- -

E2FS: an elastic storage system for cloud computing

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

E2FS: an elastic storage system for cloud computing

Mostrar el registro completo del ítem

Chen, L.; Qiu, M.; Song, J.; Xiong, Z.; Hassan Mohamed, H. (2018). E2FS: an elastic storage system for cloud computing. The Journal of Supercomputing. 74(3):1045-1060. https://doi.org/10.1007/s11227-016-1827-3

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/152796

Ficheros en el ítem

Metadatos del ítem

Título: E2FS: an elastic storage system for cloud computing
Autor: Chen, Longbin Qiu, Meikang Song, Jeungeun Xiong, Zenggang Hassan Mohamed, Houcine
Entidad UPV: Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
Fecha difusión:
Resumen:
[EN] In cloud storage, replication technologies are essential to fault tolerance and high availability of data. While achieving the goal of high availability, replication brings extra number of active servers to the storage ...[+]
Palabras clave: Elastic replication , Data usage analysis , Cloud storage , Availability
Derechos de uso: Cerrado
Fuente:
The Journal of Supercomputing. (issn: 0920-8542 )
DOI: 10.1007/s11227-016-1827-3
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s11227-016-1827-3
Código del Proyecto:
info:eu-repo/grantAgreement/NSF//1359557/US/EAGER: Towards Low-Latency Low-Power Heterogeneous Memory Access/
info:eu-repo/grantAgreement/NSF//1457506/US/EAGER: Towards Low-Latency Low-Power Heterogeneous Memory Access/
Agradecimientos:
This work is supported by NSF CNS-1457506 and NSF CNS-1359557
Tipo: Artículo

References

Chen M, Hai J, Wen Y, Leung VC (2013) Enabling technologies for future data center networking: a primer. IEEE Netw 27(4):8–15

Li J, Qiu M, Niu J, Gao W, Zong Z, Qin X (2010) Feedback dynamic algorithms for preemptable job scheduling in cloud systems. In: Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence, DC, USA, pp 561–564

Dai W, Qiu M (2015) Energy optimization with dynamic task scheduling mobile cloud computing. Syst J IEEE PP(99):1–10 [+]
Chen M, Hai J, Wen Y, Leung VC (2013) Enabling technologies for future data center networking: a primer. IEEE Netw 27(4):8–15

Li J, Qiu M, Niu J, Gao W, Zong Z, Qin X (2010) Feedback dynamic algorithms for preemptable job scheduling in cloud systems. In: Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence, DC, USA, pp 561–564

Dai W, Qiu M (2015) Energy optimization with dynamic task scheduling mobile cloud computing. Syst J IEEE PP(99):1–10

Chen M, Mao S, Zhang Y, Leung VC (2014) Big data: related technologies, challenges and future prospects. Springer Briefs in Computer Science

Zhang Y, Chen M, Mao S, Hu L, Leung VC (2014) Cap: Community activity prediction based on big data analysis. IEEE Netw 28(4):52–57

Chen M, Hao Y, Li Y, Lai C, Wu D (2015) On the computation offloading at ad hoc cloudlet: architecture and service modes. IEEE Commun Mag 53(6):18–24

Cidon A et al (2013) Copysets: reducing the frequency of data loss in cloud storage. In: USENIX Annual Technical Conference 2013 (USENIXATC 13). San Jose, pp 37–48

Qiu M, Ming Z (2013) Informer homed routing fault tolerance mechanism for wireless sensor networks. J Syst Archit 59(4):260–270

CISCO (2014) Cisco Visual Networking Index: Forecast and Methodology, 2014–2019 White Paper. http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.html . Accessed 18 Feb 2016

CNET (2013) Cloud storage comparison. http://www.cnet.com/how-to/onedrive-dropbox-google-drive-and-box-which-cloud-storage-service-is-right-for-you/ . Accessed 18 Feb 2016

Gai K, Qiu M (2015) Dynamic Energy-aware Cloudlet-based Mobile Cloud Computing Model for Green Computing. J Netw Comput Appl 59:46–54

Wu G, Qiu M (2013) A decentralized approach for mining event correlations in dis- tributed system monitoring. J Parallel Distrib Comput 73(3):330–340

Xu L et al (2014) SpringFS: bridging agility and performance in elastic distributed storage. In: Proceedings of the 12th USENIX Conference on File and Storage Technologies (FAST 14). Santa Clara, CA, pp 243–255

Harter T et al (2014) Analysis of hdfs under hbase: A facebook messages case study. In: Proceedings of the 12th USENIX Conference on File and Storage Technologies (FAST 14), pp 199–212

Wang H, Varman P (2014) Balancing fairness and effciency in tiered storage systems with bottleneck-aware allocation. In: Proceedings of the 12th USENIX Conferenceon File and Storage Technologies (FAST 14), pp 229–242

Cidon A et al (2015) Tiered replication: a cost-effective alternative to full cluster geo-replication. In: 2015 USENIX Annual Technical Conference (USENIX ATC 15), pp 31–43

Bowers KD, Juels A, Oprea A (2009) Hail: a high-availability and integrity layer for cloud storage. In: Proceedings of the 16th ACM Conference on Computer and Communications Security. ACM, New York, pp 187–198

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem