: One size fits all. PACE - Pacing Clin. Electrophysiol. 10, 21–31 (1987). es_ES
dc.description.references Matiukas, A. et al. Near-infrared voltage-sensitive fluorescent dyes optimized for optical mapping in blood-perfused myocardium. Hear. Rhythm 4, 1441–1451 (2007). es_ES
dc.description.references Yan, P. et al. Palette of fluorinated voltage-sensitive hemicyanine dyes. Proc. Natl. Acad. Sci. 109, 20443–20448 (2012). es_ES
dc.description.references Filgueiras-Rama, D. et al. Long-term frequency gradients during persistent atrial fibrillation in sheep are associated with stable sources in the left atrium. Circ. Arrhythmia Electrophysiol. 5, 1160–1167 (2012). es_ES
dc.description.references Tschabrunn, C. M. et al. A swine model of infarct-related reentrant ventricular tachycardia: Electroanatomic, magnetic resonance, and histopathological characterization. Hear. Rhythm 13, 262–273 (2016). es_ES
dc.description.references Martins, R. P. et al. Dominant frequency increase rate predicts transition from paroxysmal to long-term persistent atrial fibrillation. Circulation 129, 1472–1482 (2014). es_ES
dc.description.references Narayan, S. M. et al. Treatment of atrial fibrillation by the ablation of localized sources: CONFIRM (Conventional Ablation for Atrial Fibrillation with or Without Focal Impulse and Rotor Modulation) trial. J. Am. Coll. Cardiol. 60, 628–636 (2012). es_ES
dc.description.references Krummen, D. E. et al. Rotor stability separates sustained ventricular fibrillation from self-terminating episodes in humans. J. Am. Coll. Cardiol. 63, 2712–2721 (2014). es_ES
dc.description.references Durrer, D. et al. Total excitation of the isolated human heart. Circulation 41, 899–912 (1970). es_ES
dc.description.references Downar, E., Harris, L., Mickleborough, L. L., Shaikh, N. & Parson, I. D. Endocardial mapping of ventricular tachycardia in the intact human ventricle: Evidence for reentrant mechanisms. J. Am. Coll. Cardiol. 11, 783–791 (1988). es_ES
dc.description.references Jia, P., Punske, B., Taccardi, B. & Rudy, Y. Endocardial mapping of electrophysiologically abnormal substrates and cardiac arrhythmias using a noncontact nonexpandable catheter. J Cardiovasc Electrophysiol 13, 888–895 (2002). es_ES
dc.description.references Oster, H. S., Taccardi, B., Lux, R. L., Ershler, P. R. & Rudy, Y. Noninvasive Electrocardiographic Imaging: Reconstruction of Epicardial Potentials, Electrograms, and Isochrones and Localization of Single and Multiple Electrocardiac Events. Circulation 96, 1012–1024 (1997). es_ES
dc.description.references Ramanathan, C., Ghanem, R. N., Jia, P., Ryu, K. & Rudy, Y. Noninvasive electrocardiographic imaging for cardiac electrophysiology and arrhythmia. Nat. Med. 10, 422–428 (2004). es_ES
dc.description.references Baillargeon, B., Rebelo, N., Fox, D. D., Taylor, R. L. & Kuhl, E. The living heart project: A robust and integrative simulator for human heart function. Eur. J. Mech. A/Solids 48, 38–47 (2014). es_ES
dc.description.references Chabiniok, R. et al. Multiphysics and multiscale modelling, data-model fusion and integration of organ physiology in the clinic: ventricular cardiac mechanics. Interface Focus 6, 20150083 (2016). es_ES
dc.description.references Lee, P. et al. Single-sensor system for spatially resolved, continuous, and multiparametric optical mapping of cardiac tissue. Hear. Rhythm 8, 1482–1491 (2011). es_ES
dc.description.references Quintanilla, J. G. et al. Increased intraventricular pressures are as harmful as the electrophysiological substrate of heart failure in favoring sustained reentry in the swine heart. Hear. Rhythm 12, 2172–2183 (2015). es_ES
dc.description.references Filgueiras-Rama, D. et al. High-Resolution Endocardial and Epicardial Optical Mapping in a Sheep Model of Stretch-Induced Atrial Fibrillation. J. Vis. Exp. 53, 1–7 (2011). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem