- -

Antioxidant responses under salinity and drought in three closely related wild monocots with different ecological optima

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Antioxidant responses under salinity and drought in three closely related wild monocots with different ecological optima

Show full item record

Al Hassan, M.; Chaura, J.; Donat-Torres, MP.; Boscaiu, M.; Vicente, O. (2017). Antioxidant responses under salinity and drought in three closely related wild monocots with different ecological optima. AoB Plants. 9(2):1-20. https://doi.org/10.1093/aobpla/plx009

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/152810

Files in this item

Item Metadata

Title: Antioxidant responses under salinity and drought in three closely related wild monocots with different ecological optima
Author: Al Hassan, Mohamad Chaura, Juliana Donat-Torres, Maria P. Boscaiu, Monica Vicente, Oscar
UPV Unit: Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals
Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Issued date:
Abstract:
[EN] Antioxidant enzymes; antioxidant phenolics; ecological adaptation; Juncus; malondialdehyde (MDA); photosynthetic pigments; salt stress; water deficiency stress.
Subjects: Antioxidant enzymes , Antioxidant phenolics , Ecological adaptation , Juncus , Malondialdehyde (MDA) , Photosynthetic pigments , Salt stress , Water deficiency stress
Copyrigths: Reserva de todos los derechos
Source:
AoB Plants. (eissn: 2041-2851 )
DOI: 10.1093/aobpla/plx009
Publisher:
Oxford University Press
Publisher version: https://doi.org/10.1093/aobpla/plx009
Thanks:
This work was financed by internal funds for research support of the Polytechnic University of Valencia to M.P.D.-T., M.B. and O.V.
Type: Artículo

References

Abogadallah, G. M. (2010). Insights into the significance of antioxidative defense under salt stress. Plant Signaling & Behavior, 5(4), 369-374. doi:10.4161/psb.5.4.10873

Aebi, H. (1984). [13] Catalase in vitro. Oxygen Radicals in Biological Systems, 121-126. doi:10.1016/s0076-6879(84)05016-3

Al Hassan, M., López-Gresa, M. del P., Boscaiu, M., & Vicente, O. (2016). Stress tolerance mechanisms in Juncus: responses to salinity and drought in three Juncus species adapted to different natural environments. Functional Plant Biology, 43(10), 949. doi:10.1071/fp16007 [+]
Abogadallah, G. M. (2010). Insights into the significance of antioxidative defense under salt stress. Plant Signaling & Behavior, 5(4), 369-374. doi:10.4161/psb.5.4.10873

Aebi, H. (1984). [13] Catalase in vitro. Oxygen Radicals in Biological Systems, 121-126. doi:10.1016/s0076-6879(84)05016-3

Al Hassan, M., López-Gresa, M. del P., Boscaiu, M., & Vicente, O. (2016). Stress tolerance mechanisms in Juncus: responses to salinity and drought in three Juncus species adapted to different natural environments. Functional Plant Biology, 43(10), 949. doi:10.1071/fp16007

Alscher, R. G., Erturk, N., & Heath, L. S. (2002). Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany, 53(372), 1331-1341. doi:10.1093/jxb/53.372.1331

Anschütz, U., Becker, D., & Shabala, S. (2014). Going beyond nutrition: Regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment. Journal of Plant Physiology, 171(9), 670-687. doi:10.1016/j.jplph.2014.01.009

Apel, K., & Hirt, H. (2004). REACTIVE OXYGEN SPECIES: Metabolism, Oxidative Stress, and Signal Transduction. Annual Review of Plant Biology, 55(1), 373-399. doi:10.1146/annurev.arplant.55.031903.141701

Asada, K. (2006). Production and Scavenging of Reactive Oxygen Species in Chloroplasts and Their Functions: Figure 1. Plant Physiology, 141(2), 391-396. doi:10.1104/pp.106.082040

Bartels, D., & Sunkar, R. (2005). Drought and Salt Tolerance in Plants. Critical Reviews in Plant Sciences, 24(1), 23-58. doi:10.1080/07352680590910410

Bautista, I., Boscaiu, M., Lidón, A., Llinares, J. V., Lull, C., Donat, M. P., … Vicente, O. (2015). Environmentally induced changes in antioxidant phenolic compounds levels in wild plants. Acta Physiologiae Plantarum, 38(1). doi:10.1007/s11738-015-2025-2

Beyer, W. F., & Fridovich, I. (1987). Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Analytical Biochemistry, 161(2), 559-566. doi:10.1016/0003-2697(87)90489-1

Blainski, A., Lopes, G., & de Mello, J. (2013). Application and Analysis of the Folin Ciocalteu Method for the Determination of the Total Phenolic Content from Limonium Brasiliense L. Molecules, 18(6), 6852-6865. doi:10.3390/molecules18066852

Boira, H. (1995). Edaphic characteristics of salt meadow vegetation in the eastern regions of Spain. Ecologia mediterranea, 21(3), 1-11. doi:10.3406/ecmed.1995.1789

Boscaiu, M., Ballesteros, G., Naranjo, M. A., Vicente, O., & Boira, H. (2011). Responses to salt stress in Juncus acutus and J. maritimus during seed germination and vegetative plant growth. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 145(4), 770-777. doi:10.1080/11263504.2011.628446

Boscaiu, M., Lull, C., Llinares, J., Vicente, O., & Boira, H. (2012). Proline as a biochemical marker in relation to the ecology of two halophytic Juncus species. Journal of Plant Ecology, 6(2), 177-186. doi:10.1093/jpe/rts017

Bose, J., Rodrigo-Moreno, A., & Shabala, S. (2013). ROS homeostasis in halophytes in the context of salinity stress tolerance. Journal of Experimental Botany, 65(5), 1241-1257. doi:10.1093/jxb/ert430

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. doi:10.1016/0003-2697(76)90527-3

Van Breusegem, F., Vranová, E., Dat, J. F., & Inzé, D. (2001). The role of active oxygen species in plant signal transduction. Plant Science, 161(3), 405-414. doi:10.1016/s0168-9452(01)00452-6

Connell, J. P., & Mullet, J. E. (1986). Pea Chloroplast Glutathione Reductase: Purification and Characterization. Plant Physiology, 82(2), 351-356. doi:10.1104/pp.82.2.351

Cramer, G., Alberico, G., & Schmidt, C. (1994). Leaf Expansion Limits Dry Matter Accumulation of Salt-Stressed Maize. Functional Plant Biology, 21(5), 663. doi:10.1071/pp9940663

Del Rio, L. A., Palma, J. M., Sandalio, L. M., Corpas, F. J., Pastori, G. M., Bueno, P., & López-Huertas, E. (1996). Peroxisomes as a source of superoxide and hydrogen peroxide in stressed plants. Biochemical Society Transactions, 24(2), 434-438. doi:10.1042/bst0240434

Demidchik, V., Cuin, T. A., Svistunenko, D., Smith, S. J., Miller, A. J., Shabala, S., … Yurin, V. (2010). Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death. Journal of Cell Science, 123(9), 1468-1479. doi:10.1242/jcs.064352

Demidchik, V., & Maathuis, F. J. M. (2007). Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development. New Phytologist, 175(3), 387-404. doi:10.1111/j.1469-8137.2007.02128.x

Demidchik, V., Shabala, S. N., & Davies, J. M. (2007). Spatial variation in H2O2 response of Arabidopsis thaliana root epidermal Ca2+ flux and plasma membrane Ca2+ channels. The Plant Journal, 49(3), 377-386. doi:10.1111/j.1365-313x.2006.02971.x

DEMIRAL, T., & TURKAN, I. (2005). Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environmental and Experimental Botany, 53(3), 247-257. doi:10.1016/j.envexpbot.2004.03.017

Dunson, W. A., & Travis, J. (1991). The Role of Abiotic Factors in Community Organization. The American Naturalist, 138(5), 1067-1091. doi:10.1086/285270

Ellouzi, H., Ben Hamed, K., Cela, J., Munné-Bosch, S., & Abdelly, C. (2011). Early effects of salt stress on the physiological and oxidative status of Cakile maritima (halophyte) and Arabidopsis thaliana (glycophyte). Physiologia Plantarum, 142(2), 128-143. doi:10.1111/j.1399-3054.2011.01450.x

Farah, A., & Donangelo, C. M. (2006). Phenolic compounds in coffee. Brazilian Journal of Plant Physiology, 18(1), 23-36. doi:10.1590/s1677-04202006000100003

Flowers, T. J., & Colmer, T. D. (2008). Salinity tolerance in halophytes*. New Phytologist, 179(4), 945-963. doi:10.1111/j.1469-8137.2008.02531.x

Foyer, C. H., & Noctor, G. (2003). Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiologia Plantarum, 119(3), 355-364. doi:10.1034/j.1399-3054.2003.00223.x

Foyer, C. H., & Noctor, G. (2005). Redox Homeostasis and Antioxidant Signaling: A Metabolic Interface between Stress Perception and Physiological Responses. The Plant Cell, 17(7), 1866-1875. doi:10.1105/tpc.105.033589

Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909-930. doi:10.1016/j.plaphy.2010.08.016

Gong, Q., Li, P., Ma, S., Indu Rupassara, S., & Bohnert, H. J. (2005). Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. The Plant Journal, 44(5), 826-839. doi:10.1111/j.1365-313x.2005.02587.x

Harinasut, P., Poonsopa, D., Roengmongkol, K., & Charoensataporn, R. (2003). ScienceAsia, 29(2), 109. doi:10.2306/scienceasia1513-1874.2003.29.109

Hasegawa, P. M., Bressan, R. A., Zhu, J.-K., & Bohnert, H. J. (2000). PLANTCELLULAR ANDMOLECULARRESPONSES TOHIGHSALINITY. Annual Review of Plant Physiology and Plant Molecular Biology, 51(1), 463-499. doi:10.1146/annurev.arplant.51.1.463

Hodges, D. M., DeLong, J. M., Forney, C. F., & Prange, R. K. (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207(4), 604-611. doi:10.1007/s004250050524

Horling, F., Lamkemeyer, P., König, J., Finkemeier, I., Kandlbinder, A., Baier, M., & Dietz, K.-J. (2003). Divergent Light-, Ascorbate-, and Oxidative Stress-Dependent Regulation of Expression of the Peroxiredoxin Gene Family in Arabidopsis. Plant Physiology, 131(1), 317-325. doi:10.1104/pp.010017

Hummel, I., Pantin, F., Sulpice, R., Piques, M., Rolland, G., Dauzat, M., … Muller, B. (2010). Arabidopsis Plants Acclimate to Water Deficit at Low Cost through Changes of Carbon Usage: An Integrated Perspective Using Growth, Metabolite, Enzyme, and Gene Expression Analysis. Plant Physiology, 154(1), 357-372. doi:10.1104/pp.110.157008

Inan, G., Zhang, Q., Li, P., Wang, Z., Cao, Z., Zhang, H., … Zhu, J.-K. (2004). Salt Cress. A Halophyte and Cryophyte Arabidopsis Relative Model System and Its Applicability to Molecular Genetic Analyses of Growth and Development of Extremophiles. Plant Physiology, 135(3), 1718-1737. doi:10.1104/pp.104.041723

Jaspers, P., & Kangasjärvi, J. (2010). Reactive oxygen species in abiotic stress signaling. Physiologia Plantarum, 138(4), 405-413. doi:10.1111/j.1399-3054.2009.01321.x

KANT, S., KANT, P., RAVEH, E., & BARAK, S. (2006). Evidence that differential gene expression between the halophyte, Thellungiella halophila, and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyte proline and tight control of Na+ uptake in T. halophila. Plant, Cell and Environment, 29(7), 1220-1234. doi:10.1111/j.1365-3040.2006.01502.x

Kukreja, S., Nandwal, A. S., Kumar, N., Sharma, S. K., Sharma, S. K., Unvi, V., & Sharma, P. K. (2005). Plant water status, H2O2 scavenging enzymes, ethylene evolution and membrane integrity of Cicer arietinum roots as affected by salinity. Biologia plantarum, 49(2), 305-308. doi:10.1007/s10535-005-5308-4

Larkindale, J., & Huang, B. (2004). Thermotolerance and antioxidant systems in Agrostis stolonifera: Involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene. Journal of Plant Physiology, 161(4), 405-413. doi:10.1078/0176-1617-01239

Lee, S.-H., Ahsan, N., Lee, K.-W., Kim, D.-H., Lee, D.-G., Kwak, S.-S., … Lee, B.-H. (2007). Simultaneous overexpression of both CuZn superoxide dismutase and ascorbate peroxidase in transgenic tall fescue plants confers increased tolerance to a wide range of abiotic stresses. Journal of Plant Physiology, 164(12), 1626-1638. doi:10.1016/j.jplph.2007.01.003

LI, R., GUO, P., Michael, B., Stefania, G., & Salvatore, C. (2006). Evaluation of Chlorophyll Content and Fluorescence Parameters as Indicators of Drought Tolerance in Barley. Agricultural Sciences in China, 5(10), 751-757. doi:10.1016/s1671-2927(06)60120-x

LICHTENTHALER, H. K., & WELLBURN, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11(5), 591-592. doi:10.1042/bst0110591

MAATHUIS, F. (1999). K+Nutrition and Na+Toxicity: The Basis of Cellular K+/Na+Ratios. Annals of Botany, 84(2), 123-133. doi:10.1006/anbo.1999.0912

Martinez, C. A., Loureiro, M. E., Oliva, M. A., & Maestri, M. (2001). Differential responses of superoxide dismutase in freezing resistant Solanum curtilobum and freezing sensitive Solanum tuberosum subjected to oxidative and water stress. Plant Science, 160(3), 505-515. doi:10.1016/s0168-9452(00)00418-0

Miller, G., Shulaev, V., & Mittler, R. (2008). Reactive oxygen signaling and abiotic stress. Physiologia Plantarum, 133(3), 481-489. doi:10.1111/j.1399-3054.2008.01090.x

Mittler, R., Vanderauwera, S., Gollery, M., & Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends in Plant Science, 9(10), 490-498. doi:10.1016/j.tplants.2004.08.009

Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7(9), 405-410. doi:10.1016/s1360-1385(02)02312-9

MITTOVA, V., TAL, M., VOLOKITA, M., & GUY, M. (2003). Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii. Plant, Cell & Environment, 26(6), 845-856. doi:10.1046/j.1365-3040.2003.01016.x

Mittova, V., Volokita, M., Guy, M., & Tal, M. (2000). Activities of SOD and the ascorbate-glutathione cycle enzymes in subcellular compartments in leaves and roots of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. Physiologia Plantarum, 110(1), 42-51. doi:10.1034/j.1399-3054.2000.110106.x

Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell & Environment, 25(2), 239-250. doi:10.1046/j.0016-8025.2001.00808.x

Munns, R., & Termaat, A. (1986). Whole-Plant Responses to Salinity. Functional Plant Biology, 13(1), 143. doi:10.1071/pp9860143

Munns, R., & Tester, M. (2008). Mechanisms of Salinity Tolerance. Annual Review of Plant Biology, 59(1), 651-681. doi:10.1146/annurev.arplant.59.032607.092911

Ozgur, R., Uzilday, B., Sekmen, A. H., & Turkan, I. (2013). Reactive oxygen species regulation and antioxidant defence in halophytes. Functional Plant Biology, 40(9), 832. doi:10.1071/fp12389

Ozgur, R., Uzilday, B., Sekmen, A. H., & Turkan, I. (2015). The effects of induced production of reactive oxygen species in organelles on endoplasmic reticulum stress and on the unfolded protein response in arabidopsis. Annals of Botany, 116(4), 541-553. doi:10.1093/aob/mcv072

Pan, Y., Wu, L. J., & Yu, Z. L. (2006). Effect of salt and drought stress on antioxidant enzymes activities and SOD isoenzymes of liquorice (Glycyrrhiza uralensis Fisch). Plant Growth Regulation, 49(2-3), 157-165. doi:10.1007/s10725-006-9101-y

Parida, A. K., Das, A. B., Sanada, Y., & Mohanty, P. (2004). Effects of salinity on biochemical components of the mangrove, Aegiceras corniculatum. Aquatic Botany, 80(2), 77-87. doi:10.1016/j.aquabot.2004.07.005

Quiles, M. J., & López, N. I. (2004). Photoinhibition of photosystems I and II induced by exposure to high light intensity during oat plant growth. Plant Science, 166(3), 815-823. doi:10.1016/j.plantsci.2003.11.025

Richards, S. L., Laohavisit, A., Mortimer, J. C., Shabala, L., Swarbreck, S. M., Shabala, S., & Davies, J. M. (2013). Annexin 1 regulates the H2O2-induced calcium signature inArabidopsis thalianaroots. The Plant Journal, 77(1), 136-145. doi:10.1111/tpj.12372

Rossel, J. B. (2002). Global Changes in Gene Expression in Response to High Light in Arabidopsis. PLANT PHYSIOLOGY, 130(3), 1109-1120. doi:10.1104/pp.005595

SAI KACHOUT, S., JAFFEL HAMZA, K., KARRAY BOURAOUI, N., LECLERC, J. C., & OUERGHI, Z. (2013). Salt-Induced Changes in Antioxidative Enzyme Activities in Shoot Tissues of Two Atriplex Varieties. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 41(1), 115. doi:10.15835/nbha4118258

Sanders, D. (2000). Plant biology: The salty tale of Arabidopsis. Current Biology, 10(13), R486-R488. doi:10.1016/s0960-9822(00)00554-6

Seckin, B., Turkan, I., Sekmen, A. H., & Ozfidan, C. (2010). The role of antioxidant defense systems at differential salt tolerance of Hordeum marinum Huds. (sea barleygrass) and Hordeum vulgare L. (cultivated barley). Environmental and Experimental Botany, 69(1), 76-85. doi:10.1016/j.envexpbot.2010.02.013

Hediye Sekmen, A., Türkan, İ., & Takio, S. (2007). Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritima and salt-sensitive Plantago media. Physiologia Plantarum, 131(3), 399-411. doi:10.1111/j.1399-3054.2007.00970.x

Shabala, S. (2009). Salinity and programmed cell death: unravelling mechanisms for ion specific signalling. Journal of Experimental Botany, 60(3), 709-712. doi:10.1093/jxb/erp013

Shalata, A., Mittova, V., Volokita, M., Guy, M., & Tal, M. (2001). Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: The root antioxidative system. Physiologia Plantarum, 112(4), 487-494. doi:10.1034/j.1399-3054.2001.1120405.x

Sharma, P., & Shanker Dubey, R. (2005). Modulation of nitrate reductase activity in rice seedlings under aluminium toxicity and water stress: role of osmolytes as enzyme protectant. Journal of Plant Physiology, 162(8), 854-864. doi:10.1016/j.jplph.2004.09.011

Uchida, A., Jagendorf, A. T., Hibino, T., Takabe, T., & Takabe, T. (2002). Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Science, 163(3), 515-523. doi:10.1016/s0168-9452(02)00159-0

Chang-Quan, W., & Rui-Chang, L. (2008). Enhancement of superoxide dismutase activity in the leaves of white clover (Trifolium repens L.) in response to polyethylene glycol-induced water stress. Acta Physiologiae Plantarum, 30(6), 841-847. doi:10.1007/s11738-008-0189-8

Wang, L., Zhou, Q., Ding, L., & Sun, Y. (2008). Effect of cadmium toxicity on nitrogen metabolism in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator. Journal of Hazardous Materials, 154(1-3), 818-825. doi:10.1016/j.jhazmat.2007.10.097

Yang, Y., Han, C., Liu, Q., Lin, B., & Wang, J. (2008). Effect of drought and low light on growth and enzymatic antioxidant system of Picea asperata seedlings. Acta Physiologiae Plantarum, 30(4), 433-440. doi:10.1007/s11738-008-0140-z

Yu, T., Jhun, B. S., & Yoon, Y. (2011). High-Glucose Stimulation Increases Reactive Oxygen Species Production Through the Calcium and Mitogen-Activated Protein Kinase-Mediated Activation of Mitochondrial Fission. Antioxidants & Redox Signaling, 14(3), 425-437. doi:10.1089/ars.2010.3284

Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555-559. doi:10.1016/s0308-8146(98)00102-2

Zhu, J.-K. (2001). Plant salt tolerance. Trends in Plant Science, 6(2), 66-71. doi:10.1016/s1360-1385(00)01838-0

Zlatev, Z. S., Lidon, F. C., Ramalho, J. C., & Yordanov, I. T. (2006). Comparison of resistance to drought of three bean cultivars. Biologia plantarum, 50(3), 389-394. doi:10.1007/s10535-006-0054-9

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record