- -

Assessment of cluster yield components by image analysis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Assessment of cluster yield components by image analysis

Mostrar el registro completo del ítem

Diago, MP.; Tardaguila, J.; Aleixos Borrás, MN.; Millan, B.; Prats-Montalbán, JM.; Cubero, S.; Blasco Ivars, J. (2015). Assessment of cluster yield components by image analysis. Journal of the Science of Food and Agriculture. 95(6):1274-1282. https://doi.org/10.1002/jsfa.6819

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/152804

Ficheros en el ítem

Metadatos del ítem

Título: Assessment of cluster yield components by image analysis
Autor: Diago, Maria P. Tardaguila, Javier Aleixos Borrás, María Nuria Millan, Borja Prats-Montalbán, José Manuel Cubero, Sergio BLASCO IVARS, JOSE
Entidad UPV: Universitat Politècnica de València. Departamento de Mecanización y Tecnología Agraria - Departament de Mecanització i Tecnologia Agrària
Universitat Politècnica de València. Departamento de Ingeniería Gráfica - Departament d'Enginyeria Gràfica
Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat
Fecha difusión:
Resumen:
[EN] BACKGROUND: Berry weight, berry number and cluster weight are key parameters for yield estimation for wine and tablegrape industry. Current yield prediction methods are destructive, labour-demanding and time-consuming. ...[+]
Palabras clave: Vitis vinifera L , Cluster weight , Berry number per cluster , Berry weight , LIP Canny , Hough Transform
Derechos de uso: Cerrado
Fuente:
Journal of the Science of Food and Agriculture. (issn: 0022-5142 )
DOI: 10.1002/jsfa.6819
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/jsfa.6819
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//AGL2011-23673/ES/INTEGRACION DE TECNOLOGIAS AVANZADAS DE DETECCION EN UNA PLATAFORMA MOVIL MULTISENSOR PARA EL ESTUDIO DE LA VARIABILIDAD ESPACIO-TEMPORAL DEL VIÑEDO./
info:eu-repo/grantAgreement/UPV//SP10120276/
info:eu-repo/grantAgreement/MINECO//RTA2012-00062-C04-01/ES/Nuevas técnicas de inspección basadas en espectrometría para la estimación de propiedades y determinación automática de la calidad interna y sanidad de productos agroalimentarios aplicadas a líneas de inspección y manipulación (SPEC-DACSA)/
info:eu-repo/grantAgreement/MINECO//RTA2012-00062-C04-03/ES/Nuevas técnicas de inspección basadas en visión por computador multiespectral para la estimación de propiedades y determinación automática de la calidad y sanidad de la producción agroalimentaria en líneas de inspección y manipulación (VIS-DACSA)/
Agradecimientos:
This work has been partially funded by INIA through research projects RTA2012-00062-C04-01 and RTA2012-00062-C04-03 with the support of European FEDER funds. The authors wish also to thank the MINECO which provided support ...[+]
Tipo: Artículo

References

TARDAGUILA, J., BLANCO, J. A., PONI, S., & DIAGO, M. P. (2012). Mechanical yield regulation in winegrapes: comparison of early defoliation and crop thinning. Australian Journal of Grape and Wine Research, 18(3), 344-352. doi:10.1111/j.1755-0238.2012.00197.x

Vail, M. E. (1991). Grape Cluster Architecture and the Susceptibility of Berries toBotrytis cinerea. Phytopathology, 81(2), 188. doi:10.1094/phyto-81-188

Matthews, M. A., & Nuzzo, V. (2007). BERRY SIZE AND YIELD PARADIGMS ON GRAPES AND WINES QUALITY. Acta Horticulturae, (754), 423-436. doi:10.17660/actahortic.2007.754.56 [+]
TARDAGUILA, J., BLANCO, J. A., PONI, S., & DIAGO, M. P. (2012). Mechanical yield regulation in winegrapes: comparison of early defoliation and crop thinning. Australian Journal of Grape and Wine Research, 18(3), 344-352. doi:10.1111/j.1755-0238.2012.00197.x

Vail, M. E. (1991). Grape Cluster Architecture and the Susceptibility of Berries toBotrytis cinerea. Phytopathology, 81(2), 188. doi:10.1094/phyto-81-188

Matthews, M. A., & Nuzzo, V. (2007). BERRY SIZE AND YIELD PARADIGMS ON GRAPES AND WINES QUALITY. Acta Horticulturae, (754), 423-436. doi:10.17660/actahortic.2007.754.56

ROBY, G., HARBERTSON, J. F., ADAMS, D. A., & MATTHEWS, M. A. (2004). Berry size and vine water deficits as factors in winegrape composition: Anthocyanins and tannins. Australian Journal of Grape and Wine Research, 10(2), 100-107. doi:10.1111/j.1755-0238.2004.tb00012.x

WALKER, R. R., BLACKMORE, D. H., CLINGELEFFER, P. R., KERRIDGE, G. H., RÜHL, E. H., & NICHOLAS, P. R. (2005). Shiraz berry size in relation to seed number and implications for juice and wine composition. Australian Journal of Grape and Wine Research, 11(1), 2-8. doi:10.1111/j.1755-0238.2005.tb00273.x

Poni, S., Palliotti, A., & Bernizzoni, F. (2006). Calibration and Evaluation of a STELLA Software-based Daily CO2 Balance Model in Vitis vinifera L. Journal of the American Society for Horticultural Science, 131(2), 273-283. doi:10.21273/jashs.131.2.273

DUNN, G. M., & MARTIN, S. R. (2008). Yield prediction from digital image analysis: A technique with potential for vineyard assessments prior to harvest. Australian Journal of Grape and Wine Research, 10(3), 196-198. doi:10.1111/j.1755-0238.2004.tb00022.x

Diago, M.-P., Correa, C., Millán, B., Barreiro, P., Valero, C., & Tardaguila, J. (2012). Grapevine Yield and Leaf Area Estimation Using Supervised Classification Methodology on RGB Images Taken under Field Conditions. Sensors, 12(12), 16988-17006. doi:10.3390/s121216988

Diago, M. P., Sanz-Garcia, A., Millan, B., Blasco, J., & Tardaguila, J. (2014). Assessment of flower number per inflorescence in grapevine by image analysis under field conditions. Journal of the Science of Food and Agriculture, 94(10), 1981-1987. doi:10.1002/jsfa.6512

Wycislo, A. P., Clark, J. R., & Karcher, D. E. (2008). Fruit Shape Analysis of Vitis Using Digital Photography. HortScience, 43(3), 677-680. doi:10.21273/hortsci.43.3.677

Cubero, S., Diago, M. P., Blasco, J., Tardáguila, J., Millán, B., & Aleixos, N. (2014). A new method for pedicel/peduncle detection and size assessment of grapevine berries and other fruits by image analysis. Biosystems Engineering, 117, 62-72. doi:10.1016/j.biosystemseng.2013.06.007

Canny, J. (1986). A Computational Approach to Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8(6), 679-698. doi:10.1109/tpami.1986.4767851

Aguado, A. S., Eugenia Montiel, M., & Nixon, M. S. (1996). On using directional information for parameter space decomposition in ellipse detection. Pattern Recognition, 29(3), 369-381. doi:10.1016/0031-3203(94)00096-4

Lei, Y., & Wong, K. C. (1999). Ellipse detection based on symmetry. Pattern Recognition Letters, 20(1), 41-47. doi:10.1016/s0167-8655(98)00127-5

Davies, E. R. (1989). Finding ellipses using the generalised Hough transform. Pattern Recognition Letters, 9(2), 87-96. doi:10.1016/0167-8655(89)90041-x

Hahn, K., Jung, S., Han, Y., & Hahn, H. (2008). A new algorithm for ellipse detection by curve segments. Pattern Recognition Letters, 29(13), 1836-1841. doi:10.1016/j.patrec.2008.05.025

Duda, R. O., & Hart, P. E. (1972). Use of the Hough transformation to detect lines and curves in pictures. Communications of the ACM, 15(1), 11-15. doi:10.1145/361237.361242

Palomares JM González J Ros E Designing a fast convolution under the LIP paradigm applied to edge detection Lecture Notes in Computer Science 3687. Singh S Singh M Apte C Perner P Springer Berlin 560 569 2005

Jourlin, M., & Pinoli, J.-C. (1988). A model for logarithmic image processing. Journal of Microscopy, 149(1), 21-35. doi:10.1111/j.1365-2818.1988.tb04559.x

Tardaguila, J., Diago, M. P., Millan, B., Blasco, J., Cubero, S., & Aleixos, N. (2013). APPLICATIONS OF COMPUTER VISION TECHNIQUES IN VITICULTURE TO ASSESS CANOPY FEATURES, CLUSTER MORPHOLOGY AND BERRY SIZE. Acta Horticulturae, (978), 77-84. doi:10.17660/actahortic.2013.978.7

Toth, D., Aach, T., & Metzler, V. (s. f.). Illumination-invariant change detection. 4th IEEE Southwest Symposium on Image Analysis and Interpretation. doi:10.1109/iai.2000.839561

Blom, P. E., & Tarara, J. M. (2009). Trellis Tension Monitoring Improves Yield Estimation in Vineyards. HortScience, 44(3), 678-685. doi:10.21273/hortsci.44.3.678

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem