- -

Mapping a protein recognition centre with chiral photoactive ligands. An integrated approach combining photophysics, reactivity, proteomics and molecular dynamics simulation studies

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Mapping a protein recognition centre with chiral photoactive ligands. An integrated approach combining photophysics, reactivity, proteomics and molecular dynamics simulation studies

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Limones-Herrero, Daniel es_ES
dc.contributor.author Pérez Ruiz, Raul es_ES
dc.contributor.author Lence, Emilio es_ES
dc.contributor.author Gonzalez-Bello, Concepcion es_ES
dc.contributor.author Miranda Alonso, Miguel Ángel es_ES
dc.contributor.author Jiménez Molero, María Consuelo es_ES
dc.date.accessioned 2020-10-22T03:32:11Z
dc.date.available 2020-10-22T03:32:11Z
dc.date.issued 2017-04-01 es_ES
dc.identifier.issn 2041-6520 es_ES
dc.identifier.uri http://hdl.handle.net/10251/152805
dc.description.abstract [EN] A multidisciplinary strategy to obtain structural information on the intraprotein region is described here. As probe ligands, (S)- and (R)-CPFMe (the methyl esters of the chiral drug carprofen) have been selected, while bovine 1-acid glycoprotein (BAAG) has been chosen as biological host. The procedure involves separate irradiation of the BAAG/(S)-CPFMe and BAAG/(R)-CPFMe complexes, coupled with fluorescence, laser flash photolysis, proteomic analysis, docking and molecular dynamic simulations. Thus, irradiation of the BAAG/CPFMe complexes at  = 320 nm, was followed by fluorescence spectroscopy. The intensity of the emission band obtained after irradiation indicated photodehalogenation, whereas its structureless shape suggested covalent binding of the resulting radical CBZMe● to the biopolymer. After gel filtration chromatography, the spectra still displayed emission, in agreement with covalent attachment of CBZMe● to BAAG. Stereodifferentiation was observed in this process. After trypsin digestion and ESI-MS/MS, incorporation of CBZMe was detected at Phe68. Docking and molecular dynamics simulation studies, which were carried out using a homology model of BAAG, reveal that the closer proximity of the aromatic moiety of the (S)- enantiomer to the phenyl group of Phe68 would be responsible for the experimentally observed more effective chemical modification of the protein. The proposed tridimensional structure of BAAG covalently modified by the two enantiomers is also provided. In principle, this approach can be extended to a variety of protein/ligand complexes. es_ES
dc.description.sponsorship Financial support from the Spanish Ministry of Economy and Competitiveness (CTQ2013-47872-C2-1-P, SAF2013-42899-R, BES-2011-043706), Generalitat Valenciana (PROMETEOII/2013/005), Instituto de Salud Carlos III (RD12/0013/0009), Xunta de Galicia (GRC2013-041), the Conselleria de Cultura, Educacion e Ordenacion Universitaria (Centro singular de investigacion de Galicia accreditation 2016-2019, ED431G/09) and the European Regional Development Fund (ERDF) is gratefully acknowledged. E. L. thanks the Xunta de Galicia for a postdoctoral fellowship. We are grateful to the Centro de Supercomputacion de Galicia (CESGA) for use of the Finis Terrae II supercomputer. The proteomic analysis was performed in the proteomics facility of SCSIE University of Valencia that belongs to ProteoRed PRB2-ISCIII and is supported by grant PT13/0001, of the PE I+D+i 2013-2016, funded by ISCIII and FEDER es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Chemical Science es_ES
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.title Mapping a protein recognition centre with chiral photoactive ligands. An integrated approach combining photophysics, reactivity, proteomics and molecular dynamics simulation studies es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c6sc04900a es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Xunta de Galicia//ED431G%2F09/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UV//PT13%2F0001/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SAF2013-42899-R/ES/DESARROLLO DE NUEVOS ANTIBIOTICOS PARA EL TRATAMIENTO DE INFECCIONES BACTERIANAS RESISTENTES: METABOLISMO, RESISTENCIA Y COMUNICACION CELULA-CELULA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Xunta de Galicia//GRC2013-041/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RD12%2F0013%2F0009/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F005/ES/ESPECIES FOTOACTIVAS Y SU INTERACCION CON BIOMOLECULAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BES-2011-043706/ES/BES-2011-043706/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2013-47872-C2-1-P/ES/METABOLITOS FOTOACTIVOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Limones-Herrero, D.; Pérez Ruiz, R.; Lence, E.; Gonzalez-Bello, C.; Miranda Alonso, MÁ.; Jiménez Molero, MC. (2017). Mapping a protein recognition centre with chiral photoactive ligands. An integrated approach combining photophysics, reactivity, proteomics and molecular dynamics simulation studies. Chemical Science. 8(4):2621-2628. https://doi.org/10.1039/c6sc04900a es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c6sc04900a es_ES
dc.description.upvformatpinicio 2621 es_ES
dc.description.upvformatpfin 2628 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 4 es_ES
dc.identifier.pmid 28553497 es_ES
dc.identifier.pmcid PMC5431658 es_ES
dc.relation.pasarela S\340352 es_ES
dc.contributor.funder Xunta de Galicia es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Universitat de València es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Crosby, J., & Crump, M. P. (2012). The structural role of the carrier protein – active controller or passive carrier. Natural Product Reports, 29(10), 1111. doi:10.1039/c2np20062g es_ES
dc.description.references Babine, R. E., & Bender, S. L. (1997). Molecular Recognition of Protein−Ligand Complexes:  Applications to Drug Design. Chemical Reviews, 97(5), 1359-1472. doi:10.1021/cr960370z es_ES
dc.description.references Peczuh, M. W., & Hamilton, A. D. (2000). Peptide and Protein Recognition by Designed Molecules. Chemical Reviews, 100(7), 2479-2494. doi:10.1021/cr9900026 es_ES
dc.description.references Houk, K. N., Leach, A. G., Kim, S. P., & Zhang, X. (2003). Binding Affinities of Host–Guest, Protein–Ligand, and Protein–Transition-State Complexes. Angewandte Chemie International Edition, 42(40), 4872-4897. doi:10.1002/anie.200200565 es_ES
dc.description.references Smith, R. D., Engdahl, A. L., Dunbar, J. B., & Carlson, H. A. (2012). Biophysical Limits of Protein–Ligand Binding. Journal of Chemical Information and Modeling, 52(8), 2098-2106. doi:10.1021/ci200612f es_ES
dc.description.references Smith, A. J. T., Zhang, X., Leach, A. G., & Houk, K. N. (2009). Beyond Picomolar Affinities: Quantitative Aspects of Noncovalent and Covalent Binding of Drugs to Proteins. Journal of Medicinal Chemistry, 52(2), 225-233. doi:10.1021/jm800498e es_ES
dc.description.references Schneider, H.-J. (2009). Binding Mechanisms in Supramolecular Complexes. Angewandte Chemie International Edition, 48(22), 3924-3977. doi:10.1002/anie.200802947 es_ES
dc.description.references Zhang, X., & Houk, K. N. (2005). Why Enzymes Are Proficient Catalysts:  Beyond the Pauling Paradigm. Accounts of Chemical Research, 38(5), 379-385. doi:10.1021/ar040257s es_ES
dc.description.references Williams, D. H., Stephens, E., O’Brien, D. P., & Zhou, M. (2004). Understanding Noncovalent Interactions: Ligand Binding Energy and Catalytic Efficiency from Ligand-Induced Reductions in Motion within Receptors and Enzymes. Angewandte Chemie International Edition, 43(48), 6596-6616. doi:10.1002/anie.200300644 es_ES
dc.description.references Mahadevi, A. S., & Sastry, G. N. (2016). Cooperativity in Noncovalent Interactions. Chemical Reviews, 116(5), 2775-2825. doi:10.1021/cr500344e es_ES
dc.description.references Thompson, R. F., Walker, M., Siebert, C. A., Muench, S. P., & Ranson, N. A. (2016). An introduction to sample preparation and imaging by cryo-electron microscopy for structural biology. Methods, 100, 3-15. doi:10.1016/j.ymeth.2016.02.017 es_ES
dc.description.references Hassell, A. M., An, G., Bledsoe, R. K., Bynum, J. M., Carter, H. L., Deng, S.-J. J., … Shewchuk, L. M. (2006). Crystallization of protein–ligand complexes. Acta Crystallographica Section D Biological Crystallography, 63(1), 72-79. doi:10.1107/s0907444906047020 es_ES
dc.description.references P. Nollert , M. D.Feese and B. L.Staker, H.Kim, Protein X-Ray Crystallography in Drug Discovery, Pharmaceutical Sciences Encyclopedia, John Wiley & Sons, 2010 es_ES
dc.description.references Cooper, D. R., Porebski, P. J., Chruszcz, M., & Minor, W. (2011). X-ray crystallography: assessment and validation of protein–small molecule complexes for drug discovery. Expert Opinion on Drug Discovery, 6(8), 771-782. doi:10.1517/17460441.2011.585154 es_ES
dc.description.references Carvalho, A. L., Trincão, J., & Romão, M. J. (2009). X-Ray Crystallography in Drug Discovery. Methods in Molecular Biology, 31-56. doi:10.1007/978-1-60761-244-5_3 es_ES
dc.description.references Montanaro, S., Lhiaubet-Vallet, V., Jiménez, M. C., Blanca, M., & Miranda, M. A. (2009). Photonucleophilic Addition of the ε-Amino Group of Lysine to a Triflusal Metabolite as a Mechanistic Key to Photoallergy Mediated by the Parent Drug. ChemMedChem, 4(7), 1196-1202. doi:10.1002/cmdc.200900066 es_ES
dc.description.references Nuin, E., Pérez-Sala, D., Lhiaubet-Vallet, V., Andreu, I., & Miranda, M. A. (2016). Photosensitivity to Triflusal: Formation of a Photoadduct with Ubiquitin Demonstrated by Photophysical and Proteomic Techniques. Frontiers in Pharmacology, 7. doi:10.3389/fphar.2016.00277 es_ES
dc.description.references Hatanaka, Y., & Sadakane, Y. (2002). Photoaffinity Labeling in Drug Discovery and Developments: Chemical Gateway for Entering Proteomic Frontier. Current Topics in Medicinal Chemistry, 2(3), 271-288. doi:10.2174/1568026023394182 es_ES
dc.description.references Kotzyba-Hibert, F., Kapfer, I., & Goeldner, M. (1995). Recent Trends in Photoaffinity Labeling. Angewandte Chemie International Edition in English, 34(12), 1296-1312. doi:10.1002/anie.199512961 es_ES
dc.description.references Andreu, I., Mayorga, C., & Miranda, M. A. (2010). Generation of reactive intermediates in photoallergic dermatitis. Current Opinion in Allergy and Clinical Immunology, 10(4), 303-308. doi:10.1097/aci.0b013e32833bc68c es_ES
dc.description.references M. Gonçalo , Phototoxic and Photoallergic Reactions, in Contact Dermatitis, ed. J. D. Johansen, P. J. Frosch and J.-P. Lepoittevin, Springer-Verlag, Berlin, 2011, p. 361 es_ES
dc.description.references J. Ferguson , Drug and Chemical Photosensitivity, in Photodermatology, ed. J. L. M. Hawk, Arnold, London, 1999, p. 155 es_ES
dc.description.references P. Jones , In vitro phototoxicity assays, in Principles and Practice of Skin Toxicology, ed. R. Chilcott and S. Price, John Wiley & Sons, 2008, p. 169 es_ES
dc.description.references Moser, J., Hye, A., Lovell, W. W., Earl, L. K., Castell, J. V., & Miranda, M. A. (2001). Mechanisms of drug photobinding to proteins: photobinding of suprofen to human serum albumin. Toxicology in Vitro, 15(4-5), 333-337. doi:10.1016/s0887-2333(01)00033-9 es_ES
dc.description.references Moser, J., Boscá, F., Lovell, W. W., Castell, J. V., Miranda, M. A., & Hye, A. (2000). Photobinding of carprofen to protein. Journal of Photochemistry and Photobiology B: Biology, 58(1), 13-19. doi:10.1016/s1011-1344(00)00115-9 es_ES
dc.description.references Lhiaubet-Vallet, V., Sarabia, Z., Boscá, F., & Miranda, M. A. (2004). Human Serum Albumin-Mediated Stereodifferentiation in the Triplet State Behavior of (S)- and (R)-Carprofen. Journal of the American Chemical Society, 126(31), 9538-9539. doi:10.1021/ja048518g es_ES
dc.description.references Matsumoto, K., Sukimoto, K., Nishi, K., Maruyama, T., Suenaga, A., & Otagiri, M. (2002). Characterization of Ligand Binding Sites on the α1-Acid Glycoprotein in Humans Bovines and Dogs. Drug Metabolism and Pharmacokinetics, 17(4), 300-306. doi:10.2133/dmpk.17.300 es_ES
dc.description.references Fournier, T., Medjoubi-N, N., & Porquet, D. (2000). Alpha-1-acid glycoprotein. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 1482(1-2), 157-171. doi:10.1016/s0167-4838(00)00153-9 es_ES
dc.description.references TAMURA, K., YATSU, T., ITOH, H., & MOTOI, Y. (1989). Isolation, characterization, and quantitative measurement of serum .ALPHA.1-acid glycoprotein in cattle. The Japanese Journal of Veterinary Science, 51(5), 987-994. doi:10.1292/jvms1939.51.987 es_ES
dc.description.references Nakano, M. (2004). Detailed structural features of glycan chains derived from  1-acid glycoproteins of several different animals: the presence of hypersialylated, O-acetylated sialic acids but not disialyl residues. Glycobiology, 14(5), 431-441. doi:10.1093/glycob/cwh034 es_ES
dc.description.references Ceciliani, F., Pocacqua, V., Provasi, E., Comunian, C., Bertolini, A., Bronzo, V., … Sartorelli, P. (2005). Identification of the bovine α1-acid glycoprotein in colostrum and milk. Veterinary Research, 36(5-6), 735-746. doi:10.1051/vetres:2005029 es_ES
dc.description.references RAHMAN, M. H., YAMASAKI, K., SHIN, Y.-H., LIN, C. C., & OTAGIRI, M. (1993). Characterization of High Affinity Binding Sites of Non-steroidal Anti-inflammatory Drugs with Respect to Site-Specific Probes on Human Serum Albumin. Biological & Pharmaceutical Bulletin, 16(11), 1169-1174. doi:10.1248/bpb.16.1169 es_ES
dc.description.references V. Lhiaubet-Vallet and M. A.Miranda, in Handbook of Organic Photochemistry and Photobiology, 3rd edn, 2012, vol. 2, p. 1541 es_ES
dc.description.references Kerr, A. C., Muller, F., Ferguson, J., & Dawe, R. S. (2008). Occupational carprofen photoallergic contact dermatitis. British Journal of Dermatology, 159(6), 1303-1308. doi:10.1111/j.1365-2133.2008.08847.x es_ES
dc.description.references Bosca, F., Encinas, S., Heelis, P. F., & Miranda, M. A. (1997). Photophysical and Photochemical Characterization of a Photosensitizing Drug:  A Combined Steady State Photolysis and Laser Flash Photolysis Study on Carprofen†. Chemical Research in Toxicology, 10(7), 820-827. doi:10.1021/tx9700376 es_ES
dc.description.references Lhiaubet-Vallet, V., Boscá, F., & Miranda, M. A. (2007). Stereodifferentiating Drug−Biomolecule Interactions in the Triplet Excited State:  Studies on Supramolecular Carprofen/Protein Systems and on Carprofen−Tryptophan Model Dyads. The Journal of Physical Chemistry B, 111(2), 423-431. doi:10.1021/jp066968k es_ES
dc.description.references Limones-Herrero, D., Pérez-Ruiz, R., Jiménez, M. C., & Miranda, M. A. (2013). Bypassing the Energy Barrier of Homolytic Photodehalogenation in Chloroaromatics through Self-Quenching. Organic Letters, 15(6), 1314-1317. doi:10.1021/ol400251s es_ES
dc.description.references Jiménez, M. C., Miranda, M. A., & Vayá, I. (2005). Triplet Excited States as Chiral Reporters for the Binding of Drugs to Transport Proteins. Journal of the American Chemical Society, 127(29), 10134-10135. doi:10.1021/ja0514489 es_ES
dc.description.references Alonso, R., Jiménez, M. C., & Miranda, M. A. (2011). Stereodifferentiation in the Compartmentalized Photooxidation of a Protein-Bound Anthracene. Organic Letters, 13(15), 3860-3863. doi:10.1021/ol201209h es_ES
dc.description.references Vayá, I., Bueno, C. J., Jiménez, M. C., & Miranda, M. A. (2006). Use of Triplet Excited States for the Study of Drug Binding to Human and Bovine Serum Albumins. ChemMedChem, 1(9), 1015-1020. doi:10.1002/cmdc.200600061 es_ES
dc.description.references Vayá, I., Bueno, C. J., Jiménez, M. C., & Miranda, M. A. (2008). Determination of Enantiomeric Compositions by Transient Absorption Spectroscopy using Proteins as Chiral Selectors. Chemistry - A European Journal, 14(36), 11284-11287. doi:10.1002/chem.200801657 es_ES
dc.description.references Vayá, I., Lhiaubet-Vallet, V., Jiménez, M. C., & Miranda, M. A. (2014). Photoactive assemblies of organic compounds and biomolecules: drug–protein supramolecular systems. Chem. Soc. Rev., 43(12), 4102-4122. doi:10.1039/c3cs60413f es_ES
dc.description.references http://www.ccdc.cam.ac.uk/solutions/csd-discovery/components/gold/ es_ES
dc.description.references Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., & Sternberg, M. J. E. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10(6), 845-858. doi:10.1038/nprot.2015.053 es_ES
dc.description.references Schönfeld, D. L., Ravelli, R. B. G., Mueller, U., & Skerra, A. (2008). The 1.8-Å Crystal Structure of α1-Acid Glycoprotein (Orosomucoid) Solved by UV RIP Reveals the Broad Drug-Binding Activity of This Human Plasma Lipocalin. Journal of Molecular Biology, 384(2), 393-405. doi:10.1016/j.jmb.2008.09.020 es_ES
dc.description.references Miller, B. R., McGee, T. D., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA.py: An Efficient Program for End-State Free Energy Calculations. Journal of Chemical Theory and Computation, 8(9), 3314-3321. doi:10.1021/ct300418h es_ES
dc.description.references Woods, C. J., Malaisree, M., Hannongbua, S., & Mulholland, A. J. (2011). A water-swap reaction coordinate for the calculation of absolute protein–ligand binding free energies. The Journal of Chemical Physics, 134(5), 054114. doi:10.1063/1.3519057 es_ES
dc.description.references Woods, C. J., Malaisree, M., Michel, J., Long, B., McIntosh-Smith, S., & Mulholland, A. J. (2014). Rapid decomposition and visualisation of protein–ligand binding free energies by residue and by water. Faraday Discuss., 169, 477-499. doi:10.1039/c3fd00125c es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem