Mostrar el registro sencillo del ítem
dc.contributor.author | Ullah, Shafi | es_ES |
dc.contributor.author | Ullah, Hanif | es_ES |
dc.contributor.author | Bouhjar, F. | es_ES |
dc.contributor.author | Mollar García, Miguel Alfonso | es_ES |
dc.contributor.author | Marí, B. | es_ES |
dc.contributor.author | Chahboun, Adil | es_ES |
dc.date.accessioned | 2020-10-22T03:32:08Z | |
dc.date.available | 2020-10-22T03:32:08Z | |
dc.date.issued | 2018-07-03 | es_ES |
dc.identifier.issn | 0013-4651 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/152803 | |
dc.description.abstract | [EN] Cadmium Zinc Sulfide thin films with different Zn concentration were synthesized in aqueous solution by chemical bath deposition (CBD) method using CdSO4, ZnSO4, CH4N2S for Cd+2, Zn+2, and S¿2 ions source, respectively. The as-deposited films are well homogeneous, adherent and free from pinholes. The incorporation of Zn in CdS was found to be dependent on the annealing temperature. Structure, morphology, elemental analysis, optical and photoelectrochemical (PEC) properties of ZnCdS were characterized using X-ray diffraction, atomic force microscopy, energy dispersive spectroscopy, transmission electron microscopy and UV-Vis absorption measurements, respectively. According to EDS analysis the films are non-stoichiometric due to a deficit of sulfur, which becomes more important as the Zn content increases. The absorption edge shifts toward the lower wavelength region and hence the bandgap of the films increases as the Zn content increases. The values of optical absorption edge are found to change from 2.42 eV for CdS and 2.90 eV for ZnS thin films. The PEC and linear sweep voltammetry performance of the Zn doped CdS films were examined by chronoamperometry technique which provided a significant high potential current due to increase of the electrical conductivity as compared to CdS film. | es_ES |
dc.description.sponsorship | This work was supported by Ministerio de Economia y Competitividad (ENE2013-46624-C4-4-R) and Generalitat Valenciana (Prometeus 2014/044). The Universitat Politecnica de Valencia, Coordinator of the Erasmus + KA 107 Scholarship funded by European Union under project (2016-17) | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | The Electrochemical Society | es_ES |
dc.relation.ispartof | Journal of The Electrochemical Society | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Band Gap | es_ES |
dc.subject | Photo electrochemical Analysis | es_ES |
dc.subject | Chemical Bath Deposition | es_ES |
dc.subject | ZnCdS | es_ES |
dc.subject | XRD | es_ES |
dc.subject | AFM | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Influence of Zinc Content in Ternary ZnCdS Films Deposited by Chemical Bath Deposition for Photovoltaic Applications | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1149/2.0021808jss | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F044/ES/Técnicas de Fabricación Avanzada y Control de Calidad de nuevos materiales multifuncionales en movilidad sostenible/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//ENE2013-46624-C4-4-R/ES/MEJORA DE LA CONVERSION DE ENERGIA SOLAR MEDIANTE PROCESOS DE EXCITACION ELECTRONICA EN DOS ETAPAS. APROXIMACION ELECTROQUIMICA./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//ENE2016-77798-C4-2-R/ES/APROVECHAMIENTO DE LA LUZ SOLAR CON PROCESOS DE DOS FOTONES-TF/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Ullah, S.; Ullah, H.; Bouhjar, F.; Mollar García, MA.; Marí, B.; Chahboun, A. (2018). Influence of Zinc Content in Ternary ZnCdS Films Deposited by Chemical Bath Deposition for Photovoltaic Applications. Journal of The Electrochemical Society. 7(8):P345-P349. https://doi.org/10.1149/2.0021808jss | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1149/2.0021808jss | es_ES |
dc.description.upvformatpinicio | P345 | es_ES |
dc.description.upvformatpfin | P349 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 7 | es_ES |
dc.description.issue | 8 | es_ES |
dc.relation.pasarela | S\386396 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Kumar, T. P., Saravanakumar, S., & Sankaranarayanan, K. (2011). Effect of annealing on the surface and band gap alignment of CdZnS thin films. Applied Surface Science, 257(6), 1923-1927. doi:10.1016/j.apsusc.2010.09.027 | es_ES |
dc.description.references | XING, C., ZHANG, Y., YAN, W., & GUO, L. (2006). Band structure-controlled solid solution of Cd1-xCd1-x ZnxSZnxS photocatalyst for hydrogen production by water splitting. International Journal of Hydrogen Energy, 31(14), 2018-2024. doi:10.1016/j.ijhydene.2006.02.003 | es_ES |
dc.description.references | Horoz, S., Dai, Q., Maloney, F. S., Yakami, B., Pikal, J. M., Zhang, X., … Tang, J. (2015). Absorption Induced by Mn Doping of ZnS for Improved Sensitized Quantum-Dot Solar Cells. Physical Review Applied, 3(2). doi:10.1103/physrevapplied.3.024011 | es_ES |
dc.description.references | Santra, P. K., & Kamat, P. V. (2012). Mn-Doped Quantum Dot Sensitized Solar Cells: A Strategy to Boost Efficiency over 5%. Journal of the American Chemical Society, 134(5), 2508-2511. doi:10.1021/ja211224s | es_ES |
dc.description.references | Salem, J. K., Hammad, T. M., Kuhn, S., Draaz, M. A., Hejazy, N. K., & Hempelmann, R. (2014). Structural and optical properties of Co-doped ZnS nanoparticles synthesized by a capping agent. Journal of Materials Science: Materials in Electronics, 25(5), 2177-2182. doi:10.1007/s10854-014-1856-8 | es_ES |
dc.description.references | Liu, H.-J., & Zhu, Y.-C. (2008). Synthesis and characterization of ternary chalcogenide ZnCdS 1D nanostructures. Materials Letters, 62(2), 255-257. doi:10.1016/j.matlet.2007.05.011 | es_ES |
dc.description.references | Kumar, B., Vasekar, P., Pethe, S. A., Dhere, N. G., & Koishiyev, G. T. (2009). ZnxCd1−xS as a heterojunction partner for CuIn1−xGaxS2 thin film solar cells. Thin Solid Films, 517(7), 2295-2299. doi:10.1016/j.tsf.2008.10.108 | es_ES |
dc.description.references | Dawoud, B., Amer, E.-H., & Gross, D.-M. (2007). Experimental investigation of an adsorptive thermal energy storage. International Journal of Energy Research, 31(2), 135-147. doi:10.1002/er.1235 | es_ES |
dc.description.references | Baykul, M. C., & Orhan, N. (2010). Band alignment of Cd(1−x)ZnxS produced by spray pyrolysis method. Thin Solid Films, 518(8), 1925-1928. doi:10.1016/j.tsf.2009.07.142 | es_ES |
dc.description.references | Clayton, A. J., Baker, M. A., Babar, S., Grilli, R., Gibson, P. N., Kartopu, G., … Irvine, S. J. C. (2017). Effects of Cd 1-x Zn x S alloy composition and post-deposition air anneal on ultra-thin CdTe solar cells produced by MOCVD. Materials Chemistry and Physics, 192, 244-252. doi:10.1016/j.matchemphys.2017.01.067 | es_ES |
dc.description.references | Levchuk, I., Würth, C., Krause, F., Osvet, A., Batentschuk, M., Resch-Genger, U., … Brabec, C. J. (2016). Industrially scalable and cost-effective Mn2+ doped ZnxCd1−xS/ZnS nanocrystals with 70% photoluminescence quantum yield, as efficient down-shifting materials in photovoltaics. Energy & Environmental Science, 9(3), 1083-1094. doi:10.1039/c5ee03165f | es_ES |
dc.description.references | Bhattacharya, R. N., Ramanathan, K., Gedvilas, L., & Keyes, B. (2005). Cu(In,Ga)Se2 thin-film solar cells with ZnS(O,OH), Zn–Cd–S(O,OH), and CdS buffer layers. Journal of Physics and Chemistry of Solids, 66(11), 1862-1864. doi:10.1016/j.jpcs.2005.09.006 | es_ES |
dc.description.references | Reynolds, J. E. (1869). I.—On the isolation of the missing sulphur urea. J. Chem. Soc., 22(0), 1-15. doi:10.1039/js8692200001 | es_ES |
dc.description.references | García-Valenzuela, J. A. (2016). Simple Thiourea Hydrolysis or Intermediate Complex Mechanism? Taking up the Formation of Metal Sulfides from Metal–Thiourea Alkaline Solutions. Comments on Inorganic Chemistry, 37(2), 99-115. doi:10.1080/02603594.2016.1230547 | es_ES |
dc.description.references | Jaramillo, T. F., Baeck, S.-H., Kleiman-Shwarsctein, A., Choi, K.-S., Stucky, G. D., & McFarland, E. W. (2005). Automated Electrochemical Synthesis and Photoelectrochemical Characterization of Zn1-xCoxO Thin Films for Solar Hydrogen Production. Journal of Combinatorial Chemistry, 7(2), 264-271. doi:10.1021/cc049864x | es_ES |
dc.description.references | Jaramillo, T. F., Baeck, S.-H., Kleiman-Shwarsctein, A., & McFarland, E. W. (2004). Combinatorial Electrochemical Synthesis and Screening of Mesoporous ZnO for Photocatalysis. Macromolecular Rapid Communications, 25(1), 297-301. doi:10.1002/marc.200300187 | es_ES |
dc.description.references | Phuan, Y. W., Ibrahim, E., Chong, M. N., Zhu, T., Lee, B.-K., Ocon, J. D., & Chan, E. S. (2017). In situ Ni-doping during cathodic electrodeposition of hematite for excellent photoelectrochemical performance of nanostructured nickel oxide-hematite p-n junction photoanode. Applied Surface Science, 392, 144-152. doi:10.1016/j.apsusc.2016.09.046 | es_ES |
dc.description.references | Hossain, M. S., Islam, M. A., Huda, Q., Aliyu, M. M., Razykov, T., Alam, M. M., … Amin, N. (2013). Growth optimization of ZnxCd1−xS thin films by radio frequency magnetron co-sputtering for solar cell applications. Thin Solid Films, 548, 202-209. doi:10.1016/j.tsf.2013.09.061 | es_ES |