Mostrar el registro sencillo del ítem
dc.contributor.author | Diago, Maria P. | es_ES |
dc.contributor.author | Tardaguila, Javier | es_ES |
dc.contributor.author | Aleixos Borrás, María Nuria | es_ES |
dc.contributor.author | Millan, Borja | es_ES |
dc.contributor.author | Prats-Montalbán, José Manuel | es_ES |
dc.contributor.author | Cubero, Sergio | es_ES |
dc.contributor.author | BLASCO IVARS, JOSE | es_ES |
dc.date.accessioned | 2020-10-22T03:32:10Z | |
dc.date.available | 2020-10-22T03:32:10Z | |
dc.date.issued | 2015-04 | es_ES |
dc.identifier.issn | 0022-5142 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/152804 | |
dc.description.abstract | [EN] BACKGROUND: Berry weight, berry number and cluster weight are key parameters for yield estimation for wine and tablegrape industry. Current yield prediction methods are destructive, labour-demanding and time-consuming. In this work, a new methodology, based on image analysis was developed to determine cluster yield components in a fast and inexpensive way. RESULTS: Clusters of seven different red varieties of grapevine (Vitis vinifera L.) were photographed under laboratory conditions and their cluster yield components manually determined after image acquisition. Two algorithms based on the Canny and the logarithmic image processing approaches were tested to find the contours of the berries in the images prior to berry detection performed bymeans of the Hough Transform. Results were obtained in two ways: by analysing either a single image of the cluster or using four images per cluster from different orientations. The best results (R2 between 69% and 95% in berry detection and between 65% and 97% in cluster weight estimation) were achieved using four images and the Canny algorithm. The model¿s capability based on image analysis to predict berry weight was 84%. CONCLUSION: The new and low-cost methodology presented here enabled the assessment of cluster yield components, saving time and providing inexpensive information in comparison with current manual methods. © 2014 Society of Chemical Industry | es_ES |
dc.description.sponsorship | This work has been partially funded by INIA through research projects RTA2012-00062-C04-01 and RTA2012-00062-C04-03 with the support of European FEDER funds. The authors wish also to thank the MINECO which provided support for this research work through project AGL2011-23673 and also the UPV project UPV-SP10120276 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Journal of the Science of Food and Agriculture | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Vitis vinifera L | es_ES |
dc.subject | Cluster weight | es_ES |
dc.subject | Berry number per cluster | es_ES |
dc.subject | Berry weight | es_ES |
dc.subject | LIP Canny | es_ES |
dc.subject | Hough Transform | es_ES |
dc.subject.classification | EXPRESION GRAFICA EN LA INGENIERIA | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.title | Assessment of cluster yield components by image analysis | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/jsfa.6819 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//AGL2011-23673/ES/INTEGRACION DE TECNOLOGIAS AVANZADAS DE DETECCION EN UNA PLATAFORMA MOVIL MULTISENSOR PARA EL ESTUDIO DE LA VARIABILIDAD ESPACIO-TEMPORAL DEL VIÑEDO./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//SP10120276/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//RTA2012-00062-C04-01/ES/Nuevas técnicas de inspección basadas en espectrometría para la estimación de propiedades y determinación automática de la calidad interna y sanidad de productos agroalimentarios aplicadas a líneas de inspección y manipulación (SPEC-DACSA)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//RTA2012-00062-C04-03/ES/Nuevas técnicas de inspección basadas en visión por computador multiespectral para la estimación de propiedades y determinación automática de la calidad y sanidad de la producción agroalimentaria en líneas de inspección y manipulación (VIS-DACSA)/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Mecanización y Tecnología Agraria - Departament de Mecanització i Tecnologia Agrària | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Gráfica - Departament d'Enginyeria Gràfica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat | es_ES |
dc.description.bibliographicCitation | Diago, MP.; Tardaguila, J.; Aleixos Borrás, MN.; Millan, B.; Prats-Montalbán, JM.; Cubero, S.; Blasco Ivars, J. (2015). Assessment of cluster yield components by image analysis. Journal of the Science of Food and Agriculture. 95(6):1274-1282. https://doi.org/10.1002/jsfa.6819 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/jsfa.6819 | es_ES |
dc.description.upvformatpinicio | 1274 | es_ES |
dc.description.upvformatpfin | 1282 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 95 | es_ES |
dc.description.issue | 6 | es_ES |
dc.identifier.pmid | 25041796 | es_ES |
dc.relation.pasarela | S\268542 | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Instituto Nacional de Investigaciones Agrarias | es_ES |
dc.contributor.funder | Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | |
dc.description.references | TARDAGUILA, J., BLANCO, J. A., PONI, S., & DIAGO, M. P. (2012). Mechanical yield regulation in winegrapes: comparison of early defoliation and crop thinning. Australian Journal of Grape and Wine Research, 18(3), 344-352. doi:10.1111/j.1755-0238.2012.00197.x | es_ES |
dc.description.references | Vail, M. E. (1991). Grape Cluster Architecture and the Susceptibility of Berries toBotrytis cinerea. Phytopathology, 81(2), 188. doi:10.1094/phyto-81-188 | es_ES |
dc.description.references | Matthews, M. A., & Nuzzo, V. (2007). BERRY SIZE AND YIELD PARADIGMS ON GRAPES AND WINES QUALITY. Acta Horticulturae, (754), 423-436. doi:10.17660/actahortic.2007.754.56 | es_ES |
dc.description.references | ROBY, G., HARBERTSON, J. F., ADAMS, D. A., & MATTHEWS, M. A. (2004). Berry size and vine water deficits as factors in winegrape composition: Anthocyanins and tannins. Australian Journal of Grape and Wine Research, 10(2), 100-107. doi:10.1111/j.1755-0238.2004.tb00012.x | es_ES |
dc.description.references | WALKER, R. R., BLACKMORE, D. H., CLINGELEFFER, P. R., KERRIDGE, G. H., RÜHL, E. H., & NICHOLAS, P. R. (2005). Shiraz berry size in relation to seed number and implications for juice and wine composition. Australian Journal of Grape and Wine Research, 11(1), 2-8. doi:10.1111/j.1755-0238.2005.tb00273.x | es_ES |
dc.description.references | Poni, S., Palliotti, A., & Bernizzoni, F. (2006). Calibration and Evaluation of a STELLA Software-based Daily CO2 Balance Model in Vitis vinifera L. Journal of the American Society for Horticultural Science, 131(2), 273-283. doi:10.21273/jashs.131.2.273 | es_ES |
dc.description.references | DUNN, G. M., & MARTIN, S. R. (2008). Yield prediction from digital image analysis: A technique with potential for vineyard assessments prior to harvest. Australian Journal of Grape and Wine Research, 10(3), 196-198. doi:10.1111/j.1755-0238.2004.tb00022.x | es_ES |
dc.description.references | Diago, M.-P., Correa, C., Millán, B., Barreiro, P., Valero, C., & Tardaguila, J. (2012). Grapevine Yield and Leaf Area Estimation Using Supervised Classification Methodology on RGB Images Taken under Field Conditions. Sensors, 12(12), 16988-17006. doi:10.3390/s121216988 | es_ES |
dc.description.references | Diago, M. P., Sanz-Garcia, A., Millan, B., Blasco, J., & Tardaguila, J. (2014). Assessment of flower number per inflorescence in grapevine by image analysis under field conditions. Journal of the Science of Food and Agriculture, 94(10), 1981-1987. doi:10.1002/jsfa.6512 | es_ES |
dc.description.references | Wycislo, A. P., Clark, J. R., & Karcher, D. E. (2008). Fruit Shape Analysis of Vitis Using Digital Photography. HortScience, 43(3), 677-680. doi:10.21273/hortsci.43.3.677 | es_ES |
dc.description.references | Cubero, S., Diago, M. P., Blasco, J., Tardáguila, J., Millán, B., & Aleixos, N. (2014). A new method for pedicel/peduncle detection and size assessment of grapevine berries and other fruits by image analysis. Biosystems Engineering, 117, 62-72. doi:10.1016/j.biosystemseng.2013.06.007 | es_ES |
dc.description.references | Canny, J. (1986). A Computational Approach to Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8(6), 679-698. doi:10.1109/tpami.1986.4767851 | es_ES |
dc.description.references | Aguado, A. S., Eugenia Montiel, M., & Nixon, M. S. (1996). On using directional information for parameter space decomposition in ellipse detection. Pattern Recognition, 29(3), 369-381. doi:10.1016/0031-3203(94)00096-4 | es_ES |
dc.description.references | Lei, Y., & Wong, K. C. (1999). Ellipse detection based on symmetry. Pattern Recognition Letters, 20(1), 41-47. doi:10.1016/s0167-8655(98)00127-5 | es_ES |
dc.description.references | Davies, E. R. (1989). Finding ellipses using the generalised Hough transform. Pattern Recognition Letters, 9(2), 87-96. doi:10.1016/0167-8655(89)90041-x | es_ES |
dc.description.references | Hahn, K., Jung, S., Han, Y., & Hahn, H. (2008). A new algorithm for ellipse detection by curve segments. Pattern Recognition Letters, 29(13), 1836-1841. doi:10.1016/j.patrec.2008.05.025 | es_ES |
dc.description.references | Duda, R. O., & Hart, P. E. (1972). Use of the Hough transformation to detect lines and curves in pictures. Communications of the ACM, 15(1), 11-15. doi:10.1145/361237.361242 | es_ES |
dc.description.references | Palomares JM González J Ros E Designing a fast convolution under the LIP paradigm applied to edge detection Lecture Notes in Computer Science 3687. Singh S Singh M Apte C Perner P Springer Berlin 560 569 2005 | es_ES |
dc.description.references | Jourlin, M., & Pinoli, J.-C. (1988). A model for logarithmic image processing. Journal of Microscopy, 149(1), 21-35. doi:10.1111/j.1365-2818.1988.tb04559.x | es_ES |
dc.description.references | Tardaguila, J., Diago, M. P., Millan, B., Blasco, J., Cubero, S., & Aleixos, N. (2013). APPLICATIONS OF COMPUTER VISION TECHNIQUES IN VITICULTURE TO ASSESS CANOPY FEATURES, CLUSTER MORPHOLOGY AND BERRY SIZE. Acta Horticulturae, (978), 77-84. doi:10.17660/actahortic.2013.978.7 | es_ES |
dc.description.references | Toth, D., Aach, T., & Metzler, V. (s. f.). Illumination-invariant change detection. 4th IEEE Southwest Symposium on Image Analysis and Interpretation. doi:10.1109/iai.2000.839561 | es_ES |
dc.description.references | Blom, P. E., & Tarara, J. M. (2009). Trellis Tension Monitoring Improves Yield Estimation in Vineyards. HortScience, 44(3), 678-685. doi:10.21273/hortsci.44.3.678 | es_ES |