- -

2D and 3D texture analysis to differentiate brain metastases on MR images: proceed with caution

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

2D and 3D texture analysis to differentiate brain metastases on MR images: proceed with caution

Show full item record

Beresova, M.; Larroza, A.; Arana, E.; Varga, J.; Balkay, L.; Moratal, D. (2018). 2D and 3D texture analysis to differentiate brain metastases on MR images: proceed with caution. Magnetic Resonance Materials in Physics, Biology and Medicine. 31(2):285-294. https://doi.org/10.1007/s10334-017-0653-9

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/152795

Files in this item

Item Metadata

Title: 2D and 3D texture analysis to differentiate brain metastases on MR images: proceed with caution
Author: Beresova, Monika Larroza, Andrés Arana, Estanislao Varga, Jozsef Balkay, Laszlo Moratal, David
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Issued date:
Abstract:
[EN] To find structural differences between brain metastases of lung and breast cancer, computing their heterogeneity parameters by means of both 2D and 3D texture analysis (TA). Patients with 58 brain metastases from ...[+]
Subjects: Computer-assisted , Image processing , Texture analysis , Magnetic resonance imaging , Brain neoplasms , Metastasis , Breast cancer , Lung cancer
Copyrigths: Cerrado
Source:
Magnetic Resonance Materials in Physics, Biology and Medicine. (issn: 0968-5243 )
DOI: 10.1007/s10334-017-0653-9
Publisher:
Springer-Verlag
Publisher version: https://doi.org/10.1007/s10334-017-0653-9
Thanks:
This work was supported in part by the Spanish Ministerio de Economia y Competitividad (MINECO) and FEDER funds under Grant BFU2015-64380-C2-2-R, by the "Richter Gedeon Talentum Alapitvany" and by the Campus Hungary Mobility ...[+]
Type: Artículo

References

Nayak L, Quant Lee E, Wen PY (2012) Epidemiology of brain metastases. Curr Oncol Rep 14(1):48–54

Brastianos HC, Cahill DP, Brastianos PK (2015) Systemic therapy of brain metastases. Curr Neurol Neurosci Rep 15:518

Lee EK, Lee EJ, Kim MS, Kim MS, Park H-J, Park NH, Park S, Lee YS (2012) Intracranial metastases: spectrum of MR imaging findings. Acta Radiol 53(10):1173–1185 [+]
Nayak L, Quant Lee E, Wen PY (2012) Epidemiology of brain metastases. Curr Oncol Rep 14(1):48–54

Brastianos HC, Cahill DP, Brastianos PK (2015) Systemic therapy of brain metastases. Curr Neurol Neurosci Rep 15:518

Lee EK, Lee EJ, Kim MS, Kim MS, Park H-J, Park NH, Park S, Lee YS (2012) Intracranial metastases: spectrum of MR imaging findings. Acta Radiol 53(10):1173–1185

Kumar V, Abbas AK, Aster JC (2014) Robbins and cotran pathologic basis of disease, 9th edn. Elsevier, Philadelphia

Bekaert L, Emery E, Levallet G, Lechapt-Zalcman E (2017) Histopathologic diagnosis of brain metastases: current trends in management and future considerations. Brain Tumor Pathol 34(1):8–19

Fink KR, Fink JR (2013) Imaging of brain metastases. Surg Neurol Int 4(Suppl 4):S209–S219

Balériaux D, Colosimo C, Ruscalleda J et al (2002) Diagnostic neuroradiology magnetic resonance imaging of metastatic disease to the brain with gadobenate dimeglumine. Neuroradiol 44(3):191–203

Yuh WTC, Fisher DJ, Runge VM, Atlas SW, Harms SE, Maravilla KR, Mayr NA, Mollman JE, Price AC (1994) Phase III multicenter trial of high-dose gadoteridol in MR evaluation of brain metastases. Am J Neuroradiol 15(6):1037–1051

Marusyk A, Polyak K (2010) Tumor heterogeneity: causes and consequences. Biochim Biophys Acta 1805(1):105–117

Marusyk A, Almendro V, Polyak K (2012) Intra-tumour heterogeneity: a looking glass for cancer? Nat Rev Cancer 12(5):323–334

Lerski RA, Smith MJ, Morley P, Barnett E, Mills PR, Watkinson G, MacSween RNM (1981) Discriminant analysis of ultrasonic texture data in diffuse alcoholic liver disease: 1 fatty liver and cirrhosis. Ultrason Imaging 3(2):164–172

Haralick RM (1979) Statistical and structural approach to textures. Proc IEEE 67(5):786–804

Ng TSC, Bading JR, Park R, Sohi H, Procissi D, Colcher D, Conti PS, Cherry SR, Raubitschek AA, Jacobs RE (2012) Quantitative, simultaneous PET/MRI for intratumoral imaging with an MRI-compatible PET scanner. J Nucl Med 53(7):1102–1109

Asselin M-C, O’connor JPB, Boellaard R, Thacker NA, Jackson A (2012) Quantifying heterogeneity in human tumours using MRI and PET. Eur J Cancer 48(4):447–455

Larroza A, Moratal D, Paredes-Sánchez A, Soria-Olivas E, Chust ML, Arribas LA, Arana E (2015) Support vector machine classification of brain metastasis and radiation necrosis based on texture analysis in MRI. J Magn Reson Imaging 42(5):1362–1368

Oppedal K, Eftestøl T, Engan K, Beyer MK, Aarsland D (2015) Classifying dementia using local binary patterns from different regions in magnetic resonance images. Int J Biomed Imag. doi: 10.1155/2015/572567

Nanni L, Lumini A, Brahnam S (2010) Local binary patterns variants as texture descriptors for medical image analysis. Artif Intell Med 49(2):117–125

Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

Guo ZH, Zhang L, Zhang D (2010) Rotation invariant texture classification using LBP variance (LBPV) with global matching. Pattern Recognit 43(3):706–719

Mouthuy N, Cosnard G, Abarca-Quinones J, Michoux N (2012) Multiparametric magnetic resonance imaging to differentiate high-grade gliomas and brain metastases. J Neuroradiol 39(5):301–307

Chernov MF, Hayashi M, Izawa M, Ono Y, Hori T (2006) Proton magnetic resonance spectroscopy (MRS) of metastatic brain tumors: variations of metabolic profile. Int J Clin Oncol 11(5):375–384

Orlhac F, Soussan M, Chouahnia K, Martinod E, Buvat I (2015) 18F-FDG PET-derived textural indices reflect tissue-specific uptake pattern in non-small cell lung cancer. PLoS One. doi: 10.1371/journal.pone.0145063

Mahmoud-Ghoneim D, Alkaabi MK, De Certaines JD, Goettsche F-M (2008) The impact of image dynamic range on texture classification of brain white matter. BMC Med Imaging 8:18

Fetit AE, Novak J, Peet AC, Arvanitis TN (2015) Three-dimensional textural features of conventional MRI improve diagnostic classification of childhood brain tumours. NMR Biomed 28(9):1174–1184

Depeursinge A, Foncubierta-Rodriguez A, Van De Ville D, Müller H (2014) Three-dimensional solid texture analysis in biomedical imaging: review and opportunities. Med Image Anal 18(1):176–196

Suoranta S, Holli-Helenius K, Koskenkorva P, Niskanen E, Könönen M, Äikiä M, Eskola H, Kälviäinen R, Vanninen R (2013) 3D Texture analysis reveals imperceptible MRI textural alterations in the thalamus and putamen in progressive myoclonic epilepsy type 1, EPM1. PLoS One. doi: 10.1371/journal.pone.0069905

Allin Christe S, Vasantha Kumari B, Kandaswamy A (2012) Experimental study for 3D statistical property based intracranial brain tumor classification. J Sci Ind Res 71(1):36–44

Dietrich O, Raya JG, Reeder SB, Reiser MF, Schoenberg SO (2007) Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J Magn Reson Imaging 26(2):375–385

Li Z, Mao Y, Li H, Yu G, Wan H, Li B (2016) Differentiating brain metastases from different pathological types of lung cancers using texture analysis of T1 postcontrast MR. Magn Reson Med 76(5):1410–1419

Ben Sassi O, Sellami L, Ben Slima M, Chtourou K, Ben Hamida A (2013) Improved spatial gray level dependence matrices for texture analysis. Int J Comput Sci Inf Technol 4(6):209

Carl P, Daniel L (2008) Matlab function—cooc3d.m, available at https://www.mathworks.com/matlabcentral/fileexchange/19058-cooc3d

Ganeshan B, Miles KA, Young RC, Chatwin CR (2007) Hepatic entropy and uniformity: additional parameters that can potentially increase the effectiveness of contrast enhancement during abdominal CT. Clin Radiol 62(8):761–768

Wibmer A, Hricak H, Gondo T, Matsumoto K, Veeraraghavan H, Fehr D, Zheng J, Goldman D, Moskowitz C, Fine SW, Reuter VE, Eastham J, Sala E, Vargas HA (2015) Haralick texture analysis of prostate MRI: utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different Gleason scores. Eur Radiol 25(10):2840–2850

Molina D, Pérez-Beteta J, Martínez-González A, Martino J, Velásquez C, Arana E, Pérez-García VM (2016) Influence of gray level and space discretization on brain tumor heterogeneity measures obtained from magnetic resonance images. Comput Biol Med 78:49–57

Yang D, Rao G, Martinez J, Veeraraghavan A, Rao A (2015) Evaluation of tumor-derived MRI-texture features for discrimination of molecular subtypes and prediction of 12-month survival status in glioblastoma. Med Phys 42(11):6725–6735

Sikio M, Holli-Helenius KK, Ryymin P, Dastida P, Eskola H, Harrison L (2015) The effect of region of interest size on textural parameters: 9th International Symposium on Image and Signal Processing and Analysis (2015) IEEE, pp:149–153

Brooks FJ, Grigsby PW (2014) The effect of small tumor volumes on studies of intratumoral heterogeneity of tracer uptake. J Nucl Med 55(1):37–42

[-]

This item appears in the following Collection(s)

Show full item record