- -

Single-molecule portrait of DNA and RNA double helices

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Single-molecule portrait of DNA and RNA double helices

Mostrar el registro completo del ítem

Arias-Gonzalez, JR. (2014). Single-molecule portrait of DNA and RNA double helices. Integrative Biology. 6(10):904-925. https://doi.org/10.1039/c4ib00163j

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/152722

Ficheros en el ítem

Metadatos del ítem

Título: Single-molecule portrait of DNA and RNA double helices
Autor: Arias-Gonzalez, J. R.
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Fecha difusión:
Resumen:
[EN] The composition and geometry of the genetic information carriers were described as double-stranded right helices sixty years ago. The flexibility of their sugar¿phosphate backbones and the chemistry of their nucleotide ...[+]
Palabras clave: DNA , RNA , Double-stranded , Single-molecule , Structure , Mechanics
Derechos de uso: Reserva de todos los derechos
Fuente:
Integrative Biology. (issn: 1757-9694 )
DOI: 10.1039/c4ib00163j
Editorial:
Oxford University Press
Versión del editor: https://doi.org/10.1039/c4ib00163j
Descripción: This is a pre-copyedited, author-produced version of an article accepted for publication in Integrative Biology following peer review. The version of record Arias-Gonzalez, J. Ricardo. 2014. Single-Molecule Portrait of DNA and RNA Double Helices. Integr. Biol. 6 (10). Oxford University Press (OUP): 904 25. doi:10.1039/c4ib00163j is available online at: https://doi.org/10.1039/c4ib00163j
Agradecimientos:
We are sincerely indebted to S. Hormeno, F. Moreno-Herrero, B. Ibarra, J. L. Carrascosa, J. M. Valpuesta, M. Fuentes-Perez and C. Carrasco for their work throughout the years. C. Flors and A. Villasante are acknowledged ...[+]
Tipo: Artículo

References

Ivanov, V. I., Minchenkova, L. E., Minyat, E. E., Frank-Kamenetskii, M. D., & Schyolkina, A. K. (1974). The B̄ to Ā transition of DNA in solution. Journal of Molecular Biology, 87(4), 817-833. doi:10.1016/0022-2836(74)90086-2

FRANKLIN, R. E., & GOSLING, R. G. (1953). Molecular Configuration in Sodium Thymonucleate. Nature, 171(4356), 740-741. doi:10.1038/171740a0

WATSON, J. D., & CRICK, F. H. C. (1953). Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid. Nature, 171(4356), 737-738. doi:10.1038/171737a0 [+]
Ivanov, V. I., Minchenkova, L. E., Minyat, E. E., Frank-Kamenetskii, M. D., & Schyolkina, A. K. (1974). The B̄ to Ā transition of DNA in solution. Journal of Molecular Biology, 87(4), 817-833. doi:10.1016/0022-2836(74)90086-2

FRANKLIN, R. E., & GOSLING, R. G. (1953). Molecular Configuration in Sodium Thymonucleate. Nature, 171(4356), 740-741. doi:10.1038/171740a0

WATSON, J. D., & CRICK, F. H. C. (1953). Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid. Nature, 171(4356), 737-738. doi:10.1038/171737a0

ARNOTT, S., FULLER, W., HODGSON, A., & PRUTTON, I. (1968). Molecular Conformations and Structure Transitions of RNA Complementary Helices and their Possible Biological Significance. Nature, 220(5167), 561-564. doi:10.1038/220561a0

HAMILTON, L. D. (1968). DNA: Models and Reality. Nature, 218(5142), 633-637. doi:10.1038/218633a0

Leslie, A. G. W., Arnott, S., Chandrasekaran, R., & Ratliff, R. L. (1980). Polymorphism of DNA double helices. Journal of Molecular Biology, 143(1), 49-72. doi:10.1016/0022-2836(80)90124-2

Girod, J. C., Johnson, W. C., Huntington, S. K., & Maestre, M. F. (1973). Conformation of deoxyribonucleic acid in alcohol solutions. Biochemistry, 12(25), 5092-5096. doi:10.1021/bi00749a011

Ivanov, V. I., Minchenkova, L. E., Schyolkina, A. K., & Poletayev, A. I. (1973). Different conformations of double-stranded nucleic acid in solution as revealed by circular dichroism. Biopolymers, 12(1), 89-110. doi:10.1002/bip.1973.360120109

Jovin, T. M., Soumpasis, D. M., & McIntosh, L. P. (1987). The Transition Between B-DNA and Z-DNA. Annual Review of Physical Chemistry, 38(1), 521-558. doi:10.1146/annurev.pc.38.100187.002513

Hall, K., Cruz, P., Tinoco, I., Jovin, T. M., & van de Sande, J. H. (1984). ‘Z-RNA’—a left-handed RNA double helix. Nature, 311(5986), 584-586. doi:10.1038/311584a0

W. Saenger , Principles of nucleic acid structure , Springer-Verlag , 2nd edn, 1984

Trantı́rek, L., Štefl, R., Vorlı́čková, M., Koča, J., Sklenářář, V., & Kypr, J. (2000). An A -type double helix of DNA having B -type puckering of the deoxyribose rings 1 1Edited by I. Tinoco. Journal of Molecular Biology, 297(4), 907-922. doi:10.1006/jmbi.2000.3592

Bustamante, C., Bryant, Z., & Smith, S. B. (2003). Ten years of tension: single-molecule DNA mechanics. Nature, 421(6921), 423-427. doi:10.1038/nature01405

Forth, S., Sheinin, M. Y., Inman, J., & Wang, M. D. (2013). Torque Measurement at the Single-Molecule Level. Annual Review of Biophysics, 42(1), 583-604. doi:10.1146/annurev-biophys-083012-130412

Heller, I., Hoekstra, T. P., King, G. A., Peterman, E. J. G., & Wuite, G. J. L. (2014). Optical Tweezers Analysis of DNA–Protein Complexes. Chemical Reviews, 114(6), 3087-3119. doi:10.1021/cr4003006

Strick, T. R., Allemand, J.-F., Bensimon, D., & Croquette, V. (2000). Stress-Induced Structural Transitions in DNA and Proteins. Annual Review of Biophysics and Biomolecular Structure, 29(1), 523-543. doi:10.1146/annurev.biophys.29.1.523

Allemand, J.-F., Bensimon, D., & Croquette, V. (2003). Stretching DNA and RNA to probe their interactions with proteins. Current Opinion in Structural Biology, 13(3), 266-274. doi:10.1016/s0959-440x(03)00067-8

Seeman, N. C. (2003). DNA in a material world. Nature, 421(6921), 427-431. doi:10.1038/nature01406

Hormeño, S., Ibarra, B., Carrascosa, J. L., Valpuesta, J. M., Moreno-Herrero, F., & Arias-Gonzalez, J. R. (2011). Mechanical Properties of High-G⋅C Content DNA with A-Type Base-Stacking. Biophysical Journal, 100(8), 1996-2005. doi:10.1016/j.bpj.2011.02.051

Hormeño, S., Ibarra, B., Valpuesta, J. M., Carrascosa, J. L., & Ricardo Arias-Gonzalez, J. (2011). Mechanical stability of low-humidity single DNA molecules. Biopolymers, 97(4), 199-208. doi:10.1002/bip.21728

Hormeño, S., Moreno-Herrero, F., Ibarra, B., Carrascosa, J. L., Valpuesta, J. M., & Arias-Gonzalez, J. R. (2011). Condensation Prevails over B-A Transition in the Structure of DNA at Low Humidity. Biophysical Journal, 100(8), 2006-2015. doi:10.1016/j.bpj.2011.02.049

Oberstrass, F. C., Fernandes, L. E., & Bryant, Z. (2012). Torque measurements reveal sequence-specific cooperative transitions in supercoiled DNA. Proceedings of the National Academy of Sciences, 109(16), 6106-6111. doi:10.1073/pnas.1113532109

Allemand, J. F., Bensimon, D., Lavery, R., & Croquette, V. (1998). Stretched and overwound DNA forms a Pauling-like structure with exposed bases. Proceedings of the National Academy of Sciences, 95(24), 14152-14157. doi:10.1073/pnas.95.24.14152

Pauling, L., & Corey, R. B. (1953). A Proposed Structure For The Nucleic Acids. Proceedings of the National Academy of Sciences, 39(2), 84-97. doi:10.1073/pnas.39.2.84

Cluzel, P., Lebrun, A., Heller, C., Lavery, R., Viovy, J.-L., Chatenay, D., & Caron, F. o. (1996). DNA: An Extensible Molecule. Science, 271(5250), 792-794. doi:10.1126/science.271.5250.792

Smith, S. B., Cui, Y., & Bustamante, C. (1996). Overstretching B-DNA: The Elastic Response of Individual Double-Stranded and Single-Stranded DNA Molecules. Science, 271(5250), 795-799. doi:10.1126/science.271.5250.795

Besteman, K., Hage, S., Dekker, N. H., & Lemay, S. G. (2007). Role of Tension and Twist in Single-Molecule DNA Condensation. Physical Review Letters, 98(5). doi:10.1103/physrevlett.98.058103

Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., & Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391(6669), 806-811. doi:10.1038/35888

Montgomery, M. K., Xu, S., & Fire, A. (1998). RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proceedings of the National Academy of Sciences, 95(26), 15502-15507. doi:10.1073/pnas.95.26.15502

Timmons, L., & Fire, A. (1998). Specific interference by ingested dsRNA. Nature, 395(6705), 854-854. doi:10.1038/27579

Guo, P. (2010). The emerging field of RNA nanotechnology. Nature Nanotechnology, 5(12), 833-842. doi:10.1038/nnano.2010.231

Herrero-Galán, E., Fuentes-Perez, M. E., Carrasco, C., Valpuesta, J. M., Carrascosa, J. L., Moreno-Herrero, F., & Arias-Gonzalez, J. R. (2012). Mechanical Identities of RNA and DNA Double Helices Unveiled at the Single-Molecule Level. Journal of the American Chemical Society, 135(1), 122-131. doi:10.1021/ja3054755

C. R. Calladine , H. R.Drew , B. F.Luise and A. A.Travers , Understanding DNA. The molecule and how it works , Elsevier, Academic Press , 3rd edn, 2004

Brahms, J., & Mommaerts, W. F. H. M. (1964). A study of conformation of nucleic acids in solution by means of circular dichroism. Journal of Molecular Biology, 10(1), 73-88. doi:10.1016/s0022-2836(64)80029-2

Minyat, E. E., Ivanov, V. I., Kritzyn, A. M., Minchenkova, L. E., & Schyolkina, A. K. (1979). Spermine and spermidine-induced B̄ to Ā transition of DNA in solution. Journal of Molecular Biology, 128(3), 397-409. doi:10.1016/0022-2836(79)90094-9

Rupprecht, A., Piškur, J., Schultz, J., Nordenskiöld, L., Song, Z., & Lahajnar, G. (1994). Mechanochemical study of conformational transitions and melting of Li-, Na-, K-, and CsDNA fibers in ethanol-water solutions. Biopolymers, 34(7), 897-920. doi:10.1002/bip.360340709

Albiser, G., Lamiri, A., & Premilat, S. (2001). The A–B transition: temperature and base composition effects on hydration of DNA. International Journal of Biological Macromolecules, 28(3), 199-203. doi:10.1016/s0141-8130(00)00160-4

Usatyi, A. F., & Shlyakhtenko, L. S. (1974). Melting of DNA in ethanol-water solutions. Biopolymers, 13(12), 2435-2446. doi:10.1002/bip.1974.360131204

Calladine, C. R., & Drew, H. R. (1984). A base-centred explanation of the B-to-A transition in DNA. Journal of Molecular Biology, 178(3), 773-782. doi:10.1016/0022-2836(84)90251-1

Lu, X.-J., Shakked, Z., & Olson, W. K. (2000). A-form Conformational Motifs in Ligand-bound DNA Structures. Journal of Molecular Biology, 300(4), 819-840. doi:10.1006/jmbi.2000.3690

Setlow, P. (1992). DNA in dormant spores of Bacillus species is in an A-like conformation. Molecular Microbiology, 6(5), 563-567. doi:10.1111/j.1365-2958.1992.tb01501.x

Abels, J. A., Moreno-Herrero, F., van der Heijden, T., Dekker, C., & Dekker, N. H. (2005). Single-Molecule Measurements of the Persistence Length of Double-Stranded RNA. Biophysical Journal, 88(4), 2737-2744. doi:10.1529/biophysj.104.052811

Ban, C., Ramakrishnan, B., & Sundaralingam, M. (1994). Crystal structure of the highly distorted chimeric decamer r(C)d(CGGCGCCG)r(G).spermine complex — spermine binding to phosphate only and minor groove tertiary base-pairing. Nucleic Acids Research, 22(24), 5466-5476. doi:10.1093/nar/22.24.5466

Cheetham, G. M. (1999). Structure of a Transcribing T7 RNA Polymerase Initiation Complex. Science, 286(5448), 2305-2309. doi:10.1126/science.286.5448.2305

Zimmerman, S. B., & Pheiffer, B. H. (1981). A RNA.DNA hybrid that can adopt two conformations: an x-ray diffraction study of poly(rA).poly(dT) in concentrated solution or in fibers. Proceedings of the National Academy of Sciences, 78(1), 78-82. doi:10.1073/pnas.78.1.78

Dickerson, R., Drew, H., Conner, B., Wing, R., Fratini, A., & Kopka, M. (1982). The anatomy of A-, B-, and Z-DNA. Science, 216(4545), 475-485. doi:10.1126/science.7071593

Malenkov, G., Minchenkova, L., Minyat, E., Schyolkina, A., & Ivanov, V. (1975). The nature of the - transition of DNA in solution. FEBS Letters, 51(1-2), 38-42. doi:10.1016/0014-5793(75)80850-7

Zimmerman, S. B., & Pheiffer, B. H. (1980). Does DNA adopt the C form in concentrated salt solutions or in organic solvent/water mixtures? An X-ray diffraction study of DNA fibers immersed in various media. Journal of Molecular Biology, 142(3), 315-330. doi:10.1016/0022-2836(80)90275-2

Ivanov, V. I., & Minyat, E. E. (1981). The transitions between left- and right-handed forms of poly(dG-dC). Nucleic Acids Research, 9(18), 4783-4798. doi:10.1093/nar/9.18.4783

Thomas, T. J., & Messner, R. P. (1986). A left-handed (Z) conformation of poly(dA-dC).poly(dG-dT) induced by polyamines. Nucleic Acids Research, 14(16), 6721-6733. doi:10.1093/nar/14.16.6721

Wang, A. H.-J., Quigley, G. J., Kolpak, F. J., Crawford, J. L., van Boom, J. H., van der Marel, G., & Rich, A. (1979). Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature, 282(5740), 680-686. doi:10.1038/282680a0

Popenda, M. (2004). High salt solution structure of a left-handed RNA double helix. Nucleic Acids Research, 32(13), 4044-4054. doi:10.1093/nar/gkh736

Klump, H. H., & Jovin, T. M. (1987). Formation of a left-handed RNA double helix: energetics of the A-Z transition of poly[r(G-C)] in concentrated sodium perchlorate solutions. Biochemistry, 26(16), 5186-5190. doi:10.1021/bi00390a043

Krzyżaniak, A., Barciszewski, J., Fürste, J. P., Bald, R., Erdmann, V. A., Salański, P., & Jurczak, J. (1994). A-Z-RNA conformational changes effected by high pressure. International Journal of Biological Macromolecules, 16(3), 159-162. doi:10.1016/0141-8130(94)90044-2

Zarling, D. A., Calhoun, C. J., Hardin, C. C., & Zarling, A. H. (1987). Cytoplasmic Z-RNA. Proceedings of the National Academy of Sciences, 84(17), 6117-6121. doi:10.1073/pnas.84.17.6117

Liu, L. F., & Wang, J. C. (1987). Supercoiling of the DNA template during transcription. Proceedings of the National Academy of Sciences, 84(20), 7024-7027. doi:10.1073/pnas.84.20.7024

Rich, A., & Zhang, S. (2003). Z-DNA: the long road to biological function. Nature Reviews Genetics, 4(7), 566-572. doi:10.1038/nrg1115

Hardin, C. C., Zarling, D. A., Puglisi, J. D., Trulson, M. O., Davis, P. W., & Tinoco, I. (1987). Stabilization of Z-RNA by chemical bromination and its recognition by anti-Z-DNA antibodies. Biochemistry, 26(16), 5191-5199. doi:10.1021/bi00390a044

Rich, A., Nordheim, A., & Wang, A. H. J. (1984). The Chemistry and Biology of Left-Handed Z-DNA. Annual Review of Biochemistry, 53(1), 791-846. doi:10.1146/annurev.bi.53.070184.004043

Brown, B. A., Lowenhaupt, K., Wilbert, C. M., Hanlon, E. B., & Rich, A. (2000). The Zalpha domain of the editing enzyme dsRNA adenosine deaminase binds left-handed Z-RNA as well as Z-DNA. Proceedings of the National Academy of Sciences, 97(25), 13532-13536. doi:10.1073/pnas.240464097

Placido, D., Brown, B. A., Lowenhaupt, K., Rich, A., & Athanasiadis, A. (2007). A Left-Handed RNA Double Helix Bound by the Zα Domain of the RNA-Editing Enzyme ADAR1. Structure, 15(4), 395-404. doi:10.1016/j.str.2007.03.001

Arnott, S., & Hukins, D. W. L. (1972). Optimised parameters for A-DNA and B-DNA. Biochemical and Biophysical Research Communications, 47(6), 1504-1509. doi:10.1016/0006-291x(72)90243-4

Arnott, S., Hukins, D. W. L., & Dover, S. D. (1972). Optimised parameters for RNA double-helices. Biochemical and Biophysical Research Communications, 48(6), 1392-1399. doi:10.1016/0006-291x(72)90867-4

ARNOTT, S., & HUKINS, D. W. L. (1969). Conservation of Conformation in Mono and Poly-nucleotides. Nature, 224(5222), 886-888. doi:10.1038/224886a0

Cheatham, T. E., Crowley, M. F., Fox, T., & Kollman, P. A. (1997). A molecular level picture of the stabilization of A-DNA in mixed ethanol-water solutions. Proceedings of the National Academy of Sciences, 94(18), 9626-9630. doi:10.1073/pnas.94.18.9626

Mazur, A. K. (2003). TitrationinSilicoof Reversible B ↔ A Transitions in DNA. Journal of the American Chemical Society, 125(26), 7849-7859. doi:10.1021/ja034550j

Ng, H.-L., Kopka, M. L., & Dickerson, R. E. (2000). The structure of a stable intermediate in the A left-right-arrow B DNA helix transition. Proceedings of the National Academy of Sciences, 97(5), 2035-2039. doi:10.1073/pnas.040571197

Vargason, J. M., Henderson, K., & Ho, P. S. (2001). A crystallographic map of the transition from B-DNA to A-DNA. Proceedings of the National Academy of Sciences, 98(13), 7265-7270. doi:10.1073/pnas.121176898

Saenger, W., Hunter, W. N., & Kennard, O. (1986). DNA conformation is determined by economics in the hydration of phosphate groups. Nature, 324(6095), 385-388. doi:10.1038/324385a0

Pastor, N. (2005). The B- to A-DNA Transition and the Reorganization of Solvent at the DNA Surface. Biophysical Journal, 88(5), 3262-3275. doi:10.1529/biophysj.104.058339

Hunter, C. A. (1993). Sequence-dependent DNA Structure. Journal of Molecular Biology, 230(3), 1025-1054. doi:10.1006/jmbi.1993.1217

Mahendrasingam, A., Rhodes, N. J., Goodwin, D. C., Nave, C., Pigram, W. J., Fuller, W., … Vergne, J. (1983). Conformational transitions in oriented fibres of the synthetic polynucleotide poly[d(AT)]·poly[d(AT)] double helix. Nature, 301(5900), 535-537. doi:10.1038/301535a0

Thomas, G. J., & Benevides, J. M. (1985). An A-helix structure for poly(dA-dT) · poly(dA-dT). Biopolymers, 24(6), 1101-1105. doi:10.1002/bip.360240613

Borovok, N., Molotsky, T., Ghabboun, J., Cohen, H., Porath, D., & Kotlyar, A. (2007). Poly(dG)-poly(dC) DNA appears shorter than poly(dA)-poly(dT) and possibly adopts an A-related conformation on a mica surface under ambient conditions. FEBS Letters, 581(30), 5843-5846. doi:10.1016/j.febslet.2007.11.058

Mazur, A. K. (2005). Electrostatic Polymer Condensation and the A/B Polymorphism in DNA:  Sequence Effects. Journal of Chemical Theory and Computation, 1(2), 325-336. doi:10.1021/ct049926d

Minchenkova, L. E., Schyolkina, A. K., Chernov, B. K., & Ivanov, V. I. (1986). CC/GG Contacts Facilitate the B to A Transition of DMA in Solution. Journal of Biomolecular Structure and Dynamics, 4(3), 463-476. doi:10.1080/07391102.1986.10506362

NARA-INUI, H., AKUTSU, H., & KYOGOKU, Y. (1985). Alcohol Induced B-A Transition of DNAs with Different Base Compositions Studied by Circular Dichroism. The Journal of Biochemistry, 98(3), 629-636. doi:10.1093/oxfordjournals.jbchem.a135319

Nishimura, Y., Torigoe, C., & Tsuboi, M. (1985). An A-form poly(dG) · poly(dC) in H2O solution. Biopolymers, 24(9), 1841-1844. doi:10.1002/bip.360240913

Pilet, J., & Brahms, J. (1973). Investigation of DNA structural changes by infrared spectroscopy. Biopolymers, 12(2), 387-403. doi:10.1002/bip.1973.360120215

Tolstorukov, M. Y., Ivanov, V. I., Malenkov, G. G., Jernigan, R. L., & Zhurkin, V. B. (2001). Sequence-Dependent B↔A Transition in DNA Evaluated with Dimeric and Trimeric Scales. Biophysical Journal, 81(6), 3409-3421. doi:10.1016/s0006-3495(01)75973-5

Deng, H. (2000). Structural basis of polyamine-DNA recognition: spermidine and spermine interactions with genomic B-DNAs of different GC content probed by Raman spectroscopy. Nucleic Acids Research, 28(17), 3379-3385. doi:10.1093/nar/28.17.3379

Jain, S., Zon, G., & Sundaralingam, M. (1989). Base only binding of spermine in the deep groove of the A-DNA octamer d(GTGTACAC). Biochemistry, 28(6), 2360-2364. doi:10.1021/bi00432a002

Ouameur, A. A., & Tajmir-Riahi, H.-A. (2004). Structural Analysis of DNA Interactions with Biogenic Polyamines and Cobalt(III)hexamine Studied by Fourier Transform Infrared and Capillary Electrophoresis. Journal of Biological Chemistry, 279(40), 42041-42054. doi:10.1074/jbc.m406053200

Real, A. N., & Greenall, R. J. (2004). Influence of Spermine on DNA Conformation in a Molecular Dynamics Trajectory of d(CGCGAATTCGCG)2: Major Groove Binding by One Spermine Molecule Delays the A→B Transition. Journal of Biomolecular Structure and Dynamics, 21(4), 469-487. doi:10.1080/07391102.2004.10506941

Bauer, C., & Wang, A. H.-J. (1997). Bridged cobalt amine complexes induce DNA conformational changes effectively. Journal of Inorganic Biochemistry, 68(2), 129-135. doi:10.1016/s0162-0134(97)00083-4

Patel, M. M., & Anchordoquy, T. J. (2006). Ability of spermine to differentiate between DNA sequences—Preferential stabilization of A-tracts. Biophysical Chemistry, 122(1), 5-15. doi:10.1016/j.bpc.2006.02.001

Thomas*, T., & Thomas, T. J. (2001). Polyamines in cell growth and cell death: molecular mechanisms and therapeutic applications. Cellular and Molecular Life Sciences, 58(2), 244-258. doi:10.1007/pl00000852

Cheatham, T. E., & Kollman, P. A. (1997). Insight into the stabilization of A-DNA by specific ion association: spontaneous B-DNA to A-DNA transitions observed in molecular dynamics simulations of d[ACCCGCGGGT]2 in the presence of hexaamminecobalt(III). Structure, 5(10), 1297-1311. doi:10.1016/s0969-2126(97)00282-7

Bloomfield, V. A. (1997). DNA condensation by multivalent cations. Biopolymers, 44(3), 269-282. doi:10.1002/(sici)1097-0282(1997)44:3<269::aid-bip6>3.0.co;2-t

Robinson, H., & Wang, A. H.-J. (1996). Neomycin, Spermine and Hexaamminecobalt(III) Share Common Structural Motifs in Converting B- to A-DNA. Nucleic Acids Research, 24(4), 676-682. doi:10.1093/nar/24.4.676

Xu, Q., Shoemaker, R. K., & Braunlin, W. H. (1993). Induction of B-A transitions of deoxyoligonucleotides by multivalent cations in dilute aqueous solution. Biophysical Journal, 65(3), 1039-1049. doi:10.1016/s0006-3495(93)81163-9

Subirana, J. A., & Soler-López, M. (2003). Cations as Hydrogen Bond Donors: A View of Electrostatic Interactions in DNA. Annual Review of Biophysics and Biomolecular Structure, 32(1), 27-45. doi:10.1146/annurev.biophys.32.110601.141726

Mei, H. Y., & Barton, J. K. (1988). Tris(tetramethylphenanthroline)ruthenium(II): a chiral probe that cleaves A-DNA conformations. Proceedings of the National Academy of Sciences, 85(5), 1339-1343. doi:10.1073/pnas.85.5.1339

Li, T.-K., Barbieri, C. M., Lin, H.-C., Rabson, A. B., Yang, G., Fan, Y., … Pilch, D. S. (2004). Drug Targeting of HIV-1 RNA·DNA Hybrid Structures:  Thermodynamics of Recognition and Impact on Reverse Transcriptase-Mediated Ribonuclease H Activity and Viral Replication†. Biochemistry, 43(30), 9732-9742. doi:10.1021/bi0497345

Ivanov, V. I., Minchenkova, L. E., Burckhardt, G., Birch-Hirschfeld, E., Fritzsche, H., & Zimmer, C. (1996). The detection of B-form/A-form junction in a deoxyribonucleotide duplex. Biophysical Journal, 71(6), 3344-3349. doi:10.1016/s0006-3495(96)79527-9

Burckhardt, G., Zimmer, C., & Luck, G. (1973). Conformation and reactivity of DNA V. pH-dependent conformational changes of DNA in complexes with poly-L-histidine: Transitions from B- to A-form and to a condensed state. FEBS Letters, 30(1), 35-39. doi:10.1016/0014-5793(73)80613-1

FLORENTIEV, V. L., & IVANOV, V. I. (1970). RNA Polymerase: Two-step Mechanism with Overlapping Steps. Nature, 228(5271), 519-522. doi:10.1038/228519a0

Yang, L., & Pettitt, B. M. (1996). B to A Transition of DNA on the Nanosecond Time Scale. The Journal of Physical Chemistry, 100(7), 2564-2566. doi:10.1021/jp953080f

beabealashvily, R. S., Ivanov, V. I., Minchenkova, L. E., & Savotchkina, L. P. (1972). RNA polymerase-DNA complexes I. The study of the conformation of nucleic acids at the growing point of RNA in an RNA polymerase-DNA system. Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis, 259(1), 35-40. doi:10.1016/0005-2787(72)90471-6

G hler, T. (2005). Mutant p53 proteins bind DNA in a DNA structure-selective mode. Nucleic Acids Research, 33(3), 1087-1100. doi:10.1093/nar/gki252

SUZUKI, M., LOAKES, D., & YAGI, N. (1996). DNA conformation and its changes upon binding transcription factors. Advances in Biophysics, 32, 53-72. doi:10.1016/0065-227x(96)84741-1

Eom, S. H., Wang, J., & Steitz, T. A. (1996). Structure of Taq polymerase with DNA at the polymerase active site. Nature, 382(6588), 278-281. doi:10.1038/382278a0

Doublié, S., Tabor, S., Long, A. M., Richardson, C. C., & Ellenberger, T. (1998). Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 Å resolution. Nature, 391(6664), 251-258. doi:10.1038/34593

Lee, K. S., Bumbaca, D., Kosman, J., Setlow, P., & Jedrzejas, M. J. (2008). Structure of a protein-DNA complex essential for DNA protection in spores of Bacillus species. Proceedings of the National Academy of Sciences, 105(8), 2806-2811. doi:10.1073/pnas.0708244105

Mohr, S. C., Sokolov, N. V., He, C. M., & Setlow, P. (1991). Binding of small acid-soluble spore proteins from Bacillus subtilis changes the conformation of DNA from B to A. Proceedings of the National Academy of Sciences, 88(1), 77-81. doi:10.1073/pnas.88.1.77

Nejedlý, K., Chládková, J., & Kypr, J. (2007). Photochemical probing of the B–A conformational transition in a linearized pUC19 DNA and its polylinker region. Biophysical Chemistry, 125(1), 237-246. doi:10.1016/j.bpc.2006.08.007

Li, X. (2006). Carbon nanotubes selective destabilization of duplex and triplex DNA and inducing B-A transition in solution. Nucleic Acids Research, 34(13), 3670-3676. doi:10.1093/nar/gkl513

Yang, X. (1999). Structural studies of atom-specific anticancer drugs acting on DNA. Pharmacology & Therapeutics, 83(3), 181-215. doi:10.1016/s0163-7258(99)00020-0

Arscott, P. G., Ma, C., Wenner, J. R., & Bloomfield, V. A. (1995). DNA condensation by cobalt hexaammine(III) in alcohol-water mixtures: Dielectric constant and other solvent effects. Biopolymers, 36(3), 345-364. doi:10.1002/bip.360360309

Lang, D. (1969). Collapse of single DNA molecules in ethanol. Journal of Molecular Biology, 46(1), 209-IN4. doi:10.1016/0022-2836(69)90069-2

Lang, D., Taylor, T. N., Dobyan, D. C., & Gray, D. M. (1976). Dehydrated circular DNA: Electron microscopy of ethanol-condensed molecules. Journal of Molecular Biology, 106(1), 97-107. doi:10.1016/0022-2836(76)90302-8

Piškur, J., & Rupprecht, A. (1995). Aggregated DNA in ethanol solution. FEBS Letters, 375(3), 174-178. doi:10.1016/0014-5793(95)01206-t

Pastré, D., Piétrement, O., Landousy, F., Hamon, L., Sorel, I., David, M.-O., … Le Cam, E. (2005). A new approach to DNA bending by polyamines and its implication in DNA condensation. European Biophysics Journal, 35(3), 214-223. doi:10.1007/s00249-005-0025-7

Rouzina, I., & Bloomfield, V. A. (1998). DNA Bending by Small, Mobile Multivalent Cations. Biophysical Journal, 74(6), 3152-3164. doi:10.1016/s0006-3495(98)78021-x

Herbeck, R., Yu, T.-J., & Peticolas, W. L. (1976). Effect of crosslinking on the secondary structure of DNA. I. Crosslinking by photodimerization. Biochemistry, 15(12), 2656-2660. doi:10.1021/bi00657a027

Zimmerman, S. B., & Pheiffer, B. H. (1979). A direct demonstration that the ethanol-induced transition of DNA is between the A and B forms: an X-ray diffraction study. Journal of Molecular Biology, 135(4), 1023-1027. doi:10.1016/0022-2836(79)90526-6

J. A. Subirana , M.Chiva and R.Mayer , in Biomolecular Structure, Conformation, Function and Evolution , ed. R. Srinivasan , Pergamon Press , London , 1979

Schnell, J. R., Berman, J., & Bloomfield, V. A. (1998). Insertion of Telomere Repeat Sequence Decreases Plasmid DNA Condensation by Cobalt (III) Hexaammine. Biophysical Journal, 74(3), 1484-1491. doi:10.1016/s0006-3495(98)77860-9

Reich, Z., Ghirlando, R., & Minsky, A. (1991). Secondary conformational polymorphism of nucleic acids as a possible functional link between cellular parameters and DNA packaging processes. Biochemistry, 30(31), 7828-7836. doi:10.1021/bi00245a024

Zavriev, S. K., Minchenkova, L. E., Frank-Kamenetskii, M. D., & Ivanov, V. I. (1978). On the flexibility of the boundaries between the A¯-form and B¯-form sections in DNA molecule. Nucleic Acids Research, 5(7), 2657-2664. doi:10.1093/nar/5.7.2657

Potaman, V. N., Bannikov, Y. A., & Shlyachtenko, L. S. (1980). Sedimentation of DNA in ethanol-water solutions within the interval of B→A transition. Nucleic Acids Research, 8(3), 635-642. doi:10.1093/nar/8.3.635

Ivanov, V. I., & Krylov, D. Y. (1992). [6] A-DNA in solution as studied by diverse approaches. Methods in Enzymology, 111-127. doi:10.1016/0076-6879(92)11008-7

Wilson, R. W., & Bloomfield, V. A. (1979). Counterion-induced condensation of deoxyribonucleic acid. A light-scattering study. Biochemistry, 18(11), 2192-2196. doi:10.1021/bi00578a009

Bloomfield, V. A., Wilson, R. W., & Rau, D. C. (1980). Polyelectrolyte effects in DNA condensation by polyamines. Biophysical Chemistry, 11(3-4), 339-343. doi:10.1016/0301-4622(80)87006-2

Besteman, K., Van Eijk, K., & Lemay, S. G. (2007). Charge inversion accompanies DNA condensation by multivalent ions. Nature Physics, 3(9), 641-644. doi:10.1038/nphys697

Neuman, K. C., & Nagy, A. (2008). Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nature Methods, 5(6), 491-505. doi:10.1038/nmeth.1218

Bustamante, C., Macosko, J. C., & Wuite, G. J. L. (2000). Grabbing the cat by the tail: manipulating molecules one by one. Nature Reviews Molecular Cell Biology, 1(2), 130-136. doi:10.1038/35040072

Joo, C., Balci, H., Ishitsuka, Y., Buranachai, C., & Ha, T. (2008). Advances in Single-Molecule Fluorescence Methods for Molecular Biology. Annual Review of Biochemistry, 77(1), 51-76. doi:10.1146/annurev.biochem.77.070606.101543

Van Mameren, J., Peterman, E. J. G., & Wuite, G. J. L. (2008). See me, feel me: methods to concurrently visualize and manipulate single DNA molecules and associated proteins. Nucleic Acids Research, 36(13), 4381-4389. doi:10.1093/nar/gkn412

Ando, T., Uchihashi, T., & Scheuring, S. (2014). Filming Biomolecular Processes by High-Speed Atomic Force Microscopy. Chemical Reviews, 114(6), 3120-3188. doi:10.1021/cr4003837

Moffitt, J. R., Chemla, Y. R., Smith, S. B., & Bustamante, C. (2008). Recent Advances in Optical Tweezers. Annual Review of Biochemistry, 77(1), 205-228. doi:10.1146/annurev.biochem.77.043007.090225

Hormeño, S., & Arias-Gonzalez, J. R. (2006). Exploring mechanochemical processes in the cell with optical tweezers. Biology of the Cell, 98(12), 679-695. doi:10.1042/bc20060036

M. Tanase , N.Biais and M.Sheetz , in Methods in Cell Biology , ed. W. Yu-Li and E. D. Dennis , Academic Press , 2007 , vol. 83, pp. 473–493

Bryant, Z., Stone, M. D., Gore, J., Smith, S. B., Cozzarelli, N. R., & Bustamante, C. (2003). Structural transitions and elasticity from torque measurements on DNA. Nature, 424(6946), 338-341. doi:10.1038/nature01810

Bishop, A. I., Nieminen, T. A., Heckenberg, N. R., & Rubinsztein-Dunlop, H. (2003). Optical application and measurement of torque on microparticles of isotropic nonabsorbing material. Physical Review A, 68(3). doi:10.1103/physreva.68.033802

Deufel, C., Forth, S., Simmons, C. R., Dejgosha, S., & Wang, M. D. (2007). Nanofabricated quartz cylinders for angular trapping: DNA supercoiling torque detection. Nature Methods, 4(3), 223-225. doi:10.1038/nmeth1013

Gutiérrez-Medina, B., Andreasson, J. O. L., Greenleaf, W. J., LaPorta, A., & Block, S. M. (2010). An Optical Apparatus for Rotation and Trapping. Single Molecule Tools, Part B:Super-Resolution, Particle Tracking, Multiparameter, and Force Based Methods, 377-404. doi:10.1016/s0076-6879(10)75015-1

Parkin, S., Knöner, G., Singer, W., Nieminen, T. A., Heckenberg, N. R., & Rubinsztein‐Dunlop, H. (2007). Optical Torque on Microscopic Objects. Laser Manipulation of Cells and Tissues, 525-561. doi:10.1016/s0091-679x(06)82019-4

La Porta, A., & Wang, M. D. (2004). Optical Torque Wrench: Angular Trapping, Rotation, and Torque Detection of Quartz Microparticles. Physical Review Letters, 92(19). doi:10.1103/physrevlett.92.190801

Bryant, Z., Oberstrass, F. C., & Basu, A. (2012). Recent developments in single-molecule DNA mechanics. Current Opinion in Structural Biology, 22(3), 304-312. doi:10.1016/j.sbi.2012.04.007

Lebel, P., Basu, A., Oberstrass, F. C., Tretter, E. M., & Bryant, Z. (2014). Gold rotor bead tracking for high-speed measurements of DNA twist, torque and extension. Nature Methods, 11(4), 456-462. doi:10.1038/nmeth.2854

Celedon, A., Nodelman, I. M., Wildt, B., Dewan, R., Searson, P., Wirtz, D., … Sun, S. X. (2009). Magnetic Tweezers Measurement of Single Molecule Torque. Nano Letters, 9(4), 1720-1725. doi:10.1021/nl900631w

Celedon, A., Wirtz, D., & Sun, S. (2010). Torsional Mechanics of DNA Are Regulated by Small-Molecule Intercalation. The Journal of Physical Chemistry B, 114(50), 16929-16935. doi:10.1021/jp107541q

Kauert, D. J., Kurth, T., Liedl, T., & Seidel, R. (2011). Direct Mechanical Measurements Reveal the Material Properties of Three-Dimensional DNA Origami. Nano Letters, 11(12), 5558-5563. doi:10.1021/nl203503s

Lipfert, J., Kerssemakers, J. W. J., Jager, T., & Dekker, N. H. (2010). Magnetic torque tweezers: measuring torsional stiffness in DNA and RecA-DNA filaments. Nature Methods, 7(12), 977-980. doi:10.1038/nmeth.1520

Lipfert, J., Wiggin, M., Kerssemakers, J. W. J., Pedaci, F., & Dekker, N. H. (2011). Freely orbiting magnetic tweezers to directly monitor changes in the twist of nucleic acids. Nature Communications, 2(1). doi:10.1038/ncomms1450

Janssen, X. J. A., Lipfert, J., Jager, T., Daudey, R., Beekman, J., & Dekker, N. H. (2012). Electromagnetic Torque Tweezers: A Versatile Approach for Measurement of Single-Molecule Twist and Torque. Nano Letters, 12(7), 3634-3639. doi:10.1021/nl301330h

Mosconi, F., Allemand, J. F., & Croquette, V. (2011). Soft magnetic tweezers: A proof of principle. Review of Scientific Instruments, 82(3), 034302. doi:10.1063/1.3531959

Arias-Gonzalez, J. R. (2013). Optical Tweezers to Study Viruses. Structure and Physics of Viruses, 273-304. doi:10.1007/978-94-007-6552-8_9

Albiser, G., Harmouchi, M., & Premilat, S. (1988). Influence of a Mechanical Tension on the B-C and B-C Conformational Transitions in DNA Fibres. Journal of Biomolecular Structure and Dynamics, 6(2), 359-366. doi:10.1080/07391102.1988.10507718

Fornells, M., Campos, J. L., & Subirana, J. A. (1983). Changes of conformation of DNA produced by mechanical forces. Journal of Molecular Biology, 166(2), 249-252. doi:10.1016/s0022-2836(83)80012-6

Harmouchi, M., Albiser, G., & Premilat, S. (1992). Effect of a mechanical tension on the hydration of DNA in fibres. Biochemical and Biophysical Research Communications, 188(1), 78-85. doi:10.1016/0006-291x(92)92352-x

Schultz, J., Rupprecht, A., Song, Z., Piskur, J., Nordenskiöld, L., & Lahajnar, G. (1994). A mechanochemical study of MgDNA fibers in ethanol-water solutions. Biophysical Journal, 66(3), 810-819. doi:10.1016/s0006-3495(94)80857-4

Baumann, C. G., Smith, S. B., Bloomfield, V. A., & Bustamante, C. (1997). Ionic effects on the elasticity of single DNA molecules. Proceedings of the National Academy of Sciences, 94(12), 6185-6190. doi:10.1073/pnas.94.12.6185

Gore, J., Bryant, Z., Nöllmann, M., Le, M. U., Cozzarelli, N. R., & Bustamante, C. (2006). DNA overwinds when stretched. Nature, 442(7104), 836-839. doi:10.1038/nature04974

Wenner, J. R., Williams, M. C., Rouzina, I., & Bloomfield, V. A. (2002). Salt Dependence of the Elasticity and Overstretching Transition of Single DNA Molecules. Biophysical Journal, 82(6), 3160-3169. doi:10.1016/s0006-3495(02)75658-0

Van Mameren, J., Gross, P., Farge, G., Hooijman, P., Modesti, M., Falkenberg, M., … Peterman, E. J. G. (2009). Unraveling the structure of DNA during overstretching by using multicolor, single-molecule fluorescence imaging. Proceedings of the National Academy of Sciences, 106(43), 18231-18236. doi:10.1073/pnas.0904322106

Williams, M. C., Wenner, J. R., Rouzina, I., & Bloomfield, V. A. (2001). Entropy and Heat Capacity of DNA Melting from Temperature Dependence of Single Molecule Stretching. Biophysical Journal, 80(4), 1932-1939. doi:10.1016/s0006-3495(01)76163-2

Bosaeus, N., El-Sagheer, A. H., Brown, T., Smith, S. B., Åkerman, B., Bustamante, C., & Nordén, B. (2012). Tension induces a base-paired overstretched DNA conformation. Proceedings of the National Academy of Sciences, 109(38), 15179-15184. doi:10.1073/pnas.1213172109

Fu, H., Chen, H., Marko, J. F., & Yan, J. (2010). Two distinct overstretched DNA states. Nucleic Acids Research, 38(16), 5594-5600. doi:10.1093/nar/gkq309

Fu, H., Chen, H., Zhang, X., Qu, Y., Marko, J. F., & Yan, J. (2010). Transition dynamics and selection of the distinct S-DNA and strand unpeeling modes of double helix overstretching. Nucleic Acids Research, 39(8), 3473-3481. doi:10.1093/nar/gkq1278

King, G. A., Gross, P., Bockelmann, U., Modesti, M., Wuite, G. J. L., & Peterman, E. J. G. (2013). Revealing the competition between peeled ssDNA, melting bubbles, and S-DNA during DNA overstretching using fluorescence microscopy. Proceedings of the National Academy of Sciences, 110(10), 3859-3864. doi:10.1073/pnas.1213676110

Paik, D. H., & Perkins, T. T. (2011). Overstretching DNA at 65 pN Does Not Require Peeling from Free Ends or Nicks. Journal of the American Chemical Society, 133(10), 3219-3221. doi:10.1021/ja108952v

Whitelam, S., Pronk, S., & Geissler, P. L. (2008). There and (Slowly) Back Again: Entropy-Driven Hysteresis in a Model of DNA Overstretching. Biophysical Journal, 94(7), 2452-2469. doi:10.1529/biophysj.107.117036

Williams, M. C., Rouzina, I., & McCauley, M. J. (2009). Peeling back the mystery of DNA overstretching. Proceedings of the National Academy of Sciences, 106(43), 18047-18048. doi:10.1073/pnas.0910269106

Zhang, X., Chen, H., Fu, H., Doyle, P. S., & Yan, J. (2012). Two distinct overstretched DNA structures revealed by single-molecule thermodynamics measurements. Proceedings of the National Academy of Sciences, 109(21), 8103-8108. doi:10.1073/pnas.1109824109

Zhang, X., Chen, H., Le, S., Rouzina, I., Doyle, P. S., & Yan, J. (2013). Revealing the competition between peeled ssDNA, melting bubbles, and S-DNA during DNA overstretching by single-molecule calorimetry. Proceedings of the National Academy of Sciences, 110(10), 3865-3870. doi:10.1073/pnas.1213740110

Fang, Y., Hoh, J. H., & Spisz, T. S. (1999). Ethanol-induced structural transitions of DNA on mica. Nucleic Acids Research, 27(8), 1943-1949. doi:10.1093/nar/27.8.1943

Bonin, M. (2002). Analysis of RNA flexibility by scanning force spectroscopy. Nucleic Acids Research, 30(16), 81e-81. doi:10.1093/nar/gnf080

Li, L., Pabit, S. A., Meisburger, S. P., & Pollack, L. (2011). Double-Stranded RNA Resists Condensation. Physical Review Letters, 106(10). doi:10.1103/physrevlett.106.108101

Baumann, C. G., Bloomfield, V. A., Smith, S. B., Bustamante, C., Wang, M. D., & Block, S. M. (2000). Stretching of Single Collapsed DNA Molecules. Biophysical Journal, 78(4), 1965-1978. doi:10.1016/s0006-3495(00)76744-0

Murayama, Y., Sakamaki, Y., & Sano, M. (2003). Elastic Response of Single DNA Molecules Exhibits a Reentrant Collapsing Transition. Physical Review Letters, 90(1). doi:10.1103/physrevlett.90.018102

Noy, A., Pérez, A., Laughton, C. A., & Orozco, M. (2007). Theoretical study of large conformational transitions in DNA: the B↔A conformational change in water and ethanol/water. Nucleic Acids Research, 35(10), 3330-3338. doi:10.1093/nar/gkl1135

Li, W., Wang, P.-Y., Yan, J., & Li, M. (2012). Impact of DNA Twist Accumulation on Progressive Helical Wrapping of Torsionally Constrained DNA. Physical Review Letters, 109(21). doi:10.1103/physrevlett.109.218102

Shao, Q., Goyal, S., Finzi, L., & Dunlap, D. (2012). Physiological Levels of Salt and Polyamines Favor Writhe and Limit Twist in DNA. Macromolecules, 45(7), 3188-3196. doi:10.1021/ma300211t

Strick, T. R., Allemand, J.-F., Bensimon, D., Bensimon, A., & Croquette, V. (1996). The Elasticity of a Single Supercoiled DNA Molecule. Science, 271(5257), 1835-1837. doi:10.1126/science.271.5257.1835

Strick, T. R., Allemand, J.-F., Bensimon, D., & Croquette, V. (1998). Behavior of Supercoiled DNA. Biophysical Journal, 74(4), 2016-2028. doi:10.1016/s0006-3495(98)77908-1

Smith, S., Finzi, L., & Bustamante, C. (1992). Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science, 258(5085), 1122-1126. doi:10.1126/science.1439819

Léger, J. F., Romano, G., Sarkar, A., Robert, J., Bourdieu, L., Chatenay, D., & Marko, J. F. (1999). Structural Transitions of a Twisted and Stretched DNA Molecule. Physical Review Letters, 83(5), 1066-1069. doi:10.1103/physrevlett.83.1066

Strick, T. R., Croquette, V., & Bensimon, D. (1998). Homologous pairing in stretched supercoiled DNA. Proceedings of the National Academy of Sciences, 95(18), 10579-10583. doi:10.1073/pnas.95.18.10579

Oberstrass, F. C., Fernandes, L. E., Lebel, P., & Bryant, Z. (2013). Torque Spectroscopy of DNA: Base-Pair Stability, Boundary Effects, Backbending, and Breathing Dynamics. Physical Review Letters, 110(17). doi:10.1103/physrevlett.110.178103

Sheinin, M. Y., Forth, S., Marko, J. F., & Wang, M. D. (2011). Underwound DNA under Tension: Structure, Elasticity, and Sequence-Dependent Behaviors. Physical Review Letters, 107(10). doi:10.1103/physrevlett.107.108102

Sarkar, A., Léger, J.-F., Chatenay, D., & Marko, J. F. (2001). Structural transitions in DNA driven by external force and torque. Physical Review E, 63(5). doi:10.1103/physreve.63.051903

Marko, J. F., & Neukirch, S. (2012). Competition between curls and plectonemes near the buckling transition of stretched supercoiled DNA. Physical Review E, 85(1). doi:10.1103/physreve.85.011908

Kamien, R. D., Lubensky, T. C., Nelson, P., & O’Hern, C. S. (1997). Direct determination of DNA twist-stretch coupling. Europhysics Letters (EPL), 38(3), 237-242. doi:10.1209/epl/i1997-00231-y

Marko, J. F. (1997). Stretching must twist DNA. Europhysics Letters (EPL), 38(3), 183-188. doi:10.1209/epl/i1997-00223-5

Marko, J. F. (1998). DNA under high tension: Overstretching, undertwisting, and relaxation dynamics. Physical Review E, 57(2), 2134-2149. doi:10.1103/physreve.57.2134

Lionnet, T., Joubaud, S., Lavery, R., Bensimon, D., & Croquette, V. (2006). Wringing Out DNA. Physical Review Letters, 96(17). doi:10.1103/physrevlett.96.178102

Forth, S., Deufel, C., Sheinin, M. Y., Daniels, B., Sethna, J. P., & Wang, M. D. (2008). Abrupt Buckling Transition Observed during the Plectoneme Formation of Individual DNA Molecules. Physical Review Letters, 100(14). doi:10.1103/physrevlett.100.148301

Lipfert, J., Klijnhout, S., & Dekker, N. H. (2010). Torsional sensing of small-molecule binding using magnetic tweezers. Nucleic Acids Research, 38(20), 7122-7132. doi:10.1093/nar/gkq598

Wereszczynski, J., & Andricioaei, I. (2006). On structural transitions, thermodynamic equilibrium, and the phase diagram of DNA and RNA duplexes under torque and tension. Proceedings of the National Academy of Sciences, 103(44), 16200-16205. doi:10.1073/pnas.0603850103

Hagerman, P. J. (1988). Flexibility of DNA. Annual Review of Biophysics and Biophysical Chemistry, 17(1), 265-286. doi:10.1146/annurev.bb.17.060188.001405

Hagerman, P. J. (1997). FLEXIBILITY OF RNA. Annual Review of Biophysics and Biomolecular Structure, 26(1), 139-156. doi:10.1146/annurev.biophys.26.1.139

Wiggins, P. A., van der Heijden, T., Moreno-Herrero, F., Spakowitz, A., Phillips, R., Widom, J., … Nelson, P. C. (2006). High flexibility of DNA on short length scales probed by atomic force microscopy. Nature Nanotechnology, 1(2), 137-141. doi:10.1038/nnano.2006.63

Marko, J. F., & Siggia, E. D. (1995). Stretching DNA. Macromolecules, 28(26), 8759-8770. doi:10.1021/ma00130a008

Odijk, T. (1995). Stiff Chains and Filaments under Tension. Macromolecules, 28(20), 7016-7018. doi:10.1021/ma00124a044

Wang, M. D., Yin, H., Landick, R., Gelles, J., & Block, S. M. (1997). Stretching DNA with optical tweezers. Biophysical Journal, 72(3), 1335-1346. doi:10.1016/s0006-3495(97)78780-0

Bustamante, C., Smith, S. B., Liphardt, J., & Smith, D. (2000). Single-molecule studies of DNA mechanics. Current Opinion in Structural Biology, 10(3), 279-285. doi:10.1016/s0959-440x(00)00085-3

Selvin, P., Cook, D., Pon, N., Bauer, W., Klein, M., & Hearst, J. (1992). Torsional rigidity of positively and negatively supercoiled DNA. Science, 255(5040), 82-85. doi:10.1126/science.1553534

Moroz, J. D., & Nelson, P. (1998). Entropic Elasticity of Twist-Storing Polymers. Macromolecules, 31(18), 6333-6347. doi:10.1021/ma971804a

Strick, T. R., Bensimon, D., & Croquette, V. (1999). Genetica, 106(1/2), 57-62. doi:10.1023/a:1003772626927

Vologodskii, A. V., & Marko, J. F. (1997). Extension of torsionally stressed DNA by external force. Biophysical Journal, 73(1), 123-132. doi:10.1016/s0006-3495(97)78053-6

Mosconi, F., Allemand, J. F., Bensimon, D., & Croquette, V. (2009). Measurement of the Torque on a Single Stretched and Twisted DNA Using Magnetic Tweezers. Physical Review Letters, 102(7). doi:10.1103/physrevlett.102.078301

Oroszi, L., Galajda, P., Kirei, H., Bottka, S., & Ormos, P. (2006). Direct Measurement of Torque in an Optical Trap and Its Application to Double-Strand DNA. Physical Review Letters, 97(5). doi:10.1103/physrevlett.97.058301

Gross, P., Laurens, N., Oddershede, L. B., Bockelmann, U., Peterman, E. J. G., & Wuite, G. J. L. (2011). Quantifying how DNA stretches, melts and changes twist under tension. Nature Physics, 7(9), 731-736. doi:10.1038/nphys2002

Sheinin, M. Y., & Wang, M. D. (2009). Twist–stretch coupling and phase transition during DNA supercoiling. Physical Chemistry Chemical Physics, 11(24), 4800. doi:10.1039/b901646e

Lavelle, C. (2014). Pack, unpack, bend, twist, pull, push: the physical side of gene expression. Current Opinion in Genetics & Development, 25, 74-84. doi:10.1016/j.gde.2014.01.001

Yin, H., Wang, M. D., Svoboda, K., Landick, R., Block, S. M., & Gelles, J. (1995). Transcription Against an Applied Force. Science, 270(5242), 1653-1657. doi:10.1126/science.270.5242.1653

Bumcrot, D., Manoharan, M., Koteliansky, V., & Sah, D. W. Y. (2006). RNAi therapeutics: a potential new class of pharmaceutical drugs. Nature Chemical Biology, 2(12), 711-719. doi:10.1038/nchembio839

Seidel, R., & Dekker, C. (2007). Single-molecule studies of nucleic acid motors. Current Opinion in Structural Biology, 17(1), 80-86. doi:10.1016/j.sbi.2006.12.003

Tinoco, I., Chen, G., & Qu, X. (2010). RNA Reactions One Molecule at a Time. Cold Spring Harbor Perspectives in Biology, 2(11), a003624-a003624. doi:10.1101/cshperspect.a003624

Liphardt, J. (2001). Reversible Unfolding of Single RNA Molecules by Mechanical Force. Science, 292(5517), 733-737. doi:10.1126/science.1058498

Garavís, M., Bocanegra, R., Herrero-Galán, E., González, C., Villasante, A., & Arias-Gonzalez, J. R. (2013). Mechanical unfolding of long human telomeric RNA (TERRA). Chemical Communications, 49(57), 6397. doi:10.1039/c3cc42981d

Yu, Z., & Mao, H. (2013). Non-B DNA Structures Show Diverse Conformations and Complex Transition Kinetics Comparable to RNA or Proteins-A Perspective from Mechanical Unfolding and Refolding Experiments. The Chemical Record, 13(1), 102-116. doi:10.1002/tcr.201200021

Marko, J. F. (2007). Torque and dynamics of linking number relaxation in stretched supercoiled DNA. Physical Review E, 76(2). doi:10.1103/physreve.76.021926

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem