- -

Laser Heating Tunability by Off-Resonant Irradiation of Gold Nanoparticles

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Laser Heating Tunability by Off-Resonant Irradiation of Gold Nanoparticles

Mostrar el registro completo del ítem

Hormeño, S.; Gregorio-Godoy, P.; Pérez-Juste, J.; Liz-Marzán, L.; Juárez, B.; Arias-Gonzalez, JR. (2014). Laser Heating Tunability by Off-Resonant Irradiation of Gold Nanoparticles. Small. 10(2):376-384. https://doi.org/10.1002/smll.201301912

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/152720

Ficheros en el ítem

Metadatos del ítem

Título: Laser Heating Tunability by Off-Resonant Irradiation of Gold Nanoparticles
Autor: Hormeño, S. Gregorio-Godoy, P. Pérez-Juste, J. Liz-Marzán, L.M. Juárez, B.H. Arias-Gonzalez, J. R.
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Fecha difusión:
Resumen:
[EN] Temperature changes in the vicinity of a single absorptive nanostructure caused by local heating have strong implications in technologies such as integrated electronics or biomedicine. Herein, the temperature changes ...[+]
Palabras clave: Optical tweezers , Thermoresponsive pNIPAM , Au nanoparticles , Hydrodynamic size , Laser heating
Derechos de uso: Reserva de todos los derechos
Fuente:
Small. (issn: 1613-6810 )
DOI: 10.1002/smll.201301912
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/smll.201301912
Código del Proyecto:
info:eu-repo/grantAgreement/MEC//RYC-2007-01765/ES/RYC-2007-01765/
info:eu-repo/grantAgreement/MEC//RYC-2007-01709/ES/RYC-2007-01709/
info:eu-repo/grantAgreement/MICINN//MAT2009-13488/ES/Crecimiento Y Caracterizacion De Nuevos Nanomateriales Basados En El Autoensamblado De Puntos Cuanticos Y Nanotubos De Carbono Sobre Superficies Solidas/
info:eu-repo/grantAgreement/CAM//S2009%2FMAT-1726/ES/Fundamentos y aplicaciones de moléculas, nanopartículas y nanoestructuras magnéticas: de la espintrónica a la biomedicina/
Descripción: "This is the peer reviewed version of the following article: Hormeño, Silvia, Paula Gregorio-Godoy, Jorge Pérez-Juste, Luis M. Liz-Marzán, Beatriz H. Juárez, and J. Ricardo Arias-Gonzalez. 2013. Laser Heating Tunability by Off-Resonant Irradiation of Gold Nanoparticles. Small 10 (2). Wiley: 376 84. doi:10.1002/smll.201301912, which has been published in final form at https://doi.org/10.1002/smll.201301912. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."
Agradecimientos:
This work has been partially supported by Comunidad de Madrid through NANOBIOMAGNET S2009-MAT-1726 and the Spanish Ministry of Science and Innovation through RYC-2007-01709, RYC-2007-01765 and MAT-2009-13488. P. G-G. ...[+]
Tipo: Artículo

References

Huang, X., Jain, P. K., El-Sayed, I. H., & El-Sayed, M. A. (2007). Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine, 2(5), 681-693. doi:10.2217/17435889.2.5.681

Pitsillides, C. M., Joe, E. K., Wei, X., Anderson, R. R., & Lin, C. P. (2003). Selective Cell Targeting with Light-Absorbing Microparticles and Nanoparticles. Biophysical Journal, 84(6), 4023-4032. doi:10.1016/s0006-3495(03)75128-5

PEREZJUSTE, J., PASTORIZASANTOS, I., LIZMARZAN, L., & MULVANEY, P. (2005). Gold nanorods: Synthesis, characterization and applications. Coordination Chemistry Reviews, 249(17-18), 1870-1901. doi:10.1016/j.ccr.2005.01.030 [+]
Huang, X., Jain, P. K., El-Sayed, I. H., & El-Sayed, M. A. (2007). Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine, 2(5), 681-693. doi:10.2217/17435889.2.5.681

Pitsillides, C. M., Joe, E. K., Wei, X., Anderson, R. R., & Lin, C. P. (2003). Selective Cell Targeting with Light-Absorbing Microparticles and Nanoparticles. Biophysical Journal, 84(6), 4023-4032. doi:10.1016/s0006-3495(03)75128-5

PEREZJUSTE, J., PASTORIZASANTOS, I., LIZMARZAN, L., & MULVANEY, P. (2005). Gold nanorods: Synthesis, characterization and applications. Coordination Chemistry Reviews, 249(17-18), 1870-1901. doi:10.1016/j.ccr.2005.01.030

Averitt, R. D., Sarkar, D., & Halas, N. J. (1997). Plasmon Resonance Shifts of Au-CoatedAu2SNanoshells: Insight into Multicomponent Nanoparticle Growth. Physical Review Letters, 78(22), 4217-4220. doi:10.1103/physrevlett.78.4217

Arias-González, J. R., & Nieto-Vesperinas, M. (2001). Resonant near-field eigenmodes of nanocylinders on flat surfaces under both homogeneous and inhomogeneous lightwave excitation. Journal of the Optical Society of America A, 18(3), 657. doi:10.1364/josaa.18.000657

Seol, Y., Carpenter, A. E., & Perkins, T. T. (2006). Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating. Optics Letters, 31(16), 2429. doi:10.1364/ol.31.002429

Govorov, A. O., & Richardson, H. H. (2007). Generating heat with metal nanoparticles. Nano Today, 2(1), 30-38. doi:10.1016/s1748-0132(07)70017-8

Bendix, P. M., Reihani, S. N. S., & Oddershede, L. B. (2010). Direct Measurements of Heating by Electromagnetically Trapped Gold Nanoparticles on Supported Lipid Bilayers. ACS Nano, 4(4), 2256-2262. doi:10.1021/nn901751w

Qin, Z., & Bischof, J. C. (2012). Thermophysical and biological responses of gold nanoparticle laser heating. Chem. Soc. Rev., 41(3), 1191-1217. doi:10.1039/c1cs15184c

Haro-González, P., Ramsay, W. T., Maestro, L. M., del Rosal, B., Santacruz-Gomez, K., del Carmen Iglesias-de la Cruz, M., … Paterson, L. (2013). Quantum Dot-Based Thermal Spectroscopy and Imaging of Optically Trapped Microspheres and Single Cells. Small, 9(12), 2162-2170. doi:10.1002/smll.201201740

Do, J., Schreiber, R., Lutich, A. A., Liedl, T., Rodríguez-Fernández, J., & Feldmann, J. (2012). Design and Optical Trapping of a Biocompatible Propeller-like Nanoscale Hybrid. Nano Letters, 12(9), 5008-5013. doi:10.1021/nl302775e

Goldenberg, H., & Tranter, C. J. (1952). Heat flow in an infinite medium heated by a sphere. British Journal of Applied Physics, 3(9), 296-298. doi:10.1088/0508-3443/3/9/307

Pustovalov, V. K. (2005). Theoretical study of heating of spherical nanoparticle in media by short laser pulses. Chemical Physics, 308(1-2), 103-108. doi:10.1016/j.chemphys.2004.08.005

Pustovalov, V. K., & Babenko, V. A. (2004). Optical properties of gold nanoparticles at laser radiation wavelengths for laser applications in nanotechnology and medicine. Laser Physics Letters, 1(10), 516-520. doi:10.1002/lapl.200410111

Richardson, H. H., Hickman, Z. N., Govorov, A. O., Thomas, A. C., Zhang, W., & Kordesch, M. E. (2006). Thermooptical Properties of Gold Nanoparticles Embedded in Ice:  Characterization of Heat Generation and Melting. Nano Letters, 6(4), 783-788. doi:10.1021/nl060105l

Siems, A., Weber, S. A. L., Boneberg, J., & Plech, A. (2011). Thermodynamics of nanosecond nanobubble formation at laser-excited metal nanoparticles. New Journal of Physics, 13(4), 043018. doi:10.1088/1367-2630/13/4/043018

Shah, J., Park, S., Aglyamov, S., Larson, T., Ma, L., Sokolov, K., … Emelianov, S. Y. (2008). Photoacoustic imaging and temperature measurement for photothermal cancer therapy. Journal of Biomedical Optics, 13(3), 034024. doi:10.1117/1.2940362

Baffou, G., Kreuzer, M. P., Kulzer, F., & Quidant, R. (2009). Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy. Optics Express, 17(5), 3291. doi:10.1364/oe.17.003291

Gupta, A., Kane, R. S., & Borca-Tasciuc, D.-A. (2010). Local temperature measurement in the vicinity of electromagnetically heated magnetite and gold nanoparticles. Journal of Applied Physics, 108(6), 064901. doi:10.1063/1.3485601

Maestro, L. M., Haro-González, P., Coello, J. G., & Jaque, D. (2012). Absorption efficiency of gold nanorods determined by quantum dot fluorescence thermometry. Applied Physics Letters, 100(20), 201110. doi:10.1063/1.4718605

Jones, C. D., & Lyon, L. A. (2000). Synthesis and Characterization of Multiresponsive Core−Shell Microgels. Macromolecules, 33(22), 8301-8306. doi:10.1021/ma001398m

Das, M., Sanson, N., Fava, D., & Kumacheva, E. (2007). Microgels Loaded with Gold Nanorods:  Photothermally Triggered Volume Transitions under Physiological Conditions†. Langmuir, 23(1), 196-201. doi:10.1021/la061596s

Karg, M., Pastoriza-Santos, I., Pérez-Juste, J., Hellweg, T., & Liz-Marzán, L. M. (2007). Nanorod-Coated PNIPAM Microgels: Thermoresponsive Optical Properties. Small, 3(7), 1222-1229. doi:10.1002/smll.200700078

Sershen, S. R., Westcott, S. L., Halas, N. J., & West, J. L. (2000). Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery. Journal of Biomedical Materials Research, 51(3), 293-298. doi:10.1002/1097-4636(20000905)51:3<293::aid-jbm1>3.0.co;2-t

Svoboda, K., & Block, S. M. (1994). Optical trapping of metallic Rayleigh particles. Optics Letters, 19(13), 930. doi:10.1364/ol.19.000930

Arias-González, J. R., & Nieto-Vesperinas, M. (2003). Optical forces on small particles: attractive and repulsive nature and plasmon-resonance conditions. Journal of the Optical Society of America A, 20(7), 1201. doi:10.1364/josaa.20.001201

Hansen, P. M., Bhatia, V. K., Harrit, N., & Oddershede, L. (2005). Expanding the Optical Trapping Range of Gold Nanoparticles. Nano Letters, 5(10), 1937-1942. doi:10.1021/nl051289r

Hormeño, S., Bastús, N. G., Pietsch, A., Weller, H., Arias-Gonzalez, J. R., & Juárez, B. H. (2011). Plasmon-Exciton Interactions on Single Thermoresponsive Platforms Demonstrated by Optical Tweezers. Nano Letters, 11(11), 4742-4747. doi:10.1021/nl202560j

Rodríguez-Fernández, J., Fedoruk, M., Hrelescu, C., Lutich, A. A., & Feldmann, J. (2011). Triggering the volume phase transition of core–shell Au nanorod–microgel nanocomposites with light. Nanotechnology, 22(24), 245708. doi:10.1088/0957-4484/22/24/245708

Kyrsting, A., Bendix, P. M., Stamou, D. G., & Oddershede, L. B. (2011). Heat Profiling of Three-Dimensionally Optically Trapped Gold Nanoparticles using Vesicle Cargo Release. Nano Letters, 11(2), 888-892. doi:10.1021/nl104280c

Mao, H., Ricardo Arias-Gonzalez, J., Smith, S. B., Tinoco, I., & Bustamante, C. (2005). Temperature Control Methods in a Laser Tweezers System. Biophysical Journal, 89(2), 1308-1316. doi:10.1529/biophysj.104.054536

Hormeño, S., Ibarra, B., Chichón, F. J., Habermann, K., Lange, B. M. H., Valpuesta, J. M., … Arias-Gonzalez, J. R. (2009). Single Centrosome Manipulation Reveals Its Electric Charge and Associated Dynamic Structure. Biophysical Journal, 97(4), 1022-1030. doi:10.1016/j.bpj.2009.06.004

Honda, M., Saito, Y., Smith, N. I., Fujita, K., & Kawata, S. (2011). Nanoscale heating of laser irradiated single gold nanoparticles in liquid. Optics Express, 19(13), 12375. doi:10.1364/oe.19.012375

Ionov, L., Stamm, M., & Diez, S. (2006). Reversible Switching of Microtubule Motility Using Thermoresponsive Polymer Surfaces. Nano Letters, 6(9), 1982-1987. doi:10.1021/nl0611539

Pelton, R. (2000). Temperature-sensitive aqueous microgels. Advances in Colloid and Interface Science, 85(1), 1-33. doi:10.1016/s0001-8686(99)00023-8

Garner, B. W., Cai, T., Ghosh, S., Hu, Z., & Neogi, A. (2009). Refractive Index Change Due to Volume-Phase Transition in Polyacrylamide Gel Nanospheres for Optoelectronics and Bio-photonics. Applied Physics Express, 2, 057001. doi:10.1143/apex.2.057001

Schmidt, S., Motschmann, H., Hellweg, T., & von Klitzing, R. (2008). Thermoresponsive surfaces by spin-coating of PNIPAM-co-PAA microgels: A combined AFM and ellipsometry study. Polymer, 49(3), 749-756. doi:10.1016/j.polymer.2007.12.025

Sánchez-Iglesias, A., Grzelczak, M., Rodríguez-González, B., Guardia-Girós, P., Pastoriza-Santos, I., Pérez-Juste, J., … Liz-Marzán, L. M. (2009). Synthesis of Multifunctional Composite Microgels via In Situ Ni Growth on pNIPAM-Coated Au Nanoparticles. ACS Nano, 3(10), 3184-3190. doi:10.1021/nn9006169

Johnson, P. B., & Christy, R. W. (1972). Optical Constants of the Noble Metals. Physical Review B, 6(12), 4370-4379. doi:10.1103/physrevb.6.4370

Aden, A. L., & Kerker, M. (1951). Scattering of Electromagnetic Waves from Two Concentric Spheres. Journal of Applied Physics, 22(10), 1242-1246. doi:10.1063/1.1699834

Wang, M. C., & Uhlenbeck, G. E. (1945). On the Theory of the Brownian Motion II. Reviews of Modern Physics, 17(2-3), 323-342. doi:10.1103/revmodphys.17.323

Berg-Sørensen, K., & Flyvbjerg, H. (2004). Power spectrum analysis for optical tweezers. Review of Scientific Instruments, 75(3), 594-612. doi:10.1063/1.1645654

Andrä, W., d’ Ambly, C. ., Hergt, R., Hilger, I., & Kaiser, W. . (1999). Temperature distribution as function of time around a small spherical heat source of local magnetic hyperthermia. Journal of Magnetism and Magnetic Materials, 194(1-3), 197-203. doi:10.1016/s0304-8853(98)00552-6

Sengers, J. V., & Watson, J. T. R. (1986). Improved International Formulations for the Viscosity and Thermal Conductivity of Water Substance. Journal of Physical and Chemical Reference Data, 15(4), 1291-1314. doi:10.1063/1.555763

Andersson, O., & Johari, G. P. (2011). Effect of pressure on thermal conductivity and pressure collapse of ice in a polymer-hydrogel and kinetic unfreezing at 1 GPa. The Journal of Chemical Physics, 134(12), 124903. doi:10.1063/1.3568817

Arai, F., Ng, C., Maruyama, H., Ichikawa, A., El-Shimy, H., & Fukuda, T. (2005). On chip single-cell separation and immobilization using optical tweezers and thermosensitive hydrogel. Lab on a Chip, 5(12), 1399. doi:10.1039/b502546j

Coelho, J. M. P., Abreu, M. A., & Carvalho Rodrigues, F. (2004). High-speed laser cutting of superposed thermoplastic films: thermal modeling and process characterization. Optics and Lasers in Engineering, 42(1), 27-39. doi:10.1016/s0143-8166(03)00071-x

Davidson, S. R. H., & Sherar, M. D. (2003). Measurement of the thermal conductivity of polyacrylamide tissue-equivalent material. International Journal of Hyperthermia, 19(5), 551-562. doi:10.1080/02656730310001607995

HOARE, T., & PELTON, R. (2008). Characterizing charge and crosslinker distributions in polyelectrolyte microgels. Current Opinion in Colloid & Interface Science, 13(6), 413-428. doi:10.1016/j.cocis.2008.03.004

Carregal-Romero, S., Buurma, N. J., Pérez-Juste, J., Liz-Marzán, L. M., & Hervés, P. (2010). Catalysis by Au@pNIPAM Nanocomposites: Effect of the Cross-Linking Density. Chemistry of Materials, 22(10), 3051-3059. doi:10.1021/cm903261b

Murphy, K. P., & Freire, E. (1992). Thermodynamics of Structural Stability and Cooperative Folding Behavior in Proteins. Advances in Protein Chemistry, 313-361. doi:10.1016/s0065-3233(08)60556-2

Evans, J. S., Sun, Y., Senyuk, B., Keller, P., Pergamenshchik, V. M., Lee, T., & Smalyukh, I. I. (2013). Active Shape-Morphing Elastomeric Colloids in Short-Pitch Cholesteric Liquid Crystals. Physical Review Letters, 110(18). doi:10.1103/physrevlett.110.187802

Sun, Y., Evans, J. S., Lee, T., Senyuk, B., Keller, P., He, S., & Smalyukh, I. I. (2012). Optical manipulation of shape-morphing elastomeric liquid crystal microparticles doped with gold nanocrystals. Applied Physics Letters, 100(24), 241901. doi:10.1063/1.4729143

Contreras-Cáceres, R., Pacifico, J., Pastoriza-Santos, I., Pérez-Juste, J., Fernández-Barbero, A., & Liz-Marzán, L. M. (2009). Au@pNIPAM Thermosensitive Nanostructures: Control over Shell Cross-linking, Overall Dimensions, and Core Growth. Advanced Functional Materials, 19(19), 3070-3076. doi:10.1002/adfm.200900481

Smith, S. B., Cui, Y., & Bustamante, C. (2003). [7] Optical-trap force transducer that operates by direct measurement of light momentum. Biophotonics, Part B, 134-162. doi:10.1016/s0076-6879(03)61009-8

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem