Mostrar el registro sencillo del ítem
dc.contributor.author | Limones-Herrero, Daniel | es_ES |
dc.contributor.author | Pérez Ruiz, Raul | es_ES |
dc.contributor.author | Lence, Emilio | es_ES |
dc.contributor.author | Gonzalez-Bello, Concepcion | es_ES |
dc.contributor.author | Miranda Alonso, Miguel Ángel | es_ES |
dc.contributor.author | Jiménez Molero, María Consuelo | es_ES |
dc.date.accessioned | 2020-10-22T03:32:11Z | |
dc.date.available | 2020-10-22T03:32:11Z | |
dc.date.issued | 2017-04-01 | es_ES |
dc.identifier.issn | 2041-6520 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/152805 | |
dc.description.abstract | [EN] A multidisciplinary strategy to obtain structural information on the intraprotein region is described here. As probe ligands, (S)- and (R)-CPFMe (the methyl esters of the chiral drug carprofen) have been selected, while bovine 1-acid glycoprotein (BAAG) has been chosen as biological host. The procedure involves separate irradiation of the BAAG/(S)-CPFMe and BAAG/(R)-CPFMe complexes, coupled with fluorescence, laser flash photolysis, proteomic analysis, docking and molecular dynamic simulations. Thus, irradiation of the BAAG/CPFMe complexes at  = 320 nm, was followed by fluorescence spectroscopy. The intensity of the emission band obtained after irradiation indicated photodehalogenation, whereas its structureless shape suggested covalent binding of the resulting radical CBZMe● to the biopolymer. After gel filtration chromatography, the spectra still displayed emission, in agreement with covalent attachment of CBZMe● to BAAG. Stereodifferentiation was observed in this process. After trypsin digestion and ESI-MS/MS, incorporation of CBZMe was detected at Phe68. Docking and molecular dynamics simulation studies, which were carried out using a homology model of BAAG, reveal that the closer proximity of the aromatic moiety of the (S)- enantiomer to the phenyl group of Phe68 would be responsible for the experimentally observed more effective chemical modification of the protein. The proposed tridimensional structure of BAAG covalently modified by the two enantiomers is also provided. In principle, this approach can be extended to a variety of protein/ligand complexes. | es_ES |
dc.description.sponsorship | Financial support from the Spanish Ministry of Economy and Competitiveness (CTQ2013-47872-C2-1-P, SAF2013-42899-R, BES-2011-043706), Generalitat Valenciana (PROMETEOII/2013/005), Instituto de Salud Carlos III (RD12/0013/0009), Xunta de Galicia (GRC2013-041), the Conselleria de Cultura, Educacion e Ordenacion Universitaria (Centro singular de investigacion de Galicia accreditation 2016-2019, ED431G/09) and the European Regional Development Fund (ERDF) is gratefully acknowledged. E. L. thanks the Xunta de Galicia for a postdoctoral fellowship. We are grateful to the Centro de Supercomputacion de Galicia (CESGA) for use of the Finis Terrae II supercomputer. The proteomic analysis was performed in the proteomics facility of SCSIE University of Valencia that belongs to ProteoRed PRB2-ISCIII and is supported by grant PT13/0001, of the PE I+D+i 2013-2016, funded by ISCIII and FEDER | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | The Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Chemical Science | es_ES |
dc.rights | Reconocimiento - No comercial (by-nc) | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.subject.classification | QUIMICA ANALITICA | es_ES |
dc.title | Mapping a protein recognition centre with chiral photoactive ligands. An integrated approach combining photophysics, reactivity, proteomics and molecular dynamics simulation studies | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/c6sc04900a | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Xunta de Galicia//ED431G%2F09/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UV//PT13%2F0001/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SAF2013-42899-R/ES/DESARROLLO DE NUEVOS ANTIBIOTICOS PARA EL TRATAMIENTO DE INFECCIONES BACTERIANAS RESISTENTES: METABOLISMO, RESISTENCIA Y COMUNICACION CELULA-CELULA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Xunta de Galicia//GRC2013-041/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//RD12%2F0013%2F0009/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F005/ES/ESPECIES FOTOACTIVAS Y SU INTERACCION CON BIOMOLECULAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//BES-2011-043706/ES/BES-2011-043706/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2013-47872-C2-1-P/ES/METABOLITOS FOTOACTIVOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Limones-Herrero, D.; Pérez Ruiz, R.; Lence, E.; Gonzalez-Bello, C.; Miranda Alonso, MÁ.; Jiménez Molero, MC. (2017). Mapping a protein recognition centre with chiral photoactive ligands. An integrated approach combining photophysics, reactivity, proteomics and molecular dynamics simulation studies. Chemical Science. 8(4):2621-2628. https://doi.org/10.1039/c6sc04900a | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1039/c6sc04900a | es_ES |
dc.description.upvformatpinicio | 2621 | es_ES |
dc.description.upvformatpfin | 2628 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.pmid | 28553497 | es_ES |
dc.identifier.pmcid | PMC5431658 | es_ES |
dc.relation.pasarela | S\340352 | es_ES |
dc.contributor.funder | Xunta de Galicia | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Universitat de València | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Crosby, J., & Crump, M. P. (2012). The structural role of the carrier protein – active controller or passive carrier. Natural Product Reports, 29(10), 1111. doi:10.1039/c2np20062g | es_ES |
dc.description.references | Babine, R. E., & Bender, S. L. (1997). Molecular Recognition of Protein−Ligand Complexes: Applications to Drug Design. Chemical Reviews, 97(5), 1359-1472. doi:10.1021/cr960370z | es_ES |
dc.description.references | Peczuh, M. W., & Hamilton, A. D. (2000). Peptide and Protein Recognition by Designed Molecules. Chemical Reviews, 100(7), 2479-2494. doi:10.1021/cr9900026 | es_ES |
dc.description.references | Houk, K. N., Leach, A. G., Kim, S. P., & Zhang, X. (2003). Binding Affinities of Host–Guest, Protein–Ligand, and Protein–Transition-State Complexes. Angewandte Chemie International Edition, 42(40), 4872-4897. doi:10.1002/anie.200200565 | es_ES |
dc.description.references | Smith, R. D., Engdahl, A. L., Dunbar, J. B., & Carlson, H. A. (2012). Biophysical Limits of Protein–Ligand Binding. Journal of Chemical Information and Modeling, 52(8), 2098-2106. doi:10.1021/ci200612f | es_ES |
dc.description.references | Smith, A. J. T., Zhang, X., Leach, A. G., & Houk, K. N. (2009). Beyond Picomolar Affinities: Quantitative Aspects of Noncovalent and Covalent Binding of Drugs to Proteins. Journal of Medicinal Chemistry, 52(2), 225-233. doi:10.1021/jm800498e | es_ES |
dc.description.references | Schneider, H.-J. (2009). Binding Mechanisms in Supramolecular Complexes. Angewandte Chemie International Edition, 48(22), 3924-3977. doi:10.1002/anie.200802947 | es_ES |
dc.description.references | Zhang, X., & Houk, K. N. (2005). Why Enzymes Are Proficient Catalysts: Beyond the Pauling Paradigm. Accounts of Chemical Research, 38(5), 379-385. doi:10.1021/ar040257s | es_ES |
dc.description.references | Williams, D. H., Stephens, E., O’Brien, D. P., & Zhou, M. (2004). Understanding Noncovalent Interactions: Ligand Binding Energy and Catalytic Efficiency from Ligand-Induced Reductions in Motion within Receptors and Enzymes. Angewandte Chemie International Edition, 43(48), 6596-6616. doi:10.1002/anie.200300644 | es_ES |
dc.description.references | Mahadevi, A. S., & Sastry, G. N. (2016). Cooperativity in Noncovalent Interactions. Chemical Reviews, 116(5), 2775-2825. doi:10.1021/cr500344e | es_ES |
dc.description.references | Thompson, R. F., Walker, M., Siebert, C. A., Muench, S. P., & Ranson, N. A. (2016). An introduction to sample preparation and imaging by cryo-electron microscopy for structural biology. Methods, 100, 3-15. doi:10.1016/j.ymeth.2016.02.017 | es_ES |
dc.description.references | Hassell, A. M., An, G., Bledsoe, R. K., Bynum, J. M., Carter, H. L., Deng, S.-J. J., … Shewchuk, L. M. (2006). Crystallization of protein–ligand complexes. Acta Crystallographica Section D Biological Crystallography, 63(1), 72-79. doi:10.1107/s0907444906047020 | es_ES |
dc.description.references | P. Nollert , M. D.Feese and B. L.Staker, H.Kim, Protein X-Ray Crystallography in Drug Discovery, Pharmaceutical Sciences Encyclopedia, John Wiley & Sons, 2010 | es_ES |
dc.description.references | Cooper, D. R., Porebski, P. J., Chruszcz, M., & Minor, W. (2011). X-ray crystallography: assessment and validation of protein–small molecule complexes for drug discovery. Expert Opinion on Drug Discovery, 6(8), 771-782. doi:10.1517/17460441.2011.585154 | es_ES |
dc.description.references | Carvalho, A. L., Trincão, J., & Romão, M. J. (2009). X-Ray Crystallography in Drug Discovery. Methods in Molecular Biology, 31-56. doi:10.1007/978-1-60761-244-5_3 | es_ES |
dc.description.references | Montanaro, S., Lhiaubet-Vallet, V., Jiménez, M. C., Blanca, M., & Miranda, M. A. (2009). Photonucleophilic Addition of the ε-Amino Group of Lysine to a Triflusal Metabolite as a Mechanistic Key to Photoallergy Mediated by the Parent Drug. ChemMedChem, 4(7), 1196-1202. doi:10.1002/cmdc.200900066 | es_ES |
dc.description.references | Nuin, E., Pérez-Sala, D., Lhiaubet-Vallet, V., Andreu, I., & Miranda, M. A. (2016). Photosensitivity to Triflusal: Formation of a Photoadduct with Ubiquitin Demonstrated by Photophysical and Proteomic Techniques. Frontiers in Pharmacology, 7. doi:10.3389/fphar.2016.00277 | es_ES |
dc.description.references | Hatanaka, Y., & Sadakane, Y. (2002). Photoaffinity Labeling in Drug Discovery and Developments: Chemical Gateway for Entering Proteomic Frontier. Current Topics in Medicinal Chemistry, 2(3), 271-288. doi:10.2174/1568026023394182 | es_ES |
dc.description.references | Kotzyba-Hibert, F., Kapfer, I., & Goeldner, M. (1995). Recent Trends in Photoaffinity Labeling. Angewandte Chemie International Edition in English, 34(12), 1296-1312. doi:10.1002/anie.199512961 | es_ES |
dc.description.references | Andreu, I., Mayorga, C., & Miranda, M. A. (2010). Generation of reactive intermediates in photoallergic dermatitis. Current Opinion in Allergy and Clinical Immunology, 10(4), 303-308. doi:10.1097/aci.0b013e32833bc68c | es_ES |
dc.description.references | M. Gonçalo , Phototoxic and Photoallergic Reactions, in Contact Dermatitis, ed. J. D. Johansen, P. J. Frosch and J.-P. Lepoittevin, Springer-Verlag, Berlin, 2011, p. 361 | es_ES |
dc.description.references | J. Ferguson , Drug and Chemical Photosensitivity, in Photodermatology, ed. J. L. M. Hawk, Arnold, London, 1999, p. 155 | es_ES |
dc.description.references | P. Jones , In vitro phototoxicity assays, in Principles and Practice of Skin Toxicology, ed. R. Chilcott and S. Price, John Wiley & Sons, 2008, p. 169 | es_ES |
dc.description.references | Moser, J., Hye, A., Lovell, W. W., Earl, L. K., Castell, J. V., & Miranda, M. A. (2001). Mechanisms of drug photobinding to proteins: photobinding of suprofen to human serum albumin. Toxicology in Vitro, 15(4-5), 333-337. doi:10.1016/s0887-2333(01)00033-9 | es_ES |
dc.description.references | Moser, J., Boscá, F., Lovell, W. W., Castell, J. V., Miranda, M. A., & Hye, A. (2000). Photobinding of carprofen to protein. Journal of Photochemistry and Photobiology B: Biology, 58(1), 13-19. doi:10.1016/s1011-1344(00)00115-9 | es_ES |
dc.description.references | Lhiaubet-Vallet, V., Sarabia, Z., Boscá, F., & Miranda, M. A. (2004). Human Serum Albumin-Mediated Stereodifferentiation in the Triplet State Behavior of (S)- and (R)-Carprofen. Journal of the American Chemical Society, 126(31), 9538-9539. doi:10.1021/ja048518g | es_ES |
dc.description.references | Matsumoto, K., Sukimoto, K., Nishi, K., Maruyama, T., Suenaga, A., & Otagiri, M. (2002). Characterization of Ligand Binding Sites on the α1-Acid Glycoprotein in Humans Bovines and Dogs. Drug Metabolism and Pharmacokinetics, 17(4), 300-306. doi:10.2133/dmpk.17.300 | es_ES |
dc.description.references | Fournier, T., Medjoubi-N, N., & Porquet, D. (2000). Alpha-1-acid glycoprotein. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 1482(1-2), 157-171. doi:10.1016/s0167-4838(00)00153-9 | es_ES |
dc.description.references | TAMURA, K., YATSU, T., ITOH, H., & MOTOI, Y. (1989). Isolation, characterization, and quantitative measurement of serum .ALPHA.1-acid glycoprotein in cattle. The Japanese Journal of Veterinary Science, 51(5), 987-994. doi:10.1292/jvms1939.51.987 | es_ES |
dc.description.references | Nakano, M. (2004). Detailed structural features of glycan chains derived from 1-acid glycoproteins of several different animals: the presence of hypersialylated, O-acetylated sialic acids but not disialyl residues. Glycobiology, 14(5), 431-441. doi:10.1093/glycob/cwh034 | es_ES |
dc.description.references | Ceciliani, F., Pocacqua, V., Provasi, E., Comunian, C., Bertolini, A., Bronzo, V., … Sartorelli, P. (2005). Identification of the bovine α1-acid glycoprotein in colostrum and milk. Veterinary Research, 36(5-6), 735-746. doi:10.1051/vetres:2005029 | es_ES |
dc.description.references | RAHMAN, M. H., YAMASAKI, K., SHIN, Y.-H., LIN, C. C., & OTAGIRI, M. (1993). Characterization of High Affinity Binding Sites of Non-steroidal Anti-inflammatory Drugs with Respect to Site-Specific Probes on Human Serum Albumin. Biological & Pharmaceutical Bulletin, 16(11), 1169-1174. doi:10.1248/bpb.16.1169 | es_ES |
dc.description.references | V. Lhiaubet-Vallet and M. A.Miranda, in Handbook of Organic Photochemistry and Photobiology, 3rd edn, 2012, vol. 2, p. 1541 | es_ES |
dc.description.references | Kerr, A. C., Muller, F., Ferguson, J., & Dawe, R. S. (2008). Occupational carprofen photoallergic contact dermatitis. British Journal of Dermatology, 159(6), 1303-1308. doi:10.1111/j.1365-2133.2008.08847.x | es_ES |
dc.description.references | Bosca, F., Encinas, S., Heelis, P. F., & Miranda, M. A. (1997). Photophysical and Photochemical Characterization of a Photosensitizing Drug: A Combined Steady State Photolysis and Laser Flash Photolysis Study on Carprofen†. Chemical Research in Toxicology, 10(7), 820-827. doi:10.1021/tx9700376 | es_ES |
dc.description.references | Lhiaubet-Vallet, V., Boscá, F., & Miranda, M. A. (2007). Stereodifferentiating Drug−Biomolecule Interactions in the Triplet Excited State: Studies on Supramolecular Carprofen/Protein Systems and on Carprofen−Tryptophan Model Dyads. The Journal of Physical Chemistry B, 111(2), 423-431. doi:10.1021/jp066968k | es_ES |
dc.description.references | Limones-Herrero, D., Pérez-Ruiz, R., Jiménez, M. C., & Miranda, M. A. (2013). Bypassing the Energy Barrier of Homolytic Photodehalogenation in Chloroaromatics through Self-Quenching. Organic Letters, 15(6), 1314-1317. doi:10.1021/ol400251s | es_ES |
dc.description.references | Jiménez, M. C., Miranda, M. A., & Vayá, I. (2005). Triplet Excited States as Chiral Reporters for the Binding of Drugs to Transport Proteins. Journal of the American Chemical Society, 127(29), 10134-10135. doi:10.1021/ja0514489 | es_ES |
dc.description.references | Alonso, R., Jiménez, M. C., & Miranda, M. A. (2011). Stereodifferentiation in the Compartmentalized Photooxidation of a Protein-Bound Anthracene. Organic Letters, 13(15), 3860-3863. doi:10.1021/ol201209h | es_ES |
dc.description.references | Vayá, I., Bueno, C. J., Jiménez, M. C., & Miranda, M. A. (2006). Use of Triplet Excited States for the Study of Drug Binding to Human and Bovine Serum Albumins. ChemMedChem, 1(9), 1015-1020. doi:10.1002/cmdc.200600061 | es_ES |
dc.description.references | Vayá, I., Bueno, C. J., Jiménez, M. C., & Miranda, M. A. (2008). Determination of Enantiomeric Compositions by Transient Absorption Spectroscopy using Proteins as Chiral Selectors. Chemistry - A European Journal, 14(36), 11284-11287. doi:10.1002/chem.200801657 | es_ES |
dc.description.references | Vayá, I., Lhiaubet-Vallet, V., Jiménez, M. C., & Miranda, M. A. (2014). Photoactive assemblies of organic compounds and biomolecules: drug–protein supramolecular systems. Chem. Soc. Rev., 43(12), 4102-4122. doi:10.1039/c3cs60413f | es_ES |
dc.description.references | http://www.ccdc.cam.ac.uk/solutions/csd-discovery/components/gold/ | es_ES |
dc.description.references | Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., & Sternberg, M. J. E. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10(6), 845-858. doi:10.1038/nprot.2015.053 | es_ES |
dc.description.references | Schönfeld, D. L., Ravelli, R. B. G., Mueller, U., & Skerra, A. (2008). The 1.8-Å Crystal Structure of α1-Acid Glycoprotein (Orosomucoid) Solved by UV RIP Reveals the Broad Drug-Binding Activity of This Human Plasma Lipocalin. Journal of Molecular Biology, 384(2), 393-405. doi:10.1016/j.jmb.2008.09.020 | es_ES |
dc.description.references | Miller, B. R., McGee, T. D., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA.py: An Efficient Program for End-State Free Energy Calculations. Journal of Chemical Theory and Computation, 8(9), 3314-3321. doi:10.1021/ct300418h | es_ES |
dc.description.references | Woods, C. J., Malaisree, M., Hannongbua, S., & Mulholland, A. J. (2011). A water-swap reaction coordinate for the calculation of absolute protein–ligand binding free energies. The Journal of Chemical Physics, 134(5), 054114. doi:10.1063/1.3519057 | es_ES |
dc.description.references | Woods, C. J., Malaisree, M., Michel, J., Long, B., McIntosh-Smith, S., & Mulholland, A. J. (2014). Rapid decomposition and visualisation of protein–ligand binding free energies by residue and by water. Faraday Discuss., 169, 477-499. doi:10.1039/c3fd00125c | es_ES |