- -

E2FS: an elastic storage system for cloud computing

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

E2FS: an elastic storage system for cloud computing

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Chen, Longbin es_ES
dc.contributor.author Qiu, Meikang es_ES
dc.contributor.author Song, Jeungeun es_ES
dc.contributor.author Xiong, Zenggang es_ES
dc.contributor.author Hassan Mohamed, Houcine es_ES
dc.date.accessioned 2020-10-22T03:31:52Z
dc.date.available 2020-10-22T03:31:52Z
dc.date.issued 2018-03 es_ES
dc.identifier.issn 0920-8542 es_ES
dc.identifier.uri http://hdl.handle.net/10251/152796
dc.description.abstract [EN] In cloud storage, replication technologies are essential to fault tolerance and high availability of data. While achieving the goal of high availability, replication brings extra number of active servers to the storage system. Extra active servers mean extra power consumption and capital expenditure. Furthermore, the lack of classification of data makes replication scheme fixed at the very beginning. This paper proposes an elastic and efficient file storage called E2FS for big data applications. E2FS can dynamically scale in/out the storage system based on real-time demands of big data applications. We adopt a novel replication scheme based on data blocks, which provides a fine-grained maintenance of the data in the storage system. E2FS analyzes features of data and makes dynamic replication decision to balance the cost and performance of cloud storage. To evaluate the performance of proposed work, we implement a prototype of E2FS and compare it with HDFS. Our experiments show E2FS can outperform HDFS in elasticity while achieving guaranteed performance for big data applications. es_ES
dc.description.sponsorship This work is supported by NSF CNS-1457506 and NSF CNS-1359557 es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof The Journal of Supercomputing es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Elastic replication es_ES
dc.subject Data usage analysis es_ES
dc.subject Cloud storage es_ES
dc.subject Availability es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title E2FS: an elastic storage system for cloud computing es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11227-016-1827-3 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSF//1359557/US/EAGER: Towards Low-Latency Low-Power Heterogeneous Memory Access/
dc.relation.projectID info:eu-repo/grantAgreement/NSF//1457506/US/EAGER: Towards Low-Latency Low-Power Heterogeneous Memory Access/
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Chen, L.; Qiu, M.; Song, J.; Xiong, Z.; Hassan Mohamed, H. (2018). E2FS: an elastic storage system for cloud computing. The Journal of Supercomputing. 74(3):1045-1060. https://doi.org/10.1007/s11227-016-1827-3 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11227-016-1827-3 es_ES
dc.description.upvformatpinicio 1045 es_ES
dc.description.upvformatpfin 1060 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 74 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\379952 es_ES
dc.contributor.funder National Science Foundation, EEUU es_ES
dc.description.references Chen M, Hai J, Wen Y, Leung VC (2013) Enabling technologies for future data center networking: a primer. IEEE Netw 27(4):8–15 es_ES
dc.description.references Li J, Qiu M, Niu J, Gao W, Zong Z, Qin X (2010) Feedback dynamic algorithms for preemptable job scheduling in cloud systems. In: Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence, DC, USA, pp 561–564 es_ES
dc.description.references Dai W, Qiu M (2015) Energy optimization with dynamic task scheduling mobile cloud computing. Syst J IEEE PP(99):1–10 es_ES
dc.description.references Chen M, Mao S, Zhang Y, Leung VC (2014) Big data: related technologies, challenges and future prospects. Springer Briefs in Computer Science es_ES
dc.description.references Zhang Y, Chen M, Mao S, Hu L, Leung VC (2014) Cap: Community activity prediction based on big data analysis. IEEE Netw 28(4):52–57 es_ES
dc.description.references Chen M, Hao Y, Li Y, Lai C, Wu D (2015) On the computation offloading at ad hoc cloudlet: architecture and service modes. IEEE Commun Mag 53(6):18–24 es_ES
dc.description.references Cidon A et al (2013) Copysets: reducing the frequency of data loss in cloud storage. In: USENIX Annual Technical Conference 2013 (USENIXATC 13). San Jose, pp 37–48 es_ES
dc.description.references Qiu M, Ming Z (2013) Informer homed routing fault tolerance mechanism for wireless sensor networks. J Syst Archit 59(4):260–270 es_ES
dc.description.references CISCO (2014) Cisco Visual Networking Index: Forecast and Methodology, 2014–2019 White Paper. http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.html . Accessed 18 Feb 2016 es_ES
dc.description.references CNET (2013) Cloud storage comparison. http://www.cnet.com/how-to/onedrive-dropbox-google-drive-and-box-which-cloud-storage-service-is-right-for-you/ . Accessed 18 Feb 2016 es_ES
dc.description.references Gai K, Qiu M (2015) Dynamic Energy-aware Cloudlet-based Mobile Cloud Computing Model for Green Computing. J Netw Comput Appl 59:46–54 es_ES
dc.description.references Wu G, Qiu M (2013) A decentralized approach for mining event correlations in dis- tributed system monitoring. J Parallel Distrib Comput 73(3):330–340 es_ES
dc.description.references Xu L et al (2014) SpringFS: bridging agility and performance in elastic distributed storage. In: Proceedings of the 12th USENIX Conference on File and Storage Technologies (FAST 14). Santa Clara, CA, pp 243–255 es_ES
dc.description.references Harter T et al (2014) Analysis of hdfs under hbase: A facebook messages case study. In: Proceedings of the 12th USENIX Conference on File and Storage Technologies (FAST 14), pp 199–212 es_ES
dc.description.references Wang H, Varman P (2014) Balancing fairness and effciency in tiered storage systems with bottleneck-aware allocation. In: Proceedings of the 12th USENIX Conferenceon File and Storage Technologies (FAST 14), pp 229–242 es_ES
dc.description.references Cidon A et al (2015) Tiered replication: a cost-effective alternative to full cluster geo-replication. In: 2015 USENIX Annual Technical Conference (USENIX ATC 15), pp 31–43 es_ES
dc.description.references Bowers KD, Juels A, Oprea A (2009) Hail: a high-availability and integrity layer for cloud storage. In: Proceedings of the 16th ACM Conference on Computer and Communications Security. ACM, New York, pp 187–198 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem