Mostrar el registro sencillo del ítem
dc.contributor.author | Beresova, Monika | es_ES |
dc.contributor.author | Larroza, Andrés | es_ES |
dc.contributor.author | Arana, Estanislao | es_ES |
dc.contributor.author | Varga, Jozsef | es_ES |
dc.contributor.author | Balkay, Laszlo | es_ES |
dc.contributor.author | Moratal, David | es_ES |
dc.date.accessioned | 2020-10-22T03:31:50Z | |
dc.date.available | 2020-10-22T03:31:50Z | |
dc.date.issued | 2018-04 | es_ES |
dc.identifier.issn | 0968-5243 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/152795 | |
dc.description.abstract | [EN] To find structural differences between brain metastases of lung and breast cancer, computing their heterogeneity parameters by means of both 2D and 3D texture analysis (TA). Patients with 58 brain metastases from breast (26) and lung cancer (32) were examined by MR imaging. Brain lesions were manually delineated by 2D ROIs on the slices of contrast-enhanced T1-weighted (CET1) images, and local binary patterns (LBP) maps were created from each region. Histogram-based (minimum, maximum, mean, standard deviation, and variance), and co-occurrence matrix-based (contrast, correlation, energy, entropy, and homogeneity) 2D, weighted average of the 2D slices, and true 3D TA were obtained on the CET1 images and LBP maps. For LBP maps and 2D TA contrast, correlation, energy, and homogeneity were identified as statistically different heterogeneity parameters (SDHPs) between lung and breast metastasis. The weighted 3D TA identified entropy as an additional SDHP. Only two texture indexes (TI) were significantly different with true 3D TA: entropy and energy. All these TIs discriminated between the two tumor types significantly by ROC analysis. For the CET1 images there was no SDHP at all by 3D TA. Our results indicate that the used textural analysis methods may help with discriminating between brain metastases of different primary tumors. | es_ES |
dc.description.sponsorship | This work was supported in part by the Spanish Ministerio de Economia y Competitividad (MINECO) and FEDER funds under Grant BFU2015-64380-C2-2-R, by the "Richter Gedeon Talentum Alapitvany" and by the Campus Hungary Mobility Program. Andres Larroza was funded by the Spanish Ministerio de Educacion, Cultura y Deporte (MECD) under Grant FPU12/01140. The authors also thank to the continuous help of Dr. Joaquin Gavila from Fundacion IVO | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Magnetic Resonance Materials in Physics, Biology and Medicine | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Computer-assisted | es_ES |
dc.subject | Image processing | es_ES |
dc.subject | Texture analysis | es_ES |
dc.subject | Magnetic resonance imaging | es_ES |
dc.subject | Brain neoplasms | es_ES |
dc.subject | Metastasis | es_ES |
dc.subject | Breast cancer | es_ES |
dc.subject | Lung cancer | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | 2D and 3D texture analysis to differentiate brain metastases on MR images: proceed with caution | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10334-017-0653-9 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU12%2F01140/ES/FPU12%2F01140/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BFU2015-64380-C2-2-R/ES/ANALISIS DE TEXTURAS EN IMAGEN CEREBRAL MULTIMODAL POR RESONANCIA MAGNETICA PARA UNA DETECCION TEMPRANA DE ALTERACIONES EN LA RED Y BIOMARCADORES DE ENFERMEDAD/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Beresova, M.; Larroza, A.; Arana, E.; Varga, J.; Balkay, L.; Moratal, D. (2018). 2D and 3D texture analysis to differentiate brain metastases on MR images: proceed with caution. Magnetic Resonance Materials in Physics, Biology and Medicine. 31(2):285-294. https://doi.org/10.1007/s10334-017-0653-9 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s10334-017-0653-9 | es_ES |
dc.description.upvformatpinicio | 285 | es_ES |
dc.description.upvformatpfin | 294 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 31 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.pmid | 28939952 | es_ES |
dc.relation.pasarela | S\379089 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Nayak L, Quant Lee E, Wen PY (2012) Epidemiology of brain metastases. Curr Oncol Rep 14(1):48–54 | es_ES |
dc.description.references | Brastianos HC, Cahill DP, Brastianos PK (2015) Systemic therapy of brain metastases. Curr Neurol Neurosci Rep 15:518 | es_ES |
dc.description.references | Lee EK, Lee EJ, Kim MS, Kim MS, Park H-J, Park NH, Park S, Lee YS (2012) Intracranial metastases: spectrum of MR imaging findings. Acta Radiol 53(10):1173–1185 | es_ES |
dc.description.references | Kumar V, Abbas AK, Aster JC (2014) Robbins and cotran pathologic basis of disease, 9th edn. Elsevier, Philadelphia | es_ES |
dc.description.references | Bekaert L, Emery E, Levallet G, Lechapt-Zalcman E (2017) Histopathologic diagnosis of brain metastases: current trends in management and future considerations. Brain Tumor Pathol 34(1):8–19 | es_ES |
dc.description.references | Fink KR, Fink JR (2013) Imaging of brain metastases. Surg Neurol Int 4(Suppl 4):S209–S219 | es_ES |
dc.description.references | Balériaux D, Colosimo C, Ruscalleda J et al (2002) Diagnostic neuroradiology magnetic resonance imaging of metastatic disease to the brain with gadobenate dimeglumine. Neuroradiol 44(3):191–203 | es_ES |
dc.description.references | Yuh WTC, Fisher DJ, Runge VM, Atlas SW, Harms SE, Maravilla KR, Mayr NA, Mollman JE, Price AC (1994) Phase III multicenter trial of high-dose gadoteridol in MR evaluation of brain metastases. Am J Neuroradiol 15(6):1037–1051 | es_ES |
dc.description.references | Marusyk A, Polyak K (2010) Tumor heterogeneity: causes and consequences. Biochim Biophys Acta 1805(1):105–117 | es_ES |
dc.description.references | Marusyk A, Almendro V, Polyak K (2012) Intra-tumour heterogeneity: a looking glass for cancer? Nat Rev Cancer 12(5):323–334 | es_ES |
dc.description.references | Lerski RA, Smith MJ, Morley P, Barnett E, Mills PR, Watkinson G, MacSween RNM (1981) Discriminant analysis of ultrasonic texture data in diffuse alcoholic liver disease: 1 fatty liver and cirrhosis. Ultrason Imaging 3(2):164–172 | es_ES |
dc.description.references | Haralick RM (1979) Statistical and structural approach to textures. Proc IEEE 67(5):786–804 | es_ES |
dc.description.references | Ng TSC, Bading JR, Park R, Sohi H, Procissi D, Colcher D, Conti PS, Cherry SR, Raubitschek AA, Jacobs RE (2012) Quantitative, simultaneous PET/MRI for intratumoral imaging with an MRI-compatible PET scanner. J Nucl Med 53(7):1102–1109 | es_ES |
dc.description.references | Asselin M-C, O’connor JPB, Boellaard R, Thacker NA, Jackson A (2012) Quantifying heterogeneity in human tumours using MRI and PET. Eur J Cancer 48(4):447–455 | es_ES |
dc.description.references | Larroza A, Moratal D, Paredes-Sánchez A, Soria-Olivas E, Chust ML, Arribas LA, Arana E (2015) Support vector machine classification of brain metastasis and radiation necrosis based on texture analysis in MRI. J Magn Reson Imaging 42(5):1362–1368 | es_ES |
dc.description.references | Oppedal K, Eftestøl T, Engan K, Beyer MK, Aarsland D (2015) Classifying dementia using local binary patterns from different regions in magnetic resonance images. Int J Biomed Imag. doi: 10.1155/2015/572567 | es_ES |
dc.description.references | Nanni L, Lumini A, Brahnam S (2010) Local binary patterns variants as texture descriptors for medical image analysis. Artif Intell Med 49(2):117–125 | es_ES |
dc.description.references | Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987 | es_ES |
dc.description.references | Guo ZH, Zhang L, Zhang D (2010) Rotation invariant texture classification using LBP variance (LBPV) with global matching. Pattern Recognit 43(3):706–719 | es_ES |
dc.description.references | Mouthuy N, Cosnard G, Abarca-Quinones J, Michoux N (2012) Multiparametric magnetic resonance imaging to differentiate high-grade gliomas and brain metastases. J Neuroradiol 39(5):301–307 | es_ES |
dc.description.references | Chernov MF, Hayashi M, Izawa M, Ono Y, Hori T (2006) Proton magnetic resonance spectroscopy (MRS) of metastatic brain tumors: variations of metabolic profile. Int J Clin Oncol 11(5):375–384 | es_ES |
dc.description.references | Orlhac F, Soussan M, Chouahnia K, Martinod E, Buvat I (2015) 18F-FDG PET-derived textural indices reflect tissue-specific uptake pattern in non-small cell lung cancer. PLoS One. doi: 10.1371/journal.pone.0145063 | es_ES |
dc.description.references | Mahmoud-Ghoneim D, Alkaabi MK, De Certaines JD, Goettsche F-M (2008) The impact of image dynamic range on texture classification of brain white matter. BMC Med Imaging 8:18 | es_ES |
dc.description.references | Fetit AE, Novak J, Peet AC, Arvanitis TN (2015) Three-dimensional textural features of conventional MRI improve diagnostic classification of childhood brain tumours. NMR Biomed 28(9):1174–1184 | es_ES |
dc.description.references | Depeursinge A, Foncubierta-Rodriguez A, Van De Ville D, Müller H (2014) Three-dimensional solid texture analysis in biomedical imaging: review and opportunities. Med Image Anal 18(1):176–196 | es_ES |
dc.description.references | Suoranta S, Holli-Helenius K, Koskenkorva P, Niskanen E, Könönen M, Äikiä M, Eskola H, Kälviäinen R, Vanninen R (2013) 3D Texture analysis reveals imperceptible MRI textural alterations in the thalamus and putamen in progressive myoclonic epilepsy type 1, EPM1. PLoS One. doi: 10.1371/journal.pone.0069905 | es_ES |
dc.description.references | Allin Christe S, Vasantha Kumari B, Kandaswamy A (2012) Experimental study for 3D statistical property based intracranial brain tumor classification. J Sci Ind Res 71(1):36–44 | es_ES |
dc.description.references | Dietrich O, Raya JG, Reeder SB, Reiser MF, Schoenberg SO (2007) Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J Magn Reson Imaging 26(2):375–385 | es_ES |
dc.description.references | Li Z, Mao Y, Li H, Yu G, Wan H, Li B (2016) Differentiating brain metastases from different pathological types of lung cancers using texture analysis of T1 postcontrast MR. Magn Reson Med 76(5):1410–1419 | es_ES |
dc.description.references | Ben Sassi O, Sellami L, Ben Slima M, Chtourou K, Ben Hamida A (2013) Improved spatial gray level dependence matrices for texture analysis. Int J Comput Sci Inf Technol 4(6):209 | es_ES |
dc.description.references | Carl P, Daniel L (2008) Matlab function—cooc3d.m, available at https://www.mathworks.com/matlabcentral/fileexchange/19058-cooc3d | es_ES |
dc.description.references | Ganeshan B, Miles KA, Young RC, Chatwin CR (2007) Hepatic entropy and uniformity: additional parameters that can potentially increase the effectiveness of contrast enhancement during abdominal CT. Clin Radiol 62(8):761–768 | es_ES |
dc.description.references | Wibmer A, Hricak H, Gondo T, Matsumoto K, Veeraraghavan H, Fehr D, Zheng J, Goldman D, Moskowitz C, Fine SW, Reuter VE, Eastham J, Sala E, Vargas HA (2015) Haralick texture analysis of prostate MRI: utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different Gleason scores. Eur Radiol 25(10):2840–2850 | es_ES |
dc.description.references | Molina D, Pérez-Beteta J, Martínez-González A, Martino J, Velásquez C, Arana E, Pérez-García VM (2016) Influence of gray level and space discretization on brain tumor heterogeneity measures obtained from magnetic resonance images. Comput Biol Med 78:49–57 | es_ES |
dc.description.references | Yang D, Rao G, Martinez J, Veeraraghavan A, Rao A (2015) Evaluation of tumor-derived MRI-texture features for discrimination of molecular subtypes and prediction of 12-month survival status in glioblastoma. Med Phys 42(11):6725–6735 | es_ES |
dc.description.references | Sikio M, Holli-Helenius KK, Ryymin P, Dastida P, Eskola H, Harrison L (2015) The effect of region of interest size on textural parameters: 9th International Symposium on Image and Signal Processing and Analysis (2015) IEEE, pp:149–153 | es_ES |
dc.description.references | Brooks FJ, Grigsby PW (2014) The effect of small tumor volumes on studies of intratumoral heterogeneity of tracer uptake. J Nucl Med 55(1):37–42 | es_ES |