Mostrar el registro sencillo del ítem
dc.contributor.author | Abbas, Mohamad | es_ES |
dc.contributor.author | Hernández-García, Jorge | es_ES |
dc.contributor.author | Blanco-Touriñán, Noel | es_ES |
dc.contributor.author | Aliaga, Norma | es_ES |
dc.contributor.author | Minguet, E.G. | es_ES |
dc.contributor.author | ALABADÍ DIEGO, DAVID | es_ES |
dc.contributor.author | BLAZQUEZ RODRIGUEZ, MIGUEL ANGEL | es_ES |
dc.date.accessioned | 2020-10-23T03:31:23Z | |
dc.date.available | 2020-10-23T03:31:23Z | |
dc.date.issued | 2018-01 | es_ES |
dc.identifier.issn | 1467-7644 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/153039 | |
dc.description.sponsorship | We thank Torben Jahrmann (Semillas Fito, Barcelona, Spain) for discussions of the work, and Prof. Michael Holdsworth (University of Nottingham, UK) for edition and comments on the manuscript. Work in the authors' laboratory was funded by grants from the Spanish Ministry of Economy (BIO2013-43184-P and AGL2014-57200-JIN) and EU grant H2020-MSCA-RISE-2014-644435. The authors declare no conflict of interest. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Blackwell Publishing | es_ES |
dc.relation.ispartof | Plant Biotechnology Journal | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Pollen | es_ES |
dc.subject | Auxin | es_ES |
dc.subject | Fertility | es_ES |
dc.subject.classification | BIOQUIMICA Y BIOLOGIA MOLECULAR | es_ES |
dc.title | Reduction of indole-3-acetic acid methyltransferase activity compensates for high-temperature male sterility in Arabidopsis | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1111/pbi.12768 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/644435/EU/Evaluation of Plant Signaling Networks in Natural Environments/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BIO2013-43184-P/ES/PAPEL DE LA PREFOLDINA EN EL NUCLEO DEPENDIENTE DE DELLAS EN ARABIDOPSIS./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//AGL2014-57200-JIN/ES/MEJORA DE LA PRODUCTIVIDAD DE LOS CULTIVOS AGRICOLAS EN CONDICIONES DE ESTRES POR ALTAS TEMPERATURAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Producción Vegetal - Departament de Producció Vegetal | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.description.bibliographicCitation | Abbas, M.; Hernández-García, J.; Blanco-Touriñán, N.; Aliaga, N.; Minguet, E.; Alabadí Diego, D.; Blazquez Rodriguez, MA. (2018). Reduction of indole-3-acetic acid methyltransferase activity compensates for high-temperature male sterility in Arabidopsis. Plant Biotechnology Journal. 16(1):272-279. https://doi.org/10.1111/pbi.12768 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1111/pbi.12768 | es_ES |
dc.description.upvformatpinicio | 272 | es_ES |
dc.description.upvformatpfin | 279 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 16 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.pmid | 28574629 | es_ES |
dc.identifier.pmcid | PMC5785359 | es_ES |
dc.relation.pasarela | S\341747 | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |
dc.contributor.funder | Ministerio de Economía y Empresa | es_ES |
dc.description.references | Abbas, M., Berckhan, S., Rooney, D. J., Gibbs, D. J., Vicente Conde, J., Sousa Correia, C., … Holdsworth, M. J. (2015). Oxygen Sensing Coordinates Photomorphogenesis to Facilitate Seedling Survival. Current Biology, 25(11), 1483-1488. doi:10.1016/j.cub.2015.03.060 | es_ES |
dc.description.references | Alabadi, D., Blazquez, M. A., Carbonell, J., Ferrandiz, C., & Perez-Amador, M. A. (2009). Instructive roles for hormones in plant development. The International Journal of Developmental Biology, 53(8-9-10), 1597-1608. doi:10.1387/ijdb.072423da | es_ES |
dc.description.references | Alonso, J. M. (2003). Genome-Wide Insertional Mutagenesis of Arabidopsis thaliana. Science, 301(5633), 653-657. doi:10.1126/science.1086391 | es_ES |
dc.description.references | Aoki, Y., Okamura, Y., Tadaka, S., Kinoshita, K., & Obayashi, T. (2015). ATTED-II in 2016: A Plant Coexpression Database Towards Lineage-Specific Coexpression. Plant and Cell Physiology, 57(1), e5-e5. doi:10.1093/pcp/pcv165 | es_ES |
dc.description.references | Bewley , J.D. Bradford , K.J. Hilhorst , H.W.M. Nonogaki , H. 2013 Seeds: Physiology of Development, Germination and Dormancy New York Springer | es_ES |
dc.description.references | Chen, Q., Dai, X., De-Paoli, H., Cheng, Y., Takebayashi, Y., Kasahara, H., … Zhao, Y. (2014). Auxin Overproduction in Shoots Cannot Rescue Auxin Deficiencies in Arabidopsis Roots. Plant and Cell Physiology, 55(6), 1072-1079. doi:10.1093/pcp/pcu039 | es_ES |
dc.description.references | Cheng, Y., Dai, X., & Zhao, Y. (2006). Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues inArabidopsis. Genes & Development, 20(13), 1790-1799. doi:10.1101/gad.1415106 | es_ES |
dc.description.references | Bosco, C. D., Dovzhenko, A., Liu, X., Woerner, N., Rensch, T., Eismann, M., … Palme, K. (2012). The endoplasmic reticulum localized PIN8 is a pollen-specific auxin carrier involved in intracellular auxin homeostasis. The Plant Journal, 71(5), 860-870. doi:10.1111/j.1365-313x.2012.05037.x | es_ES |
dc.description.references | Ding, Z., Wang, B., Moreno, I., Dupláková, N., Simon, S., Carraro, N., … Friml, J. (2012). ER-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in Arabidopsis. Nature Communications, 3(1). doi:10.1038/ncomms1941 | es_ES |
dc.description.references | Domingo, C., Andrés, F., Tharreau, D., Iglesias, D. J., & Talón, M. (2009). Constitutive Expression of OsGH3.1 Reduces Auxin Content and Enhances Defense Response and Resistance to a Fungal Pathogen in Rice. Molecular Plant-Microbe Interactions®, 22(2), 201-210. doi:10.1094/mpmi-22-2-0201 | es_ES |
dc.description.references | Dorcey, E., Urbez, C., Blázquez, M. A., Carbonell, J., & Perez-Amador, M. A. (2009). Fertilization-dependent auxin response in ovules triggers fruit development through the modulation of gibberellin metabolism in Arabidopsis. The Plant Journal, 58(2), 318-332. doi:10.1111/j.1365-313x.2008.03781.x | es_ES |
dc.description.references | Firon, N., Pressman, E., Meir, S., Khoury, R., & Altahan, L. (2012). Ethylene is involved in maintaining tomato (Solanum lycopersicum) pollen quality under heat-stress conditions. AoB PLANTS, 2012. doi:10.1093/aobpla/pls024 | es_ES |
dc.description.references | Gremski, K., Ditta, G., & Yanofsky, M. F. (2007). The HECATE genes regulate female reproductive tract development in Arabidopsis thaliana. Development, 134(20), 3593-3601. doi:10.1242/dev.011510 | es_ES |
dc.description.references | Hedhly, A., Hormaza, J. I., & Herrero, M. (2009). Global warming and sexual plant reproduction. Trends in Plant Science, 14(1), 30-36. doi:10.1016/j.tplants.2008.11.001 | es_ES |
dc.description.references | Hentrich, M., Sánchez-Parra, B., Pérez Alonso, M.-M., Carrasco Loba, V., Carrillo, L., Vicente-Carbajosa, J., … Pollmann, S. (2013). YUCCA8andYUCCA9overexpression reveals a link between auxin signaling and lignification through the induction of ethylene biosynthesis. Plant Signaling & Behavior, 8(11), e26363. doi:10.4161/psb.26363 | es_ES |
dc.description.references | Herridge, R. P., Day, R. C., Baldwin, S., & Macknight, R. C. (2011). Rapid analysis of seed size in Arabidopsis for mutant and QTL discovery. Plant Methods, 7(1), 3. doi:10.1186/1746-4811-7-3 | es_ES |
dc.description.references | Jain, M., Prasad, P. V. V., Boote, K. J., Hartwell, A. L., & Chourey, P. S. (2007). Effects of season-long high temperature growth conditions on sugar-to-starch metabolism in developing microspores of grain sorghum (Sorghum bicolor L. Moench). Planta, 227(1), 67-79. doi:10.1007/s00425-007-0595-y | es_ES |
dc.description.references | Jefferson, R. A., Kavanagh, T. A., & Bevan, M. W. (1987). GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO Journal, 6(13), 3901-3907. doi:10.1002/j.1460-2075.1987.tb02730.x | es_ES |
dc.description.references | Jiang, L., Yang, S.-L., Xie, L.-F., Puah, C. S., Zhang, X.-Q., Yang, W.-C., … Ye, D. (2005). VANGUARD1 Encodes a Pectin Methylesterase That Enhances Pollen Tube Growth in the Arabidopsis Style and Transmitting Tract. The Plant Cell, 17(2), 584-596. doi:10.1105/tpc.104.027631 | es_ES |
dc.description.references | Jiang, W., Zhou, H., Bi, H., Fromm, M., Yang, B., & Weeks, D. P. (2013). Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Research, 41(20), e188-e188. doi:10.1093/nar/gkt780 | es_ES |
dc.description.references | KAKANI, V. G., PRASAD, P. V. V., CRAUFURD, P. Q., & WHEELER, T. R. (2002). Response of in vitro pollen germination and pollen tube growth of groundnut (Arachis hypogaea L.) genotypes to temperature. Plant, Cell & Environment, 25(12), 1651-1661. doi:10.1046/j.1365-3040.2002.00943.x | es_ES |
dc.description.references | KAKANI, V. G., REDDY, K. R., KOTI, S., WALLACE, T. P., PRASAD, P. V. V., REDDY, V. R., & ZHAO, D. (2005). Differences in in vitro Pollen Germination and Pollen Tube Growth of Cotton Cultivars in Response to High Temperature. Annals of Botany, 96(1), 59-67. doi:10.1093/aob/mci149 | es_ES |
dc.description.references | Kazan, K. (2013). Auxin and the integration of environmental signals into plant root development. Annals of Botany, 112(9), 1655-1665. doi:10.1093/aob/mct229 | es_ES |
dc.description.references | Kim, S. Y., Hong, C. B., & Lee, I. (2001). Heat Shock Stress Causes Stage-specific Male Sterility in Arabidopsis thaliana. Journal of Plant Research, 114(3), 301-307. doi:10.1007/pl00013991 | es_ES |
dc.description.references | Kim, J. I., Sharkhuu, A., Jin, J. B., Li, P., Jeong, J. C., Baek, D., … Bressan, R. A. (2007). yucca6, a Dominant Mutation in Arabidopsis, Affects Auxin Accumulation and Auxin-Related Phenotypes. Plant Physiology, 145(3), 722-735. doi:10.1104/pp.107.104935 | es_ES |
dc.description.references | Kim, J. I., Baek, D., Park, H. C., Chun, H. J., Oh, D.-H., Lee, M. K., … Yun, D.-J. (2013). Overexpression of Arabidopsis YUCCA6 in Potato Results in High-Auxin Developmental Phenotypes and Enhanced Resistance to Water Deficit. Molecular Plant, 6(2), 337-349. doi:10.1093/mp/sss100 | es_ES |
dc.description.references | Kolachevskaya, O. O., Alekseeva, V. V., Sergeeva, L. I., Rukavtsova, E. B., Getman, I. A., Vreugdenhil, D., … Romanov, G. A. (2015). Expression of auxin synthesis genetms1under control of tuber-specific promoter enhances potato tuberizationin vitro. Journal of Integrative Plant Biology, 57(9), 734-744. doi:10.1111/jipb.12314 | es_ES |
dc.description.references | Kumar, R., Agarwal, P., Tyagi, A. K., & Sharma, A. K. (2012). Genome-wide investigation and expression analysis suggest diverse roles of auxin-responsive GH3 genes during development and response to different stimuli in tomato (Solanum lycopersicum). Molecular Genetics and Genomics, 287(3), 221-235. doi:10.1007/s00438-011-0672-6 | es_ES |
dc.description.references | Li, L., Hou, X., Tsuge, T., Ding, M., Aoyama, T., Oka, A., … Qu, L.-J. (2007). The possible action mechanisms of indole-3-acetic acid methyl ester in Arabidopsis. Plant Cell Reports, 27(3), 575-584. doi:10.1007/s00299-007-0458-9 | es_ES |
dc.description.references | Ljung, K. (2013). Auxin metabolism and homeostasis during plant development. Development, 140(5), 943-950. doi:10.1242/dev.086363 | es_ES |
dc.description.references | Lobell, D. B., Bänziger, M., Magorokosho, C., & Vivek, B. (2011). Nonlinear heat effects on African maize as evidenced by historical yield trials. Nature Climate Change, 1(1), 42-45. doi:10.1038/nclimate1043 | es_ES |
dc.description.references | Mashiguchi, K., Tanaka, K., Sakai, T., Sugawara, S., Kawaide, H., Natsume, M., … Kasahara, H. (2011). The main auxin biosynthesis pathway in Arabidopsis. Proceedings of the National Academy of Sciences, 108(45), 18512-18517. doi:10.1073/pnas.1108434108 | es_ES |
dc.description.references | Mezzetti, B., Landi, L., Pandolfini, T., & Spena, A. (2004). BMC Biotechnology, 4(1), 4. doi:10.1186/1472-6750-4-4 | es_ES |
dc.description.references | OSHINO, T., MIURA, S., KIKUCHI, S., HAMADA, K., YANO, K., WATANABE, M., & HIGASHITANI, A. (2010). Auxin depletion in barley plants under high-temperature conditions represses DNA proliferation in organelles and nuclei via transcriptional alterations. Plant, Cell & Environment, 34(2), 284-290. doi:10.1111/j.1365-3040.2010.02242.x | es_ES |
dc.description.references | Park, J.-E., Park, J.-Y., Kim, Y.-S., Staswick, P. E., Jeon, J., Yun, J., … Park, C.-M. (2007). GH3-mediated Auxin Homeostasis Links Growth Regulation with Stress Adaptation Response in Arabidopsis. Journal of Biological Chemistry, 282(13), 10036-10046. doi:10.1074/jbc.m610524200 | es_ES |
dc.description.references | Pavlidis, P., & Noble, W. S. (2003). Matrix2png: a utility for visualizing matrix data. Bioinformatics, 19(2), 295-296. doi:10.1093/bioinformatics/19.2.295 | es_ES |
dc.description.references | Peng, S., Huang, J., Sheehy, J. E., Laza, R. C., Visperas, R. M., Zhong, X., … Cassman, K. G. (2004). Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences, 101(27), 9971-9975. doi:10.1073/pnas.0403720101 | es_ES |
dc.description.references | Plackett, A. R. G., Powers, S. J., Fernandez-Garcia, N., Urbanova, T., Takebayashi, Y., Seo, M., … Hedden, P. (2012). Analysis of the Developmental Roles of the Arabidopsis Gibberellin 20-Oxidases Demonstrates That GA20ox1, -2, and -3 Are the Dominant Paralogs. The Plant Cell, 24(3), 941-960. doi:10.1105/tpc.111.095109 | es_ES |
dc.description.references | Qin, G., Gu, H., Zhao, Y., Ma, Z., Shi, G., Yang, Y., … Qu, L.-J. (2005). An Indole-3-Acetic Acid Carboxyl Methyltransferase Regulates Arabidopsis Leaf Development. The Plant Cell, 17(10), 2693-2704. doi:10.1105/tpc.105.034959 | es_ES |
dc.description.references | Rotino, G. L., Perri, E., Zottini, M., Sommer, H., & Spena, A. (1997). Genetic engineering of parthenocarpic plants. Nature Biotechnology, 15(13), 1398-1401. doi:10.1038/nbt1297-1398 | es_ES |
dc.description.references | Sabatini, S., Beis, D., Wolkenfelt, H., Murfett, J., Guilfoyle, T., Malamy, J., … Scheres, B. (1999). An Auxin-Dependent Distal Organizer of Pattern and Polarity in the Arabidopsis Root. Cell, 99(5), 463-472. doi:10.1016/s0092-8674(00)81535-4 | es_ES |
dc.description.references | Sakata, T., Oshino, T., Miura, S., Tomabechi, M., Tsunaga, Y., Higashitani, N., … Higashitani, A. (2010). Auxins reverse plant male sterility caused by high temperatures. Proceedings of the National Academy of Sciences, 107(19), 8569-8574. doi:10.1073/pnas.1000869107 | es_ES |
dc.description.references | Sakata, T., Yagihashi, N., & Atsushi, H. (2010). Tissue-specific auxin signaling in response to temperature fluctuation. Plant Signaling & Behavior, 5(11), 1510-1512. doi:10.4161/psb.5.11.13706 | es_ES |
dc.description.references | Snider, J. L., Oosterhuis, D. M., Loka, D. A., & Kawakami, E. M. (2011). High temperature limits in vivo pollen tube growth rates by altering diurnal carbohydrate balance in field-grown Gossypium hirsutum pistils. Journal of Plant Physiology, 168(11), 1168-1175. doi:10.1016/j.jplph.2010.12.011 | es_ES |
dc.description.references | Spitzer, M., Wildenhain, J., Rappsilber, J., & Tyers, M. (2014). BoxPlotR: a web tool for generation of box plots. Nature Methods, 11(2), 121-122. doi:10.1038/nmeth.2811 | es_ES |
dc.description.references | Terol, J., Domingo, C., & Talón, M. (2006). The GH3 family in plants: Genome wide analysis in rice and evolutionary history based on EST analysis. Gene, 371(2), 279-290. doi:10.1016/j.gene.2005.12.014 | es_ES |
dc.description.references | Till, B. J. (2003). Large-Scale Discovery of Induced Point Mutations With High-Throughput TILLING. Genome Research, 13(3), 524-530. doi:10.1101/gr.977903 | es_ES |
dc.description.references | Wardlaw, I., Dawson, I., & Munibi, P. (1989). The tolerance of wheat to hight temperatures during reproductive growth. 2. Grain development. Australian Journal of Agricultural Research, 40(1), 15. doi:10.1071/ar9890015 | es_ES |
dc.description.references | Won, C., Shen, X., Mashiguchi, K., Zheng, Z., Dai, X., Cheng, Y., … Zhao, Y. (2011). Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN AMINOTRANSFERASES OF ARABIDOPSIS and YUCCAs in Arabidopsis. Proceedings of the National Academy of Sciences, 108(45), 18518-18523. doi:10.1073/pnas.1108436108 | es_ES |
dc.description.references | Wu, J.-Z., Lin, Y., Zhang, X.-L., Pang, D.-W., & Zhao, J. (2008). IAA stimulates pollen tube growth and mediates the modification of its wall composition and structure in Torenia fournieri. Journal of Experimental Botany, 59(9), 2529-2543. doi:10.1093/jxb/ern119 | es_ES |
dc.description.references | Yang, Y., Yue, R., Sun, T., Zhang, L., Chen, W., Zeng, H., … Shen, C. (2014). Genome-wide identification, expression analysis of GH3 family genes in Medicago truncatula under stress-related hormones and Sinorhizobium meliloti infection. Applied Microbiology and Biotechnology, 99(2), 841-854. doi:10.1007/s00253-014-6311-5 | es_ES |
dc.description.references | Yuan, H., Zhao, K., Lei, H., Shen, X., Liu, Y., Liao, X., & Li, T. (2013). Genome-wide analysis of the GH3 family in apple (Malus × domestica). BMC Genomics, 14(1), 297. doi:10.1186/1471-2164-14-297 | es_ES |
dc.description.references | Zhang, M., Zheng, X., Song, S., Zeng, Q., Hou, L., Li, D., … Pei, Y. (2011). Spatiotemporal manipulation of auxin biosynthesis in cotton ovule epidermal cells enhances fiber yield and quality. Nature Biotechnology, 29(5), 453-458. doi:10.1038/nbt.1843 | es_ES |
dc.description.references | Zhao, N., Ferrer, J.-L., Ross, J., Guan, J., Yang, Y., Pichersky, E., … Chen, F. (2007). Structural, Biochemical, and Phylogenetic Analyses Suggest That Indole-3-Acetic Acid Methyltransferase Is an Evolutionarily Ancient Member of the SABATH Family. Plant Physiology, 146(2), 455-467. doi:10.1104/pp.107.110049 | es_ES |
dc.description.references | Zinn, K. E., Tunc-Ozdemir, M., & Harper, J. F. (2010). Temperature stress and plant sexual reproduction: uncovering the weakest links. Journal of Experimental Botany, 61(7), 1959-1968. doi:10.1093/jxb/erq053 | es_ES |
dc.description.references | Zubieta, C., Ross, J. R., Koscheski, P., Yang, Y., Pichersky, E., & Noel, J. P. (2003). Structural Basis for Substrate Recognition in the Salicylic Acid Carboxyl Methyltransferase Family. The Plant Cell, 15(8), 1704-1716. doi:10.1105/tpc.014548 | es_ES |