- -

Laser Heating Tunability by Off-Resonant Irradiation of Gold Nanoparticles

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Laser Heating Tunability by Off-Resonant Irradiation of Gold Nanoparticles

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hormeño, S. es_ES
dc.contributor.author Gregorio-Godoy, P. es_ES
dc.contributor.author Pérez-Juste, J. es_ES
dc.contributor.author Liz-Marzán, L.M. es_ES
dc.contributor.author Juárez, B.H. es_ES
dc.contributor.author Arias-Gonzalez, J. R. es_ES
dc.date.accessioned 2020-10-21T03:31:34Z
dc.date.available 2020-10-21T03:31:34Z
dc.date.issued 2014-01-29 es_ES
dc.identifier.issn 1613-6810 es_ES
dc.identifier.uri http://hdl.handle.net/10251/152720
dc.description "This is the peer reviewed version of the following article: Hormeño, Silvia, Paula Gregorio-Godoy, Jorge Pérez-Juste, Luis M. Liz-Marzán, Beatriz H. Juárez, and J. Ricardo Arias-Gonzalez. 2013. Laser Heating Tunability by Off-Resonant Irradiation of Gold Nanoparticles. Small 10 (2). Wiley: 376 84. doi:10.1002/smll.201301912, which has been published in final form at https://doi.org/10.1002/smll.201301912. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving." es_ES
dc.description.abstract [EN] Temperature changes in the vicinity of a single absorptive nanostructure caused by local heating have strong implications in technologies such as integrated electronics or biomedicine. Herein, the temperature changes in the vicinity of a single optically trapped spherical Au nanoparticle encapsulated in a thermo¿responsive poly(N¿isopropylacrylamide) shell (Au@pNIPAM) are studied in detail. Individual beads are trapped in a counter¿propagating optical tweezers setup at various laser powers, which allows the overall particle size to be tuned through the phase transition of the thermo¿responsive shell. The experimentally obtained sizes measured at different irradiation powers are compared with average size values obtained by dynamic light scattering (DLS) from an ensemble of beads at different temperatures. The size range and the tendency to shrink upon increasing the laser power in the optical trap or by increasing the temperature for DLS agree with reasonable accuracy for both approaches. Discrepancies are evaluated by means of simple models accounting for variations in the thermal conductivity of the polymer, the viscosity of the aqueous solution and the absorption cross section of the coated Au nanoparticle. These results show that these parameters must be taken into account when considering local laser heating experiments in aqueous solution at the nanoscale. Analysis of the stability of the Au@pNIPAM particles in the trap is also theoretically carried out for different particle sizes. es_ES
dc.description.sponsorship This work has been partially supported by Comunidad de Madrid through NANOBIOMAGNET S2009-MAT-1726 and the Spanish Ministry of Science and Innovation through RYC-2007-01709, RYC-2007-01765 and MAT-2009-13488. P. G-G. acknowledges a Research Initiation Grant at IMDEA Nanociencia. The authors thank Dr. Reinhold Wannemacher for fruitful discussions. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Small es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Optical tweezers es_ES
dc.subject Thermoresponsive pNIPAM es_ES
dc.subject Au nanoparticles es_ES
dc.subject Hydrodynamic size es_ES
dc.subject Laser heating es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Laser Heating Tunability by Off-Resonant Irradiation of Gold Nanoparticles es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/smll.201301912 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//RYC-2007-01765/ES/RYC-2007-01765/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//RYC-2007-01709/ES/RYC-2007-01709/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2009-13488/ES/Crecimiento Y Caracterizacion De Nuevos Nanomateriales Basados En El Autoensamblado De Puntos Cuanticos Y Nanotubos De Carbono Sobre Superficies Solidas/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CAM//S2009%2FMAT-1726/ES/Fundamentos y aplicaciones de moléculas, nanopartículas y nanoestructuras magnéticas: de la espintrónica a la biomedicina/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Hormeño, S.; Gregorio-Godoy, P.; Pérez-Juste, J.; Liz-Marzán, L.; Juárez, B.; Arias-Gonzalez, JR. (2014). Laser Heating Tunability by Off-Resonant Irradiation of Gold Nanoparticles. Small. 10(2):376-384. https://doi.org/10.1002/smll.201301912 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/smll.201301912 es_ES
dc.description.upvformatpinicio 376 es_ES
dc.description.upvformatpfin 384 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 2 es_ES
dc.identifier.pmid 24106098 es_ES
dc.relation.pasarela S\408016 es_ES
dc.contributor.funder Comunidad de Madrid es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.description.references Huang, X., Jain, P. K., El-Sayed, I. H., & El-Sayed, M. A. (2007). Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine, 2(5), 681-693. doi:10.2217/17435889.2.5.681 es_ES
dc.description.references Pitsillides, C. M., Joe, E. K., Wei, X., Anderson, R. R., & Lin, C. P. (2003). Selective Cell Targeting with Light-Absorbing Microparticles and Nanoparticles. Biophysical Journal, 84(6), 4023-4032. doi:10.1016/s0006-3495(03)75128-5 es_ES
dc.description.references PEREZJUSTE, J., PASTORIZASANTOS, I., LIZMARZAN, L., & MULVANEY, P. (2005). Gold nanorods: Synthesis, characterization and applications. Coordination Chemistry Reviews, 249(17-18), 1870-1901. doi:10.1016/j.ccr.2005.01.030 es_ES
dc.description.references Averitt, R. D., Sarkar, D., & Halas, N. J. (1997). Plasmon Resonance Shifts of Au-CoatedAu2SNanoshells: Insight into Multicomponent Nanoparticle Growth. Physical Review Letters, 78(22), 4217-4220. doi:10.1103/physrevlett.78.4217 es_ES
dc.description.references Arias-González, J. R., & Nieto-Vesperinas, M. (2001). Resonant near-field eigenmodes of nanocylinders on flat surfaces under both homogeneous and inhomogeneous lightwave excitation. Journal of the Optical Society of America A, 18(3), 657. doi:10.1364/josaa.18.000657 es_ES
dc.description.references Seol, Y., Carpenter, A. E., & Perkins, T. T. (2006). Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating. Optics Letters, 31(16), 2429. doi:10.1364/ol.31.002429 es_ES
dc.description.references Govorov, A. O., & Richardson, H. H. (2007). Generating heat with metal nanoparticles. Nano Today, 2(1), 30-38. doi:10.1016/s1748-0132(07)70017-8 es_ES
dc.description.references Bendix, P. M., Reihani, S. N. S., & Oddershede, L. B. (2010). Direct Measurements of Heating by Electromagnetically Trapped Gold Nanoparticles on Supported Lipid Bilayers. ACS Nano, 4(4), 2256-2262. doi:10.1021/nn901751w es_ES
dc.description.references Qin, Z., & Bischof, J. C. (2012). Thermophysical and biological responses of gold nanoparticle laser heating. Chem. Soc. Rev., 41(3), 1191-1217. doi:10.1039/c1cs15184c es_ES
dc.description.references Haro-González, P., Ramsay, W. T., Maestro, L. M., del Rosal, B., Santacruz-Gomez, K., del Carmen Iglesias-de la Cruz, M., … Paterson, L. (2013). Quantum Dot-Based Thermal Spectroscopy and Imaging of Optically Trapped Microspheres and Single Cells. Small, 9(12), 2162-2170. doi:10.1002/smll.201201740 es_ES
dc.description.references Do, J., Schreiber, R., Lutich, A. A., Liedl, T., Rodríguez-Fernández, J., & Feldmann, J. (2012). Design and Optical Trapping of a Biocompatible Propeller-like Nanoscale Hybrid. Nano Letters, 12(9), 5008-5013. doi:10.1021/nl302775e es_ES
dc.description.references Goldenberg, H., & Tranter, C. J. (1952). Heat flow in an infinite medium heated by a sphere. British Journal of Applied Physics, 3(9), 296-298. doi:10.1088/0508-3443/3/9/307 es_ES
dc.description.references Pustovalov, V. K. (2005). Theoretical study of heating of spherical nanoparticle in media by short laser pulses. Chemical Physics, 308(1-2), 103-108. doi:10.1016/j.chemphys.2004.08.005 es_ES
dc.description.references Pustovalov, V. K., & Babenko, V. A. (2004). Optical properties of gold nanoparticles at laser radiation wavelengths for laser applications in nanotechnology and medicine. Laser Physics Letters, 1(10), 516-520. doi:10.1002/lapl.200410111 es_ES
dc.description.references Richardson, H. H., Hickman, Z. N., Govorov, A. O., Thomas, A. C., Zhang, W., & Kordesch, M. E. (2006). Thermooptical Properties of Gold Nanoparticles Embedded in Ice:  Characterization of Heat Generation and Melting. Nano Letters, 6(4), 783-788. doi:10.1021/nl060105l es_ES
dc.description.references Siems, A., Weber, S. A. L., Boneberg, J., & Plech, A. (2011). Thermodynamics of nanosecond nanobubble formation at laser-excited metal nanoparticles. New Journal of Physics, 13(4), 043018. doi:10.1088/1367-2630/13/4/043018 es_ES
dc.description.references Shah, J., Park, S., Aglyamov, S., Larson, T., Ma, L., Sokolov, K., … Emelianov, S. Y. (2008). Photoacoustic imaging and temperature measurement for photothermal cancer therapy. Journal of Biomedical Optics, 13(3), 034024. doi:10.1117/1.2940362 es_ES
dc.description.references Baffou, G., Kreuzer, M. P., Kulzer, F., & Quidant, R. (2009). Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy. Optics Express, 17(5), 3291. doi:10.1364/oe.17.003291 es_ES
dc.description.references Gupta, A., Kane, R. S., & Borca-Tasciuc, D.-A. (2010). Local temperature measurement in the vicinity of electromagnetically heated magnetite and gold nanoparticles. Journal of Applied Physics, 108(6), 064901. doi:10.1063/1.3485601 es_ES
dc.description.references Maestro, L. M., Haro-González, P., Coello, J. G., & Jaque, D. (2012). Absorption efficiency of gold nanorods determined by quantum dot fluorescence thermometry. Applied Physics Letters, 100(20), 201110. doi:10.1063/1.4718605 es_ES
dc.description.references Jones, C. D., & Lyon, L. A. (2000). Synthesis and Characterization of Multiresponsive Core−Shell Microgels. Macromolecules, 33(22), 8301-8306. doi:10.1021/ma001398m es_ES
dc.description.references Das, M., Sanson, N., Fava, D., & Kumacheva, E. (2007). Microgels Loaded with Gold Nanorods:  Photothermally Triggered Volume Transitions under Physiological Conditions†. Langmuir, 23(1), 196-201. doi:10.1021/la061596s es_ES
dc.description.references Karg, M., Pastoriza-Santos, I., Pérez-Juste, J., Hellweg, T., & Liz-Marzán, L. M. (2007). Nanorod-Coated PNIPAM Microgels: Thermoresponsive Optical Properties. Small, 3(7), 1222-1229. doi:10.1002/smll.200700078 es_ES
dc.description.references Sershen, S. R., Westcott, S. L., Halas, N. J., & West, J. L. (2000). Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery. Journal of Biomedical Materials Research, 51(3), 293-298. doi:10.1002/1097-4636(20000905)51:3<293::aid-jbm1>3.0.co;2-t es_ES
dc.description.references Svoboda, K., & Block, S. M. (1994). Optical trapping of metallic Rayleigh particles. Optics Letters, 19(13), 930. doi:10.1364/ol.19.000930 es_ES
dc.description.references Arias-González, J. R., & Nieto-Vesperinas, M. (2003). Optical forces on small particles: attractive and repulsive nature and plasmon-resonance conditions. Journal of the Optical Society of America A, 20(7), 1201. doi:10.1364/josaa.20.001201 es_ES
dc.description.references Hansen, P. M., Bhatia, V. K., Harrit, N., & Oddershede, L. (2005). Expanding the Optical Trapping Range of Gold Nanoparticles. Nano Letters, 5(10), 1937-1942. doi:10.1021/nl051289r es_ES
dc.description.references Hormeño, S., Bastús, N. G., Pietsch, A., Weller, H., Arias-Gonzalez, J. R., & Juárez, B. H. (2011). Plasmon-Exciton Interactions on Single Thermoresponsive Platforms Demonstrated by Optical Tweezers. Nano Letters, 11(11), 4742-4747. doi:10.1021/nl202560j es_ES
dc.description.references Rodríguez-Fernández, J., Fedoruk, M., Hrelescu, C., Lutich, A. A., & Feldmann, J. (2011). Triggering the volume phase transition of core–shell Au nanorod–microgel nanocomposites with light. Nanotechnology, 22(24), 245708. doi:10.1088/0957-4484/22/24/245708 es_ES
dc.description.references Kyrsting, A., Bendix, P. M., Stamou, D. G., & Oddershede, L. B. (2011). Heat Profiling of Three-Dimensionally Optically Trapped Gold Nanoparticles using Vesicle Cargo Release. Nano Letters, 11(2), 888-892. doi:10.1021/nl104280c es_ES
dc.description.references Mao, H., Ricardo Arias-Gonzalez, J., Smith, S. B., Tinoco, I., & Bustamante, C. (2005). Temperature Control Methods in a Laser Tweezers System. Biophysical Journal, 89(2), 1308-1316. doi:10.1529/biophysj.104.054536 es_ES
dc.description.references Hormeño, S., Ibarra, B., Chichón, F. J., Habermann, K., Lange, B. M. H., Valpuesta, J. M., … Arias-Gonzalez, J. R. (2009). Single Centrosome Manipulation Reveals Its Electric Charge and Associated Dynamic Structure. Biophysical Journal, 97(4), 1022-1030. doi:10.1016/j.bpj.2009.06.004 es_ES
dc.description.references Honda, M., Saito, Y., Smith, N. I., Fujita, K., & Kawata, S. (2011). Nanoscale heating of laser irradiated single gold nanoparticles in liquid. Optics Express, 19(13), 12375. doi:10.1364/oe.19.012375 es_ES
dc.description.references Ionov, L., Stamm, M., & Diez, S. (2006). Reversible Switching of Microtubule Motility Using Thermoresponsive Polymer Surfaces. Nano Letters, 6(9), 1982-1987. doi:10.1021/nl0611539 es_ES
dc.description.references Pelton, R. (2000). Temperature-sensitive aqueous microgels. Advances in Colloid and Interface Science, 85(1), 1-33. doi:10.1016/s0001-8686(99)00023-8 es_ES
dc.description.references Garner, B. W., Cai, T., Ghosh, S., Hu, Z., & Neogi, A. (2009). Refractive Index Change Due to Volume-Phase Transition in Polyacrylamide Gel Nanospheres for Optoelectronics and Bio-photonics. Applied Physics Express, 2, 057001. doi:10.1143/apex.2.057001 es_ES
dc.description.references Schmidt, S., Motschmann, H., Hellweg, T., & von Klitzing, R. (2008). Thermoresponsive surfaces by spin-coating of PNIPAM-co-PAA microgels: A combined AFM and ellipsometry study. Polymer, 49(3), 749-756. doi:10.1016/j.polymer.2007.12.025 es_ES
dc.description.references Sánchez-Iglesias, A., Grzelczak, M., Rodríguez-González, B., Guardia-Girós, P., Pastoriza-Santos, I., Pérez-Juste, J., … Liz-Marzán, L. M. (2009). Synthesis of Multifunctional Composite Microgels via In Situ Ni Growth on pNIPAM-Coated Au Nanoparticles. ACS Nano, 3(10), 3184-3190. doi:10.1021/nn9006169 es_ES
dc.description.references Johnson, P. B., & Christy, R. W. (1972). Optical Constants of the Noble Metals. Physical Review B, 6(12), 4370-4379. doi:10.1103/physrevb.6.4370 es_ES
dc.description.references Aden, A. L., & Kerker, M. (1951). Scattering of Electromagnetic Waves from Two Concentric Spheres. Journal of Applied Physics, 22(10), 1242-1246. doi:10.1063/1.1699834 es_ES
dc.description.references Wang, M. C., & Uhlenbeck, G. E. (1945). On the Theory of the Brownian Motion II. Reviews of Modern Physics, 17(2-3), 323-342. doi:10.1103/revmodphys.17.323 es_ES
dc.description.references Berg-Sørensen, K., & Flyvbjerg, H. (2004). Power spectrum analysis for optical tweezers. Review of Scientific Instruments, 75(3), 594-612. doi:10.1063/1.1645654 es_ES
dc.description.references Andrä, W., d’ Ambly, C. ., Hergt, R., Hilger, I., & Kaiser, W. . (1999). Temperature distribution as function of time around a small spherical heat source of local magnetic hyperthermia. Journal of Magnetism and Magnetic Materials, 194(1-3), 197-203. doi:10.1016/s0304-8853(98)00552-6 es_ES
dc.description.references Sengers, J. V., & Watson, J. T. R. (1986). Improved International Formulations for the Viscosity and Thermal Conductivity of Water Substance. Journal of Physical and Chemical Reference Data, 15(4), 1291-1314. doi:10.1063/1.555763 es_ES
dc.description.references Andersson, O., & Johari, G. P. (2011). Effect of pressure on thermal conductivity and pressure collapse of ice in a polymer-hydrogel and kinetic unfreezing at 1 GPa. The Journal of Chemical Physics, 134(12), 124903. doi:10.1063/1.3568817 es_ES
dc.description.references Arai, F., Ng, C., Maruyama, H., Ichikawa, A., El-Shimy, H., & Fukuda, T. (2005). On chip single-cell separation and immobilization using optical tweezers and thermosensitive hydrogel. Lab on a Chip, 5(12), 1399. doi:10.1039/b502546j es_ES
dc.description.references Coelho, J. M. P., Abreu, M. A., & Carvalho Rodrigues, F. (2004). High-speed laser cutting of superposed thermoplastic films: thermal modeling and process characterization. Optics and Lasers in Engineering, 42(1), 27-39. doi:10.1016/s0143-8166(03)00071-x es_ES
dc.description.references Davidson, S. R. H., & Sherar, M. D. (2003). Measurement of the thermal conductivity of polyacrylamide tissue-equivalent material. International Journal of Hyperthermia, 19(5), 551-562. doi:10.1080/02656730310001607995 es_ES
dc.description.references HOARE, T., & PELTON, R. (2008). Characterizing charge and crosslinker distributions in polyelectrolyte microgels. Current Opinion in Colloid & Interface Science, 13(6), 413-428. doi:10.1016/j.cocis.2008.03.004 es_ES
dc.description.references Carregal-Romero, S., Buurma, N. J., Pérez-Juste, J., Liz-Marzán, L. M., & Hervés, P. (2010). Catalysis by Au@pNIPAM Nanocomposites: Effect of the Cross-Linking Density. Chemistry of Materials, 22(10), 3051-3059. doi:10.1021/cm903261b es_ES
dc.description.references Murphy, K. P., & Freire, E. (1992). Thermodynamics of Structural Stability and Cooperative Folding Behavior in Proteins. Advances in Protein Chemistry, 313-361. doi:10.1016/s0065-3233(08)60556-2 es_ES
dc.description.references Evans, J. S., Sun, Y., Senyuk, B., Keller, P., Pergamenshchik, V. M., Lee, T., & Smalyukh, I. I. (2013). Active Shape-Morphing Elastomeric Colloids in Short-Pitch Cholesteric Liquid Crystals. Physical Review Letters, 110(18). doi:10.1103/physrevlett.110.187802 es_ES
dc.description.references Sun, Y., Evans, J. S., Lee, T., Senyuk, B., Keller, P., He, S., & Smalyukh, I. I. (2012). Optical manipulation of shape-morphing elastomeric liquid crystal microparticles doped with gold nanocrystals. Applied Physics Letters, 100(24), 241901. doi:10.1063/1.4729143 es_ES
dc.description.references Contreras-Cáceres, R., Pacifico, J., Pastoriza-Santos, I., Pérez-Juste, J., Fernández-Barbero, A., & Liz-Marzán, L. M. (2009). Au@pNIPAM Thermosensitive Nanostructures: Control over Shell Cross-linking, Overall Dimensions, and Core Growth. Advanced Functional Materials, 19(19), 3070-3076. doi:10.1002/adfm.200900481 es_ES
dc.description.references Smith, S. B., Cui, Y., & Bustamante, C. (2003). [7] Optical-trap force transducer that operates by direct measurement of light momentum. Biophotonics, Part B, 134-162. doi:10.1016/s0076-6879(03)61009-8 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem