- -

2D and 3D texture analysis to differentiate brain metastases on MR images: proceed with caution

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

2D and 3D texture analysis to differentiate brain metastases on MR images: proceed with caution

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Beresova, Monika es_ES
dc.contributor.author Larroza, Andrés es_ES
dc.contributor.author Arana, Estanislao es_ES
dc.contributor.author Varga, Jozsef es_ES
dc.contributor.author Balkay, Laszlo es_ES
dc.contributor.author Moratal, David es_ES
dc.date.accessioned 2020-10-22T03:31:50Z
dc.date.available 2020-10-22T03:31:50Z
dc.date.issued 2018-04 es_ES
dc.identifier.issn 0968-5243 es_ES
dc.identifier.uri http://hdl.handle.net/10251/152795
dc.description.abstract [EN] To find structural differences between brain metastases of lung and breast cancer, computing their heterogeneity parameters by means of both 2D and 3D texture analysis (TA). Patients with 58 brain metastases from breast (26) and lung cancer (32) were examined by MR imaging. Brain lesions were manually delineated by 2D ROIs on the slices of contrast-enhanced T1-weighted (CET1) images, and local binary patterns (LBP) maps were created from each region. Histogram-based (minimum, maximum, mean, standard deviation, and variance), and co-occurrence matrix-based (contrast, correlation, energy, entropy, and homogeneity) 2D, weighted average of the 2D slices, and true 3D TA were obtained on the CET1 images and LBP maps. For LBP maps and 2D TA contrast, correlation, energy, and homogeneity were identified as statistically different heterogeneity parameters (SDHPs) between lung and breast metastasis. The weighted 3D TA identified entropy as an additional SDHP. Only two texture indexes (TI) were significantly different with true 3D TA: entropy and energy. All these TIs discriminated between the two tumor types significantly by ROC analysis. For the CET1 images there was no SDHP at all by 3D TA. Our results indicate that the used textural analysis methods may help with discriminating between brain metastases of different primary tumors. es_ES
dc.description.sponsorship This work was supported in part by the Spanish Ministerio de Economia y Competitividad (MINECO) and FEDER funds under Grant BFU2015-64380-C2-2-R, by the "Richter Gedeon Talentum Alapitvany" and by the Campus Hungary Mobility Program. Andres Larroza was funded by the Spanish Ministerio de Educacion, Cultura y Deporte (MECD) under Grant FPU12/01140. The authors also thank to the continuous help of Dr. Joaquin Gavila from Fundacion IVO es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Magnetic Resonance Materials in Physics, Biology and Medicine es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Computer-assisted es_ES
dc.subject Image processing es_ES
dc.subject Texture analysis es_ES
dc.subject Magnetic resonance imaging es_ES
dc.subject Brain neoplasms es_ES
dc.subject Metastasis es_ES
dc.subject Breast cancer es_ES
dc.subject Lung cancer es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title 2D and 3D texture analysis to differentiate brain metastases on MR images: proceed with caution es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10334-017-0653-9 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU12%2F01140/ES/FPU12%2F01140/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BFU2015-64380-C2-2-R/ES/ANALISIS DE TEXTURAS EN IMAGEN CEREBRAL MULTIMODAL POR RESONANCIA MAGNETICA PARA UNA DETECCION TEMPRANA DE ALTERACIONES EN LA RED Y BIOMARCADORES DE ENFERMEDAD/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Beresova, M.; Larroza, A.; Arana, E.; Varga, J.; Balkay, L.; Moratal, D. (2018). 2D and 3D texture analysis to differentiate brain metastases on MR images: proceed with caution. Magnetic Resonance Materials in Physics, Biology and Medicine. 31(2):285-294. https://doi.org/10.1007/s10334-017-0653-9 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10334-017-0653-9 es_ES
dc.description.upvformatpinicio 285 es_ES
dc.description.upvformatpfin 294 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 31 es_ES
dc.description.issue 2 es_ES
dc.identifier.pmid 28939952 es_ES
dc.relation.pasarela S\379089 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Nayak L, Quant Lee E, Wen PY (2012) Epidemiology of brain metastases. Curr Oncol Rep 14(1):48–54 es_ES
dc.description.references Brastianos HC, Cahill DP, Brastianos PK (2015) Systemic therapy of brain metastases. Curr Neurol Neurosci Rep 15:518 es_ES
dc.description.references Lee EK, Lee EJ, Kim MS, Kim MS, Park H-J, Park NH, Park S, Lee YS (2012) Intracranial metastases: spectrum of MR imaging findings. Acta Radiol 53(10):1173–1185 es_ES
dc.description.references Kumar V, Abbas AK, Aster JC (2014) Robbins and cotran pathologic basis of disease, 9th edn. Elsevier, Philadelphia es_ES
dc.description.references Bekaert L, Emery E, Levallet G, Lechapt-Zalcman E (2017) Histopathologic diagnosis of brain metastases: current trends in management and future considerations. Brain Tumor Pathol 34(1):8–19 es_ES
dc.description.references Fink KR, Fink JR (2013) Imaging of brain metastases. Surg Neurol Int 4(Suppl 4):S209–S219 es_ES
dc.description.references Balériaux D, Colosimo C, Ruscalleda J et al (2002) Diagnostic neuroradiology magnetic resonance imaging of metastatic disease to the brain with gadobenate dimeglumine. Neuroradiol 44(3):191–203 es_ES
dc.description.references Yuh WTC, Fisher DJ, Runge VM, Atlas SW, Harms SE, Maravilla KR, Mayr NA, Mollman JE, Price AC (1994) Phase III multicenter trial of high-dose gadoteridol in MR evaluation of brain metastases. Am J Neuroradiol 15(6):1037–1051 es_ES
dc.description.references Marusyk A, Polyak K (2010) Tumor heterogeneity: causes and consequences. Biochim Biophys Acta 1805(1):105–117 es_ES
dc.description.references Marusyk A, Almendro V, Polyak K (2012) Intra-tumour heterogeneity: a looking glass for cancer? Nat Rev Cancer 12(5):323–334 es_ES
dc.description.references Lerski RA, Smith MJ, Morley P, Barnett E, Mills PR, Watkinson G, MacSween RNM (1981) Discriminant analysis of ultrasonic texture data in diffuse alcoholic liver disease: 1 fatty liver and cirrhosis. Ultrason Imaging 3(2):164–172 es_ES
dc.description.references Haralick RM (1979) Statistical and structural approach to textures. Proc IEEE 67(5):786–804 es_ES
dc.description.references Ng TSC, Bading JR, Park R, Sohi H, Procissi D, Colcher D, Conti PS, Cherry SR, Raubitschek AA, Jacobs RE (2012) Quantitative, simultaneous PET/MRI for intratumoral imaging with an MRI-compatible PET scanner. J Nucl Med 53(7):1102–1109 es_ES
dc.description.references Asselin M-C, O’connor JPB, Boellaard R, Thacker NA, Jackson A (2012) Quantifying heterogeneity in human tumours using MRI and PET. Eur J Cancer 48(4):447–455 es_ES
dc.description.references Larroza A, Moratal D, Paredes-Sánchez A, Soria-Olivas E, Chust ML, Arribas LA, Arana E (2015) Support vector machine classification of brain metastasis and radiation necrosis based on texture analysis in MRI. J Magn Reson Imaging 42(5):1362–1368 es_ES
dc.description.references Oppedal K, Eftestøl T, Engan K, Beyer MK, Aarsland D (2015) Classifying dementia using local binary patterns from different regions in magnetic resonance images. Int J Biomed Imag. doi: 10.1155/2015/572567 es_ES
dc.description.references Nanni L, Lumini A, Brahnam S (2010) Local binary patterns variants as texture descriptors for medical image analysis. Artif Intell Med 49(2):117–125 es_ES
dc.description.references Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987 es_ES
dc.description.references Guo ZH, Zhang L, Zhang D (2010) Rotation invariant texture classification using LBP variance (LBPV) with global matching. Pattern Recognit 43(3):706–719 es_ES
dc.description.references Mouthuy N, Cosnard G, Abarca-Quinones J, Michoux N (2012) Multiparametric magnetic resonance imaging to differentiate high-grade gliomas and brain metastases. J Neuroradiol 39(5):301–307 es_ES
dc.description.references Chernov MF, Hayashi M, Izawa M, Ono Y, Hori T (2006) Proton magnetic resonance spectroscopy (MRS) of metastatic brain tumors: variations of metabolic profile. Int J Clin Oncol 11(5):375–384 es_ES
dc.description.references Orlhac F, Soussan M, Chouahnia K, Martinod E, Buvat I (2015) 18F-FDG PET-derived textural indices reflect tissue-specific uptake pattern in non-small cell lung cancer. PLoS One. doi: 10.1371/journal.pone.0145063 es_ES
dc.description.references Mahmoud-Ghoneim D, Alkaabi MK, De Certaines JD, Goettsche F-M (2008) The impact of image dynamic range on texture classification of brain white matter. BMC Med Imaging 8:18 es_ES
dc.description.references Fetit AE, Novak J, Peet AC, Arvanitis TN (2015) Three-dimensional textural features of conventional MRI improve diagnostic classification of childhood brain tumours. NMR Biomed 28(9):1174–1184 es_ES
dc.description.references Depeursinge A, Foncubierta-Rodriguez A, Van De Ville D, Müller H (2014) Three-dimensional solid texture analysis in biomedical imaging: review and opportunities. Med Image Anal 18(1):176–196 es_ES
dc.description.references Suoranta S, Holli-Helenius K, Koskenkorva P, Niskanen E, Könönen M, Äikiä M, Eskola H, Kälviäinen R, Vanninen R (2013) 3D Texture analysis reveals imperceptible MRI textural alterations in the thalamus and putamen in progressive myoclonic epilepsy type 1, EPM1. PLoS One. doi: 10.1371/journal.pone.0069905 es_ES
dc.description.references Allin Christe S, Vasantha Kumari B, Kandaswamy A (2012) Experimental study for 3D statistical property based intracranial brain tumor classification. J Sci Ind Res 71(1):36–44 es_ES
dc.description.references Dietrich O, Raya JG, Reeder SB, Reiser MF, Schoenberg SO (2007) Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J Magn Reson Imaging 26(2):375–385 es_ES
dc.description.references Li Z, Mao Y, Li H, Yu G, Wan H, Li B (2016) Differentiating brain metastases from different pathological types of lung cancers using texture analysis of T1 postcontrast MR. Magn Reson Med 76(5):1410–1419 es_ES
dc.description.references Ben Sassi O, Sellami L, Ben Slima M, Chtourou K, Ben Hamida A (2013) Improved spatial gray level dependence matrices for texture analysis. Int J Comput Sci Inf Technol 4(6):209 es_ES
dc.description.references Carl P, Daniel L (2008) Matlab function—cooc3d.m, available at https://www.mathworks.com/matlabcentral/fileexchange/19058-cooc3d es_ES
dc.description.references Ganeshan B, Miles KA, Young RC, Chatwin CR (2007) Hepatic entropy and uniformity: additional parameters that can potentially increase the effectiveness of contrast enhancement during abdominal CT. Clin Radiol 62(8):761–768 es_ES
dc.description.references Wibmer A, Hricak H, Gondo T, Matsumoto K, Veeraraghavan H, Fehr D, Zheng J, Goldman D, Moskowitz C, Fine SW, Reuter VE, Eastham J, Sala E, Vargas HA (2015) Haralick texture analysis of prostate MRI: utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different Gleason scores. Eur Radiol 25(10):2840–2850 es_ES
dc.description.references Molina D, Pérez-Beteta J, Martínez-González A, Martino J, Velásquez C, Arana E, Pérez-García VM (2016) Influence of gray level and space discretization on brain tumor heterogeneity measures obtained from magnetic resonance images. Comput Biol Med 78:49–57 es_ES
dc.description.references Yang D, Rao G, Martinez J, Veeraraghavan A, Rao A (2015) Evaluation of tumor-derived MRI-texture features for discrimination of molecular subtypes and prediction of 12-month survival status in glioblastoma. Med Phys 42(11):6725–6735 es_ES
dc.description.references Sikio M, Holli-Helenius KK, Ryymin P, Dastida P, Eskola H, Harrison L (2015) The effect of region of interest size on textural parameters: 9th International Symposium on Image and Signal Processing and Analysis (2015) IEEE, pp:149–153 es_ES
dc.description.references Brooks FJ, Grigsby PW (2014) The effect of small tumor volumes on studies of intratumoral heterogeneity of tracer uptake. J Nucl Med 55(1):37–42 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem