- -

Mapping a protein recognition centre with chiral photoactive ligands. An integrated approach combining photophysics, reactivity, proteomics and molecular dynamics simulation studies

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Mapping a protein recognition centre with chiral photoactive ligands. An integrated approach combining photophysics, reactivity, proteomics and molecular dynamics simulation studies

Show full item record

Limones-Herrero, D.; Pérez Ruiz, R.; Lence, E.; Gonzalez-Bello, C.; Miranda Alonso, MÁ.; Jiménez Molero, MC. (2017). Mapping a protein recognition centre with chiral photoactive ligands. An integrated approach combining photophysics, reactivity, proteomics and molecular dynamics simulation studies. Chemical Science. 8(4):2621-2628. https://doi.org/10.1039/c6sc04900a

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/152805

Files in this item

Item Metadata

Title: Mapping a protein recognition centre with chiral photoactive ligands. An integrated approach combining photophysics, reactivity, proteomics and molecular dynamics simulation studies
Author: Limones-Herrero, Daniel Pérez Ruiz, Raul Lence, Emilio Gonzalez-Bello, Concepcion Miranda Alonso, Miguel Ángel Jiménez Molero, María Consuelo
UPV Unit: Universitat Politècnica de València. Departamento de Química - Departament de Química
Issued date:
Abstract:
[EN] A multidisciplinary strategy to obtain structural information on the intraprotein region is described here. As probe ligands, (S)- and (R)-CPFMe (the methyl esters of the chiral drug carprofen) have been selected, ...[+]
Copyrigths: Reconocimiento - No comercial (by-nc)
Source:
Chemical Science. (issn: 2041-6520 )
DOI: 10.1039/c6sc04900a
Publisher:
The Royal Society of Chemistry
Publisher version: https://doi.org/10.1039/c6sc04900a
Project ID:
Xunta de Galicia/ED431G/09
...[+]
Xunta de Galicia/ED431G/09
UV/PT13/0001
MINECO/SAF2013-42899-R
Xunta de Galicia/GRC2013-041
INSTITUTO DE SALUD CARLOS III/RD12/0013/0009
GENERALITAT VALENCIANA/PROMETEOII/2013/005
MINISTERIO DE ECONOMIA INDUSTRIA Y COMPETITIVIDAD /BES-2011-043706
MINISTERIO DE ECONOMIA INDUSTRIA Y COMPETITIVIDAD /CTQ2013-47872-C2-1-P
[-]
Thanks:
Financial support from the Spanish Ministry of Economy and Competitiveness (CTQ2013-47872-C2-1-P, SAF2013-42899-R, BES-2011-043706), Generalitat Valenciana (PROMETEOII/2013/005), Instituto de Salud Carlos III (RD12/0013/0009), ...[+]
Type: Artículo

References

Crosby, J., & Crump, M. P. (2012). The structural role of the carrier protein – active controller or passive carrier. Natural Product Reports, 29(10), 1111. doi:10.1039/c2np20062g

Babine, R. E., & Bender, S. L. (1997). Molecular Recognition of Protein−Ligand Complexes:  Applications to Drug Design. Chemical Reviews, 97(5), 1359-1472. doi:10.1021/cr960370z

Peczuh, M. W., & Hamilton, A. D. (2000). Peptide and Protein Recognition by Designed Molecules. Chemical Reviews, 100(7), 2479-2494. doi:10.1021/cr9900026 [+]
Crosby, J., & Crump, M. P. (2012). The structural role of the carrier protein – active controller or passive carrier. Natural Product Reports, 29(10), 1111. doi:10.1039/c2np20062g

Babine, R. E., & Bender, S. L. (1997). Molecular Recognition of Protein−Ligand Complexes:  Applications to Drug Design. Chemical Reviews, 97(5), 1359-1472. doi:10.1021/cr960370z

Peczuh, M. W., & Hamilton, A. D. (2000). Peptide and Protein Recognition by Designed Molecules. Chemical Reviews, 100(7), 2479-2494. doi:10.1021/cr9900026

Houk, K. N., Leach, A. G., Kim, S. P., & Zhang, X. (2003). Binding Affinities of Host–Guest, Protein–Ligand, and Protein–Transition-State Complexes. Angewandte Chemie International Edition, 42(40), 4872-4897. doi:10.1002/anie.200200565

Smith, R. D., Engdahl, A. L., Dunbar, J. B., & Carlson, H. A. (2012). Biophysical Limits of Protein–Ligand Binding. Journal of Chemical Information and Modeling, 52(8), 2098-2106. doi:10.1021/ci200612f

Smith, A. J. T., Zhang, X., Leach, A. G., & Houk, K. N. (2009). Beyond Picomolar Affinities: Quantitative Aspects of Noncovalent and Covalent Binding of Drugs to Proteins. Journal of Medicinal Chemistry, 52(2), 225-233. doi:10.1021/jm800498e

Schneider, H.-J. (2009). Binding Mechanisms in Supramolecular Complexes. Angewandte Chemie International Edition, 48(22), 3924-3977. doi:10.1002/anie.200802947

Zhang, X., & Houk, K. N. (2005). Why Enzymes Are Proficient Catalysts:  Beyond the Pauling Paradigm. Accounts of Chemical Research, 38(5), 379-385. doi:10.1021/ar040257s

Williams, D. H., Stephens, E., O’Brien, D. P., & Zhou, M. (2004). Understanding Noncovalent Interactions: Ligand Binding Energy and Catalytic Efficiency from Ligand-Induced Reductions in Motion within Receptors and Enzymes. Angewandte Chemie International Edition, 43(48), 6596-6616. doi:10.1002/anie.200300644

Mahadevi, A. S., & Sastry, G. N. (2016). Cooperativity in Noncovalent Interactions. Chemical Reviews, 116(5), 2775-2825. doi:10.1021/cr500344e

Thompson, R. F., Walker, M., Siebert, C. A., Muench, S. P., & Ranson, N. A. (2016). An introduction to sample preparation and imaging by cryo-electron microscopy for structural biology. Methods, 100, 3-15. doi:10.1016/j.ymeth.2016.02.017

Hassell, A. M., An, G., Bledsoe, R. K., Bynum, J. M., Carter, H. L., Deng, S.-J. J., … Shewchuk, L. M. (2006). Crystallization of protein–ligand complexes. Acta Crystallographica Section D Biological Crystallography, 63(1), 72-79. doi:10.1107/s0907444906047020

P. Nollert , M. D.Feese and B. L.Staker, H.Kim, Protein X-Ray Crystallography in Drug Discovery, Pharmaceutical Sciences Encyclopedia, John Wiley & Sons, 2010

Cooper, D. R., Porebski, P. J., Chruszcz, M., & Minor, W. (2011). X-ray crystallography: assessment and validation of protein–small molecule complexes for drug discovery. Expert Opinion on Drug Discovery, 6(8), 771-782. doi:10.1517/17460441.2011.585154

Carvalho, A. L., Trincão, J., & Romão, M. J. (2009). X-Ray Crystallography in Drug Discovery. Methods in Molecular Biology, 31-56. doi:10.1007/978-1-60761-244-5_3

Montanaro, S., Lhiaubet-Vallet, V., Jiménez, M. C., Blanca, M., & Miranda, M. A. (2009). Photonucleophilic Addition of the ε-Amino Group of Lysine to a Triflusal Metabolite as a Mechanistic Key to Photoallergy Mediated by the Parent Drug. ChemMedChem, 4(7), 1196-1202. doi:10.1002/cmdc.200900066

Nuin, E., Pérez-Sala, D., Lhiaubet-Vallet, V., Andreu, I., & Miranda, M. A. (2016). Photosensitivity to Triflusal: Formation of a Photoadduct with Ubiquitin Demonstrated by Photophysical and Proteomic Techniques. Frontiers in Pharmacology, 7. doi:10.3389/fphar.2016.00277

Hatanaka, Y., & Sadakane, Y. (2002). Photoaffinity Labeling in Drug Discovery and Developments: Chemical Gateway for Entering Proteomic Frontier. Current Topics in Medicinal Chemistry, 2(3), 271-288. doi:10.2174/1568026023394182

Kotzyba-Hibert, F., Kapfer, I., & Goeldner, M. (1995). Recent Trends in Photoaffinity Labeling. Angewandte Chemie International Edition in English, 34(12), 1296-1312. doi:10.1002/anie.199512961

Andreu, I., Mayorga, C., & Miranda, M. A. (2010). Generation of reactive intermediates in photoallergic dermatitis. Current Opinion in Allergy and Clinical Immunology, 10(4), 303-308. doi:10.1097/aci.0b013e32833bc68c

M. Gonçalo , Phototoxic and Photoallergic Reactions, in Contact Dermatitis, ed. J. D. Johansen, P. J. Frosch and J.-P. Lepoittevin, Springer-Verlag, Berlin, 2011, p. 361

J. Ferguson , Drug and Chemical Photosensitivity, in Photodermatology, ed. J. L. M. Hawk, Arnold, London, 1999, p. 155

P. Jones , In vitro phototoxicity assays, in Principles and Practice of Skin Toxicology, ed. R. Chilcott and S. Price, John Wiley & Sons, 2008, p. 169

Moser, J., Hye, A., Lovell, W. W., Earl, L. K., Castell, J. V., & Miranda, M. A. (2001). Mechanisms of drug photobinding to proteins: photobinding of suprofen to human serum albumin. Toxicology in Vitro, 15(4-5), 333-337. doi:10.1016/s0887-2333(01)00033-9

Moser, J., Boscá, F., Lovell, W. W., Castell, J. V., Miranda, M. A., & Hye, A. (2000). Photobinding of carprofen to protein. Journal of Photochemistry and Photobiology B: Biology, 58(1), 13-19. doi:10.1016/s1011-1344(00)00115-9

Lhiaubet-Vallet, V., Sarabia, Z., Boscá, F., & Miranda, M. A. (2004). Human Serum Albumin-Mediated Stereodifferentiation in the Triplet State Behavior of (S)- and (R)-Carprofen. Journal of the American Chemical Society, 126(31), 9538-9539. doi:10.1021/ja048518g

Matsumoto, K., Sukimoto, K., Nishi, K., Maruyama, T., Suenaga, A., & Otagiri, M. (2002). Characterization of Ligand Binding Sites on the α1-Acid Glycoprotein in Humans Bovines and Dogs. Drug Metabolism and Pharmacokinetics, 17(4), 300-306. doi:10.2133/dmpk.17.300

Fournier, T., Medjoubi-N, N., & Porquet, D. (2000). Alpha-1-acid glycoprotein. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 1482(1-2), 157-171. doi:10.1016/s0167-4838(00)00153-9

TAMURA, K., YATSU, T., ITOH, H., & MOTOI, Y. (1989). Isolation, characterization, and quantitative measurement of serum .ALPHA.1-acid glycoprotein in cattle. The Japanese Journal of Veterinary Science, 51(5), 987-994. doi:10.1292/jvms1939.51.987

Nakano, M. (2004). Detailed structural features of glycan chains derived from  1-acid glycoproteins of several different animals: the presence of hypersialylated, O-acetylated sialic acids but not disialyl residues. Glycobiology, 14(5), 431-441. doi:10.1093/glycob/cwh034

Ceciliani, F., Pocacqua, V., Provasi, E., Comunian, C., Bertolini, A., Bronzo, V., … Sartorelli, P. (2005). Identification of the bovine α1-acid glycoprotein in colostrum and milk. Veterinary Research, 36(5-6), 735-746. doi:10.1051/vetres:2005029

RAHMAN, M. H., YAMASAKI, K., SHIN, Y.-H., LIN, C. C., & OTAGIRI, M. (1993). Characterization of High Affinity Binding Sites of Non-steroidal Anti-inflammatory Drugs with Respect to Site-Specific Probes on Human Serum Albumin. Biological & Pharmaceutical Bulletin, 16(11), 1169-1174. doi:10.1248/bpb.16.1169

V. Lhiaubet-Vallet and M. A.Miranda, in Handbook of Organic Photochemistry and Photobiology, 3rd edn, 2012, vol. 2, p. 1541

Kerr, A. C., Muller, F., Ferguson, J., & Dawe, R. S. (2008). Occupational carprofen photoallergic contact dermatitis. British Journal of Dermatology, 159(6), 1303-1308. doi:10.1111/j.1365-2133.2008.08847.x

Bosca, F., Encinas, S., Heelis, P. F., & Miranda, M. A. (1997). Photophysical and Photochemical Characterization of a Photosensitizing Drug:  A Combined Steady State Photolysis and Laser Flash Photolysis Study on Carprofen†. Chemical Research in Toxicology, 10(7), 820-827. doi:10.1021/tx9700376

Lhiaubet-Vallet, V., Boscá, F., & Miranda, M. A. (2007). Stereodifferentiating Drug−Biomolecule Interactions in the Triplet Excited State:  Studies on Supramolecular Carprofen/Protein Systems and on Carprofen−Tryptophan Model Dyads. The Journal of Physical Chemistry B, 111(2), 423-431. doi:10.1021/jp066968k

Limones-Herrero, D., Pérez-Ruiz, R., Jiménez, M. C., & Miranda, M. A. (2013). Bypassing the Energy Barrier of Homolytic Photodehalogenation in Chloroaromatics through Self-Quenching. Organic Letters, 15(6), 1314-1317. doi:10.1021/ol400251s

Jiménez, M. C., Miranda, M. A., & Vayá, I. (2005). Triplet Excited States as Chiral Reporters for the Binding of Drugs to Transport Proteins. Journal of the American Chemical Society, 127(29), 10134-10135. doi:10.1021/ja0514489

Alonso, R., Jiménez, M. C., & Miranda, M. A. (2011). Stereodifferentiation in the Compartmentalized Photooxidation of a Protein-Bound Anthracene. Organic Letters, 13(15), 3860-3863. doi:10.1021/ol201209h

Vayá, I., Bueno, C. J., Jiménez, M. C., & Miranda, M. A. (2006). Use of Triplet Excited States for the Study of Drug Binding to Human and Bovine Serum Albumins. ChemMedChem, 1(9), 1015-1020. doi:10.1002/cmdc.200600061

Vayá, I., Bueno, C. J., Jiménez, M. C., & Miranda, M. A. (2008). Determination of Enantiomeric Compositions by Transient Absorption Spectroscopy using Proteins as Chiral Selectors. Chemistry - A European Journal, 14(36), 11284-11287. doi:10.1002/chem.200801657

Vayá, I., Lhiaubet-Vallet, V., Jiménez, M. C., & Miranda, M. A. (2014). Photoactive assemblies of organic compounds and biomolecules: drug–protein supramolecular systems. Chem. Soc. Rev., 43(12), 4102-4122. doi:10.1039/c3cs60413f

http://www.ccdc.cam.ac.uk/solutions/csd-discovery/components/gold/

Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., & Sternberg, M. J. E. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10(6), 845-858. doi:10.1038/nprot.2015.053

Schönfeld, D. L., Ravelli, R. B. G., Mueller, U., & Skerra, A. (2008). The 1.8-Å Crystal Structure of α1-Acid Glycoprotein (Orosomucoid) Solved by UV RIP Reveals the Broad Drug-Binding Activity of This Human Plasma Lipocalin. Journal of Molecular Biology, 384(2), 393-405. doi:10.1016/j.jmb.2008.09.020

Miller, B. R., McGee, T. D., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA.py: An Efficient Program for End-State Free Energy Calculations. Journal of Chemical Theory and Computation, 8(9), 3314-3321. doi:10.1021/ct300418h

Woods, C. J., Malaisree, M., Hannongbua, S., & Mulholland, A. J. (2011). A water-swap reaction coordinate for the calculation of absolute protein–ligand binding free energies. The Journal of Chemical Physics, 134(5), 054114. doi:10.1063/1.3519057

Woods, C. J., Malaisree, M., Michel, J., Long, B., McIntosh-Smith, S., & Mulholland, A. J. (2014). Rapid decomposition and visualisation of protein–ligand binding free energies by residue and by water. Faraday Discuss., 169, 477-499. doi:10.1039/c3fd00125c

[-]

This item appears in the following Collection(s)

Show full item record