- -

Antioxidant responses under salinity and drought in three closely related wild monocots with different ecological optima

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Antioxidant responses under salinity and drought in three closely related wild monocots with different ecological optima

Show simple item record

Files in this item

dc.contributor.author Al Hassan, Mohamad es_ES
dc.contributor.author Chaura, Juliana es_ES
dc.contributor.author Donat-Torres, Maria P. es_ES
dc.contributor.author Boscaiu, Monica es_ES
dc.contributor.author Vicente, Oscar es_ES
dc.date.accessioned 2020-10-22T03:32:22Z
dc.date.available 2020-10-22T03:32:22Z
dc.date.issued 2017-03 es_ES
dc.identifier.uri http://hdl.handle.net/10251/152810
dc.description.abstract [EN] Antioxidant enzymes; antioxidant phenolics; ecological adaptation; Juncus; malondialdehyde (MDA); photosynthetic pigments; salt stress; water deficiency stress. es_ES
dc.description.sponsorship This work was financed by internal funds for research support of the Polytechnic University of Valencia to M.P.D.-T., M.B. and O.V. es_ES
dc.language Inglés es_ES
dc.publisher Oxford University Press es_ES
dc.relation.ispartof AoB Plants es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Antioxidant enzymes es_ES
dc.subject Antioxidant phenolics es_ES
dc.subject Ecological adaptation es_ES
dc.subject Juncus es_ES
dc.subject Malondialdehyde (MDA) es_ES
dc.subject Photosynthetic pigments es_ES
dc.subject Salt stress es_ES
dc.subject Water deficiency stress es_ES
dc.subject.classification BOTANICA es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title Antioxidant responses under salinity and drought in three closely related wild monocots with different ecological optima es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1093/aobpla/plx009 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Al Hassan, M.; Chaura, J.; Donat-Torres, MP.; Boscaiu, M.; Vicente, O. (2017). Antioxidant responses under salinity and drought in three closely related wild monocots with different ecological optima. AoB Plants. 9(2):1-20. https://doi.org/10.1093/aobpla/plx009 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1093/aobpla/plx009 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 20 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 2041-2851 es_ES
dc.identifier.pmid 28439395 es_ES
dc.identifier.pmcid PMC5391712 es_ES
dc.relation.pasarela S\339453 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Abogadallah, G. M. (2010). Insights into the significance of antioxidative defense under salt stress. Plant Signaling & Behavior, 5(4), 369-374. doi:10.4161/psb.5.4.10873 es_ES
dc.description.references Aebi, H. (1984). [13] Catalase in vitro. Oxygen Radicals in Biological Systems, 121-126. doi:10.1016/s0076-6879(84)05016-3 es_ES
dc.description.references Al Hassan, M., López-Gresa, M. del P., Boscaiu, M., & Vicente, O. (2016). Stress tolerance mechanisms in Juncus: responses to salinity and drought in three Juncus species adapted to different natural environments. Functional Plant Biology, 43(10), 949. doi:10.1071/fp16007 es_ES
dc.description.references Alscher, R. G., Erturk, N., & Heath, L. S. (2002). Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany, 53(372), 1331-1341. doi:10.1093/jxb/53.372.1331 es_ES
dc.description.references Anschütz, U., Becker, D., & Shabala, S. (2014). Going beyond nutrition: Regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment. Journal of Plant Physiology, 171(9), 670-687. doi:10.1016/j.jplph.2014.01.009 es_ES
dc.description.references Apel, K., & Hirt, H. (2004). REACTIVE OXYGEN SPECIES: Metabolism, Oxidative Stress, and Signal Transduction. Annual Review of Plant Biology, 55(1), 373-399. doi:10.1146/annurev.arplant.55.031903.141701 es_ES
dc.description.references Asada, K. (2006). Production and Scavenging of Reactive Oxygen Species in Chloroplasts and Their Functions: Figure 1. Plant Physiology, 141(2), 391-396. doi:10.1104/pp.106.082040 es_ES
dc.description.references Bartels, D., & Sunkar, R. (2005). Drought and Salt Tolerance in Plants. Critical Reviews in Plant Sciences, 24(1), 23-58. doi:10.1080/07352680590910410 es_ES
dc.description.references Bautista, I., Boscaiu, M., Lidón, A., Llinares, J. V., Lull, C., Donat, M. P., … Vicente, O. (2015). Environmentally induced changes in antioxidant phenolic compounds levels in wild plants. Acta Physiologiae Plantarum, 38(1). doi:10.1007/s11738-015-2025-2 es_ES
dc.description.references Beyer, W. F., & Fridovich, I. (1987). Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Analytical Biochemistry, 161(2), 559-566. doi:10.1016/0003-2697(87)90489-1 es_ES
dc.description.references Blainski, A., Lopes, G., & de Mello, J. (2013). Application and Analysis of the Folin Ciocalteu Method for the Determination of the Total Phenolic Content from Limonium Brasiliense L. Molecules, 18(6), 6852-6865. doi:10.3390/molecules18066852 es_ES
dc.description.references Boira, H. (1995). Edaphic characteristics of salt meadow vegetation in the eastern regions of Spain. Ecologia mediterranea, 21(3), 1-11. doi:10.3406/ecmed.1995.1789 es_ES
dc.description.references Boscaiu, M., Ballesteros, G., Naranjo, M. A., Vicente, O., & Boira, H. (2011). Responses to salt stress in Juncus acutus and J. maritimus during seed germination and vegetative plant growth. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 145(4), 770-777. doi:10.1080/11263504.2011.628446 es_ES
dc.description.references Boscaiu, M., Lull, C., Llinares, J., Vicente, O., & Boira, H. (2012). Proline as a biochemical marker in relation to the ecology of two halophytic Juncus species. Journal of Plant Ecology, 6(2), 177-186. doi:10.1093/jpe/rts017 es_ES
dc.description.references Bose, J., Rodrigo-Moreno, A., & Shabala, S. (2013). ROS homeostasis in halophytes in the context of salinity stress tolerance. Journal of Experimental Botany, 65(5), 1241-1257. doi:10.1093/jxb/ert430 es_ES
dc.description.references Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. doi:10.1016/0003-2697(76)90527-3 es_ES
dc.description.references Van Breusegem, F., Vranová, E., Dat, J. F., & Inzé, D. (2001). The role of active oxygen species in plant signal transduction. Plant Science, 161(3), 405-414. doi:10.1016/s0168-9452(01)00452-6 es_ES
dc.description.references Connell, J. P., & Mullet, J. E. (1986). Pea Chloroplast Glutathione Reductase: Purification and Characterization. Plant Physiology, 82(2), 351-356. doi:10.1104/pp.82.2.351 es_ES
dc.description.references Cramer, G., Alberico, G., & Schmidt, C. (1994). Leaf Expansion Limits Dry Matter Accumulation of Salt-Stressed Maize. Functional Plant Biology, 21(5), 663. doi:10.1071/pp9940663 es_ES
dc.description.references Del Rio, L. A., Palma, J. M., Sandalio, L. M., Corpas, F. J., Pastori, G. M., Bueno, P., & López-Huertas, E. (1996). Peroxisomes as a source of superoxide and hydrogen peroxide in stressed plants. Biochemical Society Transactions, 24(2), 434-438. doi:10.1042/bst0240434 es_ES
dc.description.references Demidchik, V., Cuin, T. A., Svistunenko, D., Smith, S. J., Miller, A. J., Shabala, S., … Yurin, V. (2010). Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death. Journal of Cell Science, 123(9), 1468-1479. doi:10.1242/jcs.064352 es_ES
dc.description.references Demidchik, V., & Maathuis, F. J. M. (2007). Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development. New Phytologist, 175(3), 387-404. doi:10.1111/j.1469-8137.2007.02128.x es_ES
dc.description.references Demidchik, V., Shabala, S. N., & Davies, J. M. (2007). Spatial variation in H2O2 response of Arabidopsis thaliana root epidermal Ca2+ flux and plasma membrane Ca2+ channels. The Plant Journal, 49(3), 377-386. doi:10.1111/j.1365-313x.2006.02971.x es_ES
dc.description.references DEMIRAL, T., & TURKAN, I. (2005). Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environmental and Experimental Botany, 53(3), 247-257. doi:10.1016/j.envexpbot.2004.03.017 es_ES
dc.description.references Dunson, W. A., & Travis, J. (1991). The Role of Abiotic Factors in Community Organization. The American Naturalist, 138(5), 1067-1091. doi:10.1086/285270 es_ES
dc.description.references Ellouzi, H., Ben Hamed, K., Cela, J., Munné-Bosch, S., & Abdelly, C. (2011). Early effects of salt stress on the physiological and oxidative status of Cakile maritima (halophyte) and Arabidopsis thaliana (glycophyte). Physiologia Plantarum, 142(2), 128-143. doi:10.1111/j.1399-3054.2011.01450.x es_ES
dc.description.references Farah, A., & Donangelo, C. M. (2006). Phenolic compounds in coffee. Brazilian Journal of Plant Physiology, 18(1), 23-36. doi:10.1590/s1677-04202006000100003 es_ES
dc.description.references Flowers, T. J., & Colmer, T. D. (2008). Salinity tolerance in halophytes*. New Phytologist, 179(4), 945-963. doi:10.1111/j.1469-8137.2008.02531.x es_ES
dc.description.references Foyer, C. H., & Noctor, G. (2003). Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiologia Plantarum, 119(3), 355-364. doi:10.1034/j.1399-3054.2003.00223.x es_ES
dc.description.references Foyer, C. H., & Noctor, G. (2005). Redox Homeostasis and Antioxidant Signaling: A Metabolic Interface between Stress Perception and Physiological Responses. The Plant Cell, 17(7), 1866-1875. doi:10.1105/tpc.105.033589 es_ES
dc.description.references Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909-930. doi:10.1016/j.plaphy.2010.08.016 es_ES
dc.description.references Gong, Q., Li, P., Ma, S., Indu Rupassara, S., & Bohnert, H. J. (2005). Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. The Plant Journal, 44(5), 826-839. doi:10.1111/j.1365-313x.2005.02587.x es_ES
dc.description.references Harinasut, P., Poonsopa, D., Roengmongkol, K., & Charoensataporn, R. (2003). ScienceAsia, 29(2), 109. doi:10.2306/scienceasia1513-1874.2003.29.109 es_ES
dc.description.references Hasegawa, P. M., Bressan, R. A., Zhu, J.-K., & Bohnert, H. J. (2000). PLANTCELLULAR ANDMOLECULARRESPONSES TOHIGHSALINITY. Annual Review of Plant Physiology and Plant Molecular Biology, 51(1), 463-499. doi:10.1146/annurev.arplant.51.1.463 es_ES
dc.description.references Hodges, D. M., DeLong, J. M., Forney, C. F., & Prange, R. K. (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207(4), 604-611. doi:10.1007/s004250050524 es_ES
dc.description.references Horling, F., Lamkemeyer, P., König, J., Finkemeier, I., Kandlbinder, A., Baier, M., & Dietz, K.-J. (2003). Divergent Light-, Ascorbate-, and Oxidative Stress-Dependent Regulation of Expression of the Peroxiredoxin Gene Family in Arabidopsis. Plant Physiology, 131(1), 317-325. doi:10.1104/pp.010017 es_ES
dc.description.references Hummel, I., Pantin, F., Sulpice, R., Piques, M., Rolland, G., Dauzat, M., … Muller, B. (2010). Arabidopsis Plants Acclimate to Water Deficit at Low Cost through Changes of Carbon Usage: An Integrated Perspective Using Growth, Metabolite, Enzyme, and Gene Expression Analysis. Plant Physiology, 154(1), 357-372. doi:10.1104/pp.110.157008 es_ES
dc.description.references Inan, G., Zhang, Q., Li, P., Wang, Z., Cao, Z., Zhang, H., … Zhu, J.-K. (2004). Salt Cress. A Halophyte and Cryophyte Arabidopsis Relative Model System and Its Applicability to Molecular Genetic Analyses of Growth and Development of Extremophiles. Plant Physiology, 135(3), 1718-1737. doi:10.1104/pp.104.041723 es_ES
dc.description.references Jaspers, P., & Kangasjärvi, J. (2010). Reactive oxygen species in abiotic stress signaling. Physiologia Plantarum, 138(4), 405-413. doi:10.1111/j.1399-3054.2009.01321.x es_ES
dc.description.references KANT, S., KANT, P., RAVEH, E., & BARAK, S. (2006). Evidence that differential gene expression between the halophyte, Thellungiella halophila, and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyte proline and tight control of Na+ uptake in T. halophila. Plant, Cell and Environment, 29(7), 1220-1234. doi:10.1111/j.1365-3040.2006.01502.x es_ES
dc.description.references Kukreja, S., Nandwal, A. S., Kumar, N., Sharma, S. K., Sharma, S. K., Unvi, V., & Sharma, P. K. (2005). Plant water status, H2O2 scavenging enzymes, ethylene evolution and membrane integrity of Cicer arietinum roots as affected by salinity. Biologia plantarum, 49(2), 305-308. doi:10.1007/s10535-005-5308-4 es_ES
dc.description.references Larkindale, J., & Huang, B. (2004). Thermotolerance and antioxidant systems in Agrostis stolonifera: Involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene. Journal of Plant Physiology, 161(4), 405-413. doi:10.1078/0176-1617-01239 es_ES
dc.description.references Lee, S.-H., Ahsan, N., Lee, K.-W., Kim, D.-H., Lee, D.-G., Kwak, S.-S., … Lee, B.-H. (2007). Simultaneous overexpression of both CuZn superoxide dismutase and ascorbate peroxidase in transgenic tall fescue plants confers increased tolerance to a wide range of abiotic stresses. Journal of Plant Physiology, 164(12), 1626-1638. doi:10.1016/j.jplph.2007.01.003 es_ES
dc.description.references LI, R., GUO, P., Michael, B., Stefania, G., & Salvatore, C. (2006). Evaluation of Chlorophyll Content and Fluorescence Parameters as Indicators of Drought Tolerance in Barley. Agricultural Sciences in China, 5(10), 751-757. doi:10.1016/s1671-2927(06)60120-x es_ES
dc.description.references LICHTENTHALER, H. K., & WELLBURN, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11(5), 591-592. doi:10.1042/bst0110591 es_ES
dc.description.references MAATHUIS, F. (1999). K+Nutrition and Na+Toxicity: The Basis of Cellular K+/Na+Ratios. Annals of Botany, 84(2), 123-133. doi:10.1006/anbo.1999.0912 es_ES
dc.description.references Martinez, C. A., Loureiro, M. E., Oliva, M. A., & Maestri, M. (2001). Differential responses of superoxide dismutase in freezing resistant Solanum curtilobum and freezing sensitive Solanum tuberosum subjected to oxidative and water stress. Plant Science, 160(3), 505-515. doi:10.1016/s0168-9452(00)00418-0 es_ES
dc.description.references Miller, G., Shulaev, V., & Mittler, R. (2008). Reactive oxygen signaling and abiotic stress. Physiologia Plantarum, 133(3), 481-489. doi:10.1111/j.1399-3054.2008.01090.x es_ES
dc.description.references Mittler, R., Vanderauwera, S., Gollery, M., & Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends in Plant Science, 9(10), 490-498. doi:10.1016/j.tplants.2004.08.009 es_ES
dc.description.references Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7(9), 405-410. doi:10.1016/s1360-1385(02)02312-9 es_ES
dc.description.references MITTOVA, V., TAL, M., VOLOKITA, M., & GUY, M. (2003). Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii. Plant, Cell & Environment, 26(6), 845-856. doi:10.1046/j.1365-3040.2003.01016.x es_ES
dc.description.references Mittova, V., Volokita, M., Guy, M., & Tal, M. (2000). Activities of SOD and the ascorbate-glutathione cycle enzymes in subcellular compartments in leaves and roots of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. Physiologia Plantarum, 110(1), 42-51. doi:10.1034/j.1399-3054.2000.110106.x es_ES
dc.description.references Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell & Environment, 25(2), 239-250. doi:10.1046/j.0016-8025.2001.00808.x es_ES
dc.description.references Munns, R., & Termaat, A. (1986). Whole-Plant Responses to Salinity. Functional Plant Biology, 13(1), 143. doi:10.1071/pp9860143 es_ES
dc.description.references Munns, R., & Tester, M. (2008). Mechanisms of Salinity Tolerance. Annual Review of Plant Biology, 59(1), 651-681. doi:10.1146/annurev.arplant.59.032607.092911 es_ES
dc.description.references Ozgur, R., Uzilday, B., Sekmen, A. H., & Turkan, I. (2013). Reactive oxygen species regulation and antioxidant defence in halophytes. Functional Plant Biology, 40(9), 832. doi:10.1071/fp12389 es_ES
dc.description.references Ozgur, R., Uzilday, B., Sekmen, A. H., & Turkan, I. (2015). The effects of induced production of reactive oxygen species in organelles on endoplasmic reticulum stress and on the unfolded protein response in arabidopsis. Annals of Botany, 116(4), 541-553. doi:10.1093/aob/mcv072 es_ES
dc.description.references Pan, Y., Wu, L. J., & Yu, Z. L. (2006). Effect of salt and drought stress on antioxidant enzymes activities and SOD isoenzymes of liquorice (Glycyrrhiza uralensis Fisch). Plant Growth Regulation, 49(2-3), 157-165. doi:10.1007/s10725-006-9101-y es_ES
dc.description.references Parida, A. K., Das, A. B., Sanada, Y., & Mohanty, P. (2004). Effects of salinity on biochemical components of the mangrove, Aegiceras corniculatum. Aquatic Botany, 80(2), 77-87. doi:10.1016/j.aquabot.2004.07.005 es_ES
dc.description.references Quiles, M. J., & López, N. I. (2004). Photoinhibition of photosystems I and II induced by exposure to high light intensity during oat plant growth. Plant Science, 166(3), 815-823. doi:10.1016/j.plantsci.2003.11.025 es_ES
dc.description.references Richards, S. L., Laohavisit, A., Mortimer, J. C., Shabala, L., Swarbreck, S. M., Shabala, S., & Davies, J. M. (2013). Annexin 1 regulates the H2O2-induced calcium signature inArabidopsis thalianaroots. The Plant Journal, 77(1), 136-145. doi:10.1111/tpj.12372 es_ES
dc.description.references Rossel, J. B. (2002). Global Changes in Gene Expression in Response to High Light in Arabidopsis. PLANT PHYSIOLOGY, 130(3), 1109-1120. doi:10.1104/pp.005595 es_ES
dc.description.references SAI KACHOUT, S., JAFFEL HAMZA, K., KARRAY BOURAOUI, N., LECLERC, J. C., & OUERGHI, Z. (2013). Salt-Induced Changes in Antioxidative Enzyme Activities in Shoot Tissues of Two Atriplex Varieties. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 41(1), 115. doi:10.15835/nbha4118258 es_ES
dc.description.references Sanders, D. (2000). Plant biology: The salty tale of Arabidopsis. Current Biology, 10(13), R486-R488. doi:10.1016/s0960-9822(00)00554-6 es_ES
dc.description.references Seckin, B., Turkan, I., Sekmen, A. H., & Ozfidan, C. (2010). The role of antioxidant defense systems at differential salt tolerance of Hordeum marinum Huds. (sea barleygrass) and Hordeum vulgare L. (cultivated barley). Environmental and Experimental Botany, 69(1), 76-85. doi:10.1016/j.envexpbot.2010.02.013 es_ES
dc.description.references Hediye Sekmen, A., Türkan, İ., & Takio, S. (2007). Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritima and salt-sensitive Plantago media. Physiologia Plantarum, 131(3), 399-411. doi:10.1111/j.1399-3054.2007.00970.x es_ES
dc.description.references Shabala, S. (2009). Salinity and programmed cell death: unravelling mechanisms for ion specific signalling. Journal of Experimental Botany, 60(3), 709-712. doi:10.1093/jxb/erp013 es_ES
dc.description.references Shalata, A., Mittova, V., Volokita, M., Guy, M., & Tal, M. (2001). Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: The root antioxidative system. Physiologia Plantarum, 112(4), 487-494. doi:10.1034/j.1399-3054.2001.1120405.x es_ES
dc.description.references Sharma, P., & Shanker Dubey, R. (2005). Modulation of nitrate reductase activity in rice seedlings under aluminium toxicity and water stress: role of osmolytes as enzyme protectant. Journal of Plant Physiology, 162(8), 854-864. doi:10.1016/j.jplph.2004.09.011 es_ES
dc.description.references Uchida, A., Jagendorf, A. T., Hibino, T., Takabe, T., & Takabe, T. (2002). Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Science, 163(3), 515-523. doi:10.1016/s0168-9452(02)00159-0 es_ES
dc.description.references Chang-Quan, W., & Rui-Chang, L. (2008). Enhancement of superoxide dismutase activity in the leaves of white clover (Trifolium repens L.) in response to polyethylene glycol-induced water stress. Acta Physiologiae Plantarum, 30(6), 841-847. doi:10.1007/s11738-008-0189-8 es_ES
dc.description.references Wang, L., Zhou, Q., Ding, L., & Sun, Y. (2008). Effect of cadmium toxicity on nitrogen metabolism in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator. Journal of Hazardous Materials, 154(1-3), 818-825. doi:10.1016/j.jhazmat.2007.10.097 es_ES
dc.description.references Yang, Y., Han, C., Liu, Q., Lin, B., & Wang, J. (2008). Effect of drought and low light on growth and enzymatic antioxidant system of Picea asperata seedlings. Acta Physiologiae Plantarum, 30(4), 433-440. doi:10.1007/s11738-008-0140-z es_ES
dc.description.references Yu, T., Jhun, B. S., & Yoon, Y. (2011). High-Glucose Stimulation Increases Reactive Oxygen Species Production Through the Calcium and Mitogen-Activated Protein Kinase-Mediated Activation of Mitochondrial Fission. Antioxidants & Redox Signaling, 14(3), 425-437. doi:10.1089/ars.2010.3284 es_ES
dc.description.references Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555-559. doi:10.1016/s0308-8146(98)00102-2 es_ES
dc.description.references Zhu, J.-K. (2001). Plant salt tolerance. Trends in Plant Science, 6(2), 66-71. doi:10.1016/s1360-1385(00)01838-0 es_ES
dc.description.references Zlatev, Z. S., Lidon, F. C., Ramalho, J. C., & Yordanov, I. T. (2006). Comparison of resistance to drought of three bean cultivars. Biologia plantarum, 50(3), 389-394. doi:10.1007/s10535-006-0054-9 es_ES


This item appears in the following Collection(s)

Show simple item record