- -

Influence of Zinc Content in Ternary ZnCdS Films Deposited by Chemical Bath Deposition for Photovoltaic Applications

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Influence of Zinc Content in Ternary ZnCdS Films Deposited by Chemical Bath Deposition for Photovoltaic Applications

Show simple item record

Files in this item

dc.contributor.author Ullah, Shafi es_ES
dc.contributor.author Ullah, Hanif es_ES
dc.contributor.author Bouhjar, F. es_ES
dc.contributor.author Mollar García, Miguel Alfonso es_ES
dc.contributor.author Marí, B. es_ES
dc.contributor.author Chahboun, Adil es_ES
dc.date.accessioned 2020-10-22T03:32:08Z
dc.date.available 2020-10-22T03:32:08Z
dc.date.issued 2018-07-03 es_ES
dc.identifier.issn 0013-4651 es_ES
dc.identifier.uri http://hdl.handle.net/10251/152803
dc.description.abstract [EN] Cadmium Zinc Sulfide thin films with different Zn concentration were synthesized in aqueous solution by chemical bath deposition (CBD) method using CdSO4, ZnSO4, CH4N2S for Cd+2, Zn+2, and S¿2 ions source, respectively. The as-deposited films are well homogeneous, adherent and free from pinholes. The incorporation of Zn in CdS was found to be dependent on the annealing temperature. Structure, morphology, elemental analysis, optical and photoelectrochemical (PEC) properties of ZnCdS were characterized using X-ray diffraction, atomic force microscopy, energy dispersive spectroscopy, transmission electron microscopy and UV-Vis absorption measurements, respectively. According to EDS analysis the films are non-stoichiometric due to a deficit of sulfur, which becomes more important as the Zn content increases. The absorption edge shifts toward the lower wavelength region and hence the bandgap of the films increases as the Zn content increases. The values of optical absorption edge are found to change from 2.42 eV for CdS and 2.90 eV for ZnS thin films. The PEC and linear sweep voltammetry performance of the Zn doped CdS films were examined by chronoamperometry technique which provided a significant high potential current due to increase of the electrical conductivity as compared to CdS film. es_ES
dc.description.sponsorship This work was supported by Ministerio de Economia y Competitividad (ENE2013-46624-C4-4-R) and Generalitat Valenciana (Prometeus 2014/044). The Universitat Politecnica de Valencia, Coordinator of the Erasmus + KA 107 Scholarship funded by European Union under project (2016-17) es_ES
dc.language Inglés es_ES
dc.publisher The Electrochemical Society es_ES
dc.relation.ispartof Journal of The Electrochemical Society es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Band Gap es_ES
dc.subject Photo electrochemical Analysis es_ES
dc.subject Chemical Bath Deposition es_ES
dc.subject ZnCdS es_ES
dc.subject XRD es_ES
dc.subject AFM es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Influence of Zinc Content in Ternary ZnCdS Films Deposited by Chemical Bath Deposition for Photovoltaic Applications es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1149/2.0021808jss es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F044/ES/Técnicas de Fabricación Avanzada y Control de Calidad de nuevos materiales multifuncionales en movilidad sostenible/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ENE2013-46624-C4-4-R/ES/MEJORA DE LA CONVERSION DE ENERGIA SOLAR MEDIANTE PROCESOS DE EXCITACION ELECTRONICA EN DOS ETAPAS. APROXIMACION ELECTROQUIMICA./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ENE2016-77798-C4-2-R/ES/APROVECHAMIENTO DE LA LUZ SOLAR CON PROCESOS DE DOS FOTONES-TF/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Ullah, S.; Ullah, H.; Bouhjar, F.; Mollar García, MA.; Marí, B.; Chahboun, A. (2018). Influence of Zinc Content in Ternary ZnCdS Films Deposited by Chemical Bath Deposition for Photovoltaic Applications. Journal of The Electrochemical Society. 7(8):P345-P349. https://doi.org/10.1149/2.0021808jss es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1149/2.0021808jss es_ES
dc.description.upvformatpinicio P345 es_ES
dc.description.upvformatpfin P349 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.description.issue 8 es_ES
dc.relation.pasarela S\386396 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Kumar, T. P., Saravanakumar, S., & Sankaranarayanan, K. (2011). Effect of annealing on the surface and band gap alignment of CdZnS thin films. Applied Surface Science, 257(6), 1923-1927. doi:10.1016/j.apsusc.2010.09.027 es_ES
dc.description.references XING, C., ZHANG, Y., YAN, W., & GUO, L. (2006). Band structure-controlled solid solution of Cd1-xCd1-x ZnxSZnxS photocatalyst for hydrogen production by water splitting. International Journal of Hydrogen Energy, 31(14), 2018-2024. doi:10.1016/j.ijhydene.2006.02.003 es_ES
dc.description.references Horoz, S., Dai, Q., Maloney, F. S., Yakami, B., Pikal, J. M., Zhang, X., … Tang, J. (2015). Absorption Induced by Mn Doping of ZnS for Improved Sensitized Quantum-Dot Solar Cells. Physical Review Applied, 3(2). doi:10.1103/physrevapplied.3.024011 es_ES
dc.description.references Santra, P. K., & Kamat, P. V. (2012). Mn-Doped Quantum Dot Sensitized Solar Cells: A Strategy to Boost Efficiency over 5%. Journal of the American Chemical Society, 134(5), 2508-2511. doi:10.1021/ja211224s es_ES
dc.description.references Salem, J. K., Hammad, T. M., Kuhn, S., Draaz, M. A., Hejazy, N. K., & Hempelmann, R. (2014). Structural and optical properties of Co-doped ZnS nanoparticles synthesized by a capping agent. Journal of Materials Science: Materials in Electronics, 25(5), 2177-2182. doi:10.1007/s10854-014-1856-8 es_ES
dc.description.references Liu, H.-J., & Zhu, Y.-C. (2008). Synthesis and characterization of ternary chalcogenide ZnCdS 1D nanostructures. Materials Letters, 62(2), 255-257. doi:10.1016/j.matlet.2007.05.011 es_ES
dc.description.references Kumar, B., Vasekar, P., Pethe, S. A., Dhere, N. G., & Koishiyev, G. T. (2009). ZnxCd1−xS as a heterojunction partner for CuIn1−xGaxS2 thin film solar cells. Thin Solid Films, 517(7), 2295-2299. doi:10.1016/j.tsf.2008.10.108 es_ES
dc.description.references Dawoud, B., Amer, E.-H., & Gross, D.-M. (2007). Experimental investigation of an adsorptive thermal energy storage. International Journal of Energy Research, 31(2), 135-147. doi:10.1002/er.1235 es_ES
dc.description.references Baykul, M. C., & Orhan, N. (2010). Band alignment of Cd(1−x)ZnxS produced by spray pyrolysis method. Thin Solid Films, 518(8), 1925-1928. doi:10.1016/j.tsf.2009.07.142 es_ES
dc.description.references Clayton, A. J., Baker, M. A., Babar, S., Grilli, R., Gibson, P. N., Kartopu, G., … Irvine, S. J. C. (2017). Effects of Cd 1-x Zn x S alloy composition and post-deposition air anneal on ultra-thin CdTe solar cells produced by MOCVD. Materials Chemistry and Physics, 192, 244-252. doi:10.1016/j.matchemphys.2017.01.067 es_ES
dc.description.references Levchuk, I., Würth, C., Krause, F., Osvet, A., Batentschuk, M., Resch-Genger, U., … Brabec, C. J. (2016). Industrially scalable and cost-effective Mn2+ doped ZnxCd1−xS/ZnS nanocrystals with 70% photoluminescence quantum yield, as efficient down-shifting materials in photovoltaics. Energy & Environmental Science, 9(3), 1083-1094. doi:10.1039/c5ee03165f es_ES
dc.description.references Bhattacharya, R. N., Ramanathan, K., Gedvilas, L., & Keyes, B. (2005). Cu(In,Ga)Se2 thin-film solar cells with ZnS(O,OH), Zn–Cd–S(O,OH), and CdS buffer layers. Journal of Physics and Chemistry of Solids, 66(11), 1862-1864. doi:10.1016/j.jpcs.2005.09.006 es_ES
dc.description.references Reynolds, J. E. (1869). I.—On the isolation of the missing sulphur urea. J. Chem. Soc., 22(0), 1-15. doi:10.1039/js8692200001 es_ES
dc.description.references García-Valenzuela, J. A. (2016). Simple Thiourea Hydrolysis or Intermediate Complex Mechanism? Taking up the Formation of Metal Sulfides from Metal–Thiourea Alkaline Solutions. Comments on Inorganic Chemistry, 37(2), 99-115. doi:10.1080/02603594.2016.1230547 es_ES
dc.description.references Jaramillo, T. F., Baeck, S.-H., Kleiman-Shwarsctein, A., Choi, K.-S., Stucky, G. D., & McFarland, E. W. (2005). Automated Electrochemical Synthesis and Photoelectrochemical Characterization of Zn1-xCoxO Thin Films for Solar Hydrogen Production. Journal of Combinatorial Chemistry, 7(2), 264-271. doi:10.1021/cc049864x es_ES
dc.description.references Jaramillo, T. F., Baeck, S.-H., Kleiman-Shwarsctein, A., & McFarland, E. W. (2004). Combinatorial Electrochemical Synthesis and Screening of Mesoporous ZnO for Photocatalysis. Macromolecular Rapid Communications, 25(1), 297-301. doi:10.1002/marc.200300187 es_ES
dc.description.references Phuan, Y. W., Ibrahim, E., Chong, M. N., Zhu, T., Lee, B.-K., Ocon, J. D., & Chan, E. S. (2017). In situ Ni-doping during cathodic electrodeposition of hematite for excellent photoelectrochemical performance of nanostructured nickel oxide-hematite p-n junction photoanode. Applied Surface Science, 392, 144-152. doi:10.1016/j.apsusc.2016.09.046 es_ES
dc.description.references Hossain, M. S., Islam, M. A., Huda, Q., Aliyu, M. M., Razykov, T., Alam, M. M., … Amin, N. (2013). Growth optimization of ZnxCd1−xS thin films by radio frequency magnetron co-sputtering for solar cell applications. Thin Solid Films, 548, 202-209. doi:10.1016/j.tsf.2013.09.061 es_ES


This item appears in the following Collection(s)

Show simple item record