- -

Reduction of indole-3-acetic acid methyltransferase activity compensates for high-temperature male sterility in Arabidopsis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Reduction of indole-3-acetic acid methyltransferase activity compensates for high-temperature male sterility in Arabidopsis

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Abbas, Mohamad es_ES
dc.contributor.author Hernández-García, Jorge es_ES
dc.contributor.author Blanco-Touriñán, Noel es_ES
dc.contributor.author Aliaga, Norma es_ES
dc.contributor.author Minguet, E.G. es_ES
dc.contributor.author ALABADÍ DIEGO, DAVID es_ES
dc.contributor.author BLAZQUEZ RODRIGUEZ, MIGUEL ANGEL es_ES
dc.date.accessioned 2020-10-23T03:31:23Z
dc.date.available 2020-10-23T03:31:23Z
dc.date.issued 2018-01 es_ES
dc.identifier.issn 1467-7644 es_ES
dc.identifier.uri http://hdl.handle.net/10251/153039
dc.description.sponsorship We thank Torben Jahrmann (Semillas Fito, Barcelona, Spain) for discussions of the work, and Prof. Michael Holdsworth (University of Nottingham, UK) for edition and comments on the manuscript. Work in the authors' laboratory was funded by grants from the Spanish Ministry of Economy (BIO2013-43184-P and AGL2014-57200-JIN) and EU grant H2020-MSCA-RISE-2014-644435. The authors declare no conflict of interest. es_ES
dc.language Inglés es_ES
dc.publisher Blackwell Publishing es_ES
dc.relation.ispartof Plant Biotechnology Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Pollen es_ES
dc.subject Auxin es_ES
dc.subject Fertility es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title Reduction of indole-3-acetic acid methyltransferase activity compensates for high-temperature male sterility in Arabidopsis es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/pbi.12768 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/644435/EU/Evaluation of Plant Signaling Networks in Natural Environments/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIO2013-43184-P/ES/PAPEL DE LA PREFOLDINA EN EL NUCLEO DEPENDIENTE DE DELLAS EN ARABIDOPSIS./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2014-57200-JIN/ES/MEJORA DE LA PRODUCTIVIDAD DE LOS CULTIVOS AGRICOLAS EN CONDICIONES DE ESTRES POR ALTAS TEMPERATURAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Producción Vegetal - Departament de Producció Vegetal es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Abbas, M.; Hernández-García, J.; Blanco-Touriñán, N.; Aliaga, N.; Minguet, E.; Alabadí Diego, D.; Blazquez Rodriguez, MA. (2018). Reduction of indole-3-acetic acid methyltransferase activity compensates for high-temperature male sterility in Arabidopsis. Plant Biotechnology Journal. 16(1):272-279. https://doi.org/10.1111/pbi.12768 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1111/pbi.12768 es_ES
dc.description.upvformatpinicio 272 es_ES
dc.description.upvformatpfin 279 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 16 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 28574629 es_ES
dc.identifier.pmcid PMC5785359 es_ES
dc.relation.pasarela S\341747 es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.contributor.funder Ministerio de Economía y Empresa es_ES
dc.description.references Abbas, M., Berckhan, S., Rooney, D. J., Gibbs, D. J., Vicente Conde, J., Sousa Correia, C., … Holdsworth, M. J. (2015). Oxygen Sensing Coordinates Photomorphogenesis to Facilitate Seedling Survival. Current Biology, 25(11), 1483-1488. doi:10.1016/j.cub.2015.03.060 es_ES
dc.description.references Alabadi, D., Blazquez, M. A., Carbonell, J., Ferrandiz, C., & Perez-Amador, M. A. (2009). Instructive roles for hormones in plant development. The International Journal of Developmental Biology, 53(8-9-10), 1597-1608. doi:10.1387/ijdb.072423da es_ES
dc.description.references Alonso, J. M. (2003). Genome-Wide Insertional Mutagenesis of Arabidopsis thaliana. Science, 301(5633), 653-657. doi:10.1126/science.1086391 es_ES
dc.description.references Aoki, Y., Okamura, Y., Tadaka, S., Kinoshita, K., & Obayashi, T. (2015). ATTED-II in 2016: A Plant Coexpression Database Towards Lineage-Specific Coexpression. Plant and Cell Physiology, 57(1), e5-e5. doi:10.1093/pcp/pcv165 es_ES
dc.description.references Bewley , J.D. Bradford , K.J. Hilhorst , H.W.M. Nonogaki , H. 2013 Seeds: Physiology of Development, Germination and Dormancy New York Springer es_ES
dc.description.references Chen, Q., Dai, X., De-Paoli, H., Cheng, Y., Takebayashi, Y., Kasahara, H., … Zhao, Y. (2014). Auxin Overproduction in Shoots Cannot Rescue Auxin Deficiencies in Arabidopsis Roots. Plant and Cell Physiology, 55(6), 1072-1079. doi:10.1093/pcp/pcu039 es_ES
dc.description.references Cheng, Y., Dai, X., & Zhao, Y. (2006). Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues inArabidopsis. Genes & Development, 20(13), 1790-1799. doi:10.1101/gad.1415106 es_ES
dc.description.references Bosco, C. D., Dovzhenko, A., Liu, X., Woerner, N., Rensch, T., Eismann, M., … Palme, K. (2012). The endoplasmic reticulum localized PIN8 is a pollen-specific auxin carrier involved in intracellular auxin homeostasis. The Plant Journal, 71(5), 860-870. doi:10.1111/j.1365-313x.2012.05037.x es_ES
dc.description.references Ding, Z., Wang, B., Moreno, I., Dupláková, N., Simon, S., Carraro, N., … Friml, J. (2012). ER-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in Arabidopsis. Nature Communications, 3(1). doi:10.1038/ncomms1941 es_ES
dc.description.references Domingo, C., Andrés, F., Tharreau, D., Iglesias, D. J., & Talón, M. (2009). Constitutive Expression of OsGH3.1 Reduces Auxin Content and Enhances Defense Response and Resistance to a Fungal Pathogen in Rice. Molecular Plant-Microbe Interactions®, 22(2), 201-210. doi:10.1094/mpmi-22-2-0201 es_ES
dc.description.references Dorcey, E., Urbez, C., Blázquez, M. A., Carbonell, J., & Perez-Amador, M. A. (2009). Fertilization-dependent auxin response in ovules triggers fruit development through the modulation of gibberellin metabolism in Arabidopsis. The Plant Journal, 58(2), 318-332. doi:10.1111/j.1365-313x.2008.03781.x es_ES
dc.description.references Firon, N., Pressman, E., Meir, S., Khoury, R., & Altahan, L. (2012). Ethylene is involved in maintaining tomato (Solanum lycopersicum) pollen quality under heat-stress conditions. AoB PLANTS, 2012. doi:10.1093/aobpla/pls024 es_ES
dc.description.references Gremski, K., Ditta, G., & Yanofsky, M. F. (2007). The HECATE genes regulate female reproductive tract development in Arabidopsis thaliana. Development, 134(20), 3593-3601. doi:10.1242/dev.011510 es_ES
dc.description.references Hedhly, A., Hormaza, J. I., & Herrero, M. (2009). Global warming and sexual plant reproduction. Trends in Plant Science, 14(1), 30-36. doi:10.1016/j.tplants.2008.11.001 es_ES
dc.description.references Hentrich, M., Sánchez-Parra, B., Pérez Alonso, M.-M., Carrasco Loba, V., Carrillo, L., Vicente-Carbajosa, J., … Pollmann, S. (2013). YUCCA8andYUCCA9overexpression reveals a link between auxin signaling and lignification through the induction of ethylene biosynthesis. Plant Signaling & Behavior, 8(11), e26363. doi:10.4161/psb.26363 es_ES
dc.description.references Herridge, R. P., Day, R. C., Baldwin, S., & Macknight, R. C. (2011). Rapid analysis of seed size in Arabidopsis for mutant and QTL discovery. Plant Methods, 7(1), 3. doi:10.1186/1746-4811-7-3 es_ES
dc.description.references Jain, M., Prasad, P. V. V., Boote, K. J., Hartwell, A. L., & Chourey, P. S. (2007). Effects of season-long high temperature growth conditions on sugar-to-starch metabolism in developing microspores of grain sorghum (Sorghum bicolor L. Moench). Planta, 227(1), 67-79. doi:10.1007/s00425-007-0595-y es_ES
dc.description.references Jefferson, R. A., Kavanagh, T. A., & Bevan, M. W. (1987). GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO Journal, 6(13), 3901-3907. doi:10.1002/j.1460-2075.1987.tb02730.x es_ES
dc.description.references Jiang, L., Yang, S.-L., Xie, L.-F., Puah, C. S., Zhang, X.-Q., Yang, W.-C., … Ye, D. (2005). VANGUARD1 Encodes a Pectin Methylesterase That Enhances Pollen Tube Growth in the Arabidopsis Style and Transmitting Tract. The Plant Cell, 17(2), 584-596. doi:10.1105/tpc.104.027631 es_ES
dc.description.references Jiang, W., Zhou, H., Bi, H., Fromm, M., Yang, B., & Weeks, D. P. (2013). Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Research, 41(20), e188-e188. doi:10.1093/nar/gkt780 es_ES
dc.description.references KAKANI, V. G., PRASAD, P. V. V., CRAUFURD, P. Q., & WHEELER, T. R. (2002). Response of in vitro pollen germination and pollen tube growth of groundnut (Arachis hypogaea L.) genotypes to temperature. Plant, Cell & Environment, 25(12), 1651-1661. doi:10.1046/j.1365-3040.2002.00943.x es_ES
dc.description.references KAKANI, V. G., REDDY, K. R., KOTI, S., WALLACE, T. P., PRASAD, P. V. V., REDDY, V. R., & ZHAO, D. (2005). Differences in in vitro Pollen Germination and Pollen Tube Growth of Cotton Cultivars in Response to High Temperature. Annals of Botany, 96(1), 59-67. doi:10.1093/aob/mci149 es_ES
dc.description.references Kazan, K. (2013). Auxin and the integration of environmental signals into plant root development. Annals of Botany, 112(9), 1655-1665. doi:10.1093/aob/mct229 es_ES
dc.description.references Kim, S. Y., Hong, C. B., & Lee, I. (2001). Heat Shock Stress Causes Stage-specific Male Sterility in Arabidopsis thaliana. Journal of Plant Research, 114(3), 301-307. doi:10.1007/pl00013991 es_ES
dc.description.references Kim, J. I., Sharkhuu, A., Jin, J. B., Li, P., Jeong, J. C., Baek, D., … Bressan, R. A. (2007). yucca6, a Dominant Mutation in Arabidopsis, Affects Auxin Accumulation and Auxin-Related Phenotypes. Plant Physiology, 145(3), 722-735. doi:10.1104/pp.107.104935 es_ES
dc.description.references Kim, J. I., Baek, D., Park, H. C., Chun, H. J., Oh, D.-H., Lee, M. K., … Yun, D.-J. (2013). Overexpression of Arabidopsis YUCCA6 in Potato Results in High-Auxin Developmental Phenotypes and Enhanced Resistance to Water Deficit. Molecular Plant, 6(2), 337-349. doi:10.1093/mp/sss100 es_ES
dc.description.references Kolachevskaya, O. O., Alekseeva, V. V., Sergeeva, L. I., Rukavtsova, E. B., Getman, I. A., Vreugdenhil, D., … Romanov, G. A. (2015). Expression of auxin synthesis genetms1under control of tuber-specific promoter enhances potato tuberizationin vitro. Journal of Integrative Plant Biology, 57(9), 734-744. doi:10.1111/jipb.12314 es_ES
dc.description.references Kumar, R., Agarwal, P., Tyagi, A. K., & Sharma, A. K. (2012). Genome-wide investigation and expression analysis suggest diverse roles of auxin-responsive GH3 genes during development and response to different stimuli in tomato (Solanum lycopersicum). Molecular Genetics and Genomics, 287(3), 221-235. doi:10.1007/s00438-011-0672-6 es_ES
dc.description.references Li, L., Hou, X., Tsuge, T., Ding, M., Aoyama, T., Oka, A., … Qu, L.-J. (2007). The possible action mechanisms of indole-3-acetic acid methyl ester in Arabidopsis. Plant Cell Reports, 27(3), 575-584. doi:10.1007/s00299-007-0458-9 es_ES
dc.description.references Ljung, K. (2013). Auxin metabolism and homeostasis during plant development. Development, 140(5), 943-950. doi:10.1242/dev.086363 es_ES
dc.description.references Lobell, D. B., Bänziger, M., Magorokosho, C., & Vivek, B. (2011). Nonlinear heat effects on African maize as evidenced by historical yield trials. Nature Climate Change, 1(1), 42-45. doi:10.1038/nclimate1043 es_ES
dc.description.references Mashiguchi, K., Tanaka, K., Sakai, T., Sugawara, S., Kawaide, H., Natsume, M., … Kasahara, H. (2011). The main auxin biosynthesis pathway in Arabidopsis. Proceedings of the National Academy of Sciences, 108(45), 18512-18517. doi:10.1073/pnas.1108434108 es_ES
dc.description.references Mezzetti, B., Landi, L., Pandolfini, T., & Spena, A. (2004). BMC Biotechnology, 4(1), 4. doi:10.1186/1472-6750-4-4 es_ES
dc.description.references OSHINO, T., MIURA, S., KIKUCHI, S., HAMADA, K., YANO, K., WATANABE, M., & HIGASHITANI, A. (2010). Auxin depletion in barley plants under high-temperature conditions represses DNA proliferation in organelles and nuclei via transcriptional alterations. Plant, Cell & Environment, 34(2), 284-290. doi:10.1111/j.1365-3040.2010.02242.x es_ES
dc.description.references Park, J.-E., Park, J.-Y., Kim, Y.-S., Staswick, P. E., Jeon, J., Yun, J., … Park, C.-M. (2007). GH3-mediated Auxin Homeostasis Links Growth Regulation with Stress Adaptation Response in Arabidopsis. Journal of Biological Chemistry, 282(13), 10036-10046. doi:10.1074/jbc.m610524200 es_ES
dc.description.references Pavlidis, P., & Noble, W. S. (2003). Matrix2png: a utility for visualizing matrix data. Bioinformatics, 19(2), 295-296. doi:10.1093/bioinformatics/19.2.295 es_ES
dc.description.references Peng, S., Huang, J., Sheehy, J. E., Laza, R. C., Visperas, R. M., Zhong, X., … Cassman, K. G. (2004). Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences, 101(27), 9971-9975. doi:10.1073/pnas.0403720101 es_ES
dc.description.references Plackett, A. R. G., Powers, S. J., Fernandez-Garcia, N., Urbanova, T., Takebayashi, Y., Seo, M., … Hedden, P. (2012). Analysis of the Developmental Roles of the Arabidopsis Gibberellin 20-Oxidases Demonstrates That GA20ox1, -2, and -3 Are the Dominant Paralogs. The Plant Cell, 24(3), 941-960. doi:10.1105/tpc.111.095109 es_ES
dc.description.references Qin, G., Gu, H., Zhao, Y., Ma, Z., Shi, G., Yang, Y., … Qu, L.-J. (2005). An Indole-3-Acetic Acid Carboxyl Methyltransferase Regulates Arabidopsis Leaf Development. The Plant Cell, 17(10), 2693-2704. doi:10.1105/tpc.105.034959 es_ES
dc.description.references Rotino, G. L., Perri, E., Zottini, M., Sommer, H., & Spena, A. (1997). Genetic engineering of parthenocarpic plants. Nature Biotechnology, 15(13), 1398-1401. doi:10.1038/nbt1297-1398 es_ES
dc.description.references Sabatini, S., Beis, D., Wolkenfelt, H., Murfett, J., Guilfoyle, T., Malamy, J., … Scheres, B. (1999). An Auxin-Dependent Distal Organizer of Pattern and Polarity in the Arabidopsis Root. Cell, 99(5), 463-472. doi:10.1016/s0092-8674(00)81535-4 es_ES
dc.description.references Sakata, T., Oshino, T., Miura, S., Tomabechi, M., Tsunaga, Y., Higashitani, N., … Higashitani, A. (2010). Auxins reverse plant male sterility caused by high temperatures. Proceedings of the National Academy of Sciences, 107(19), 8569-8574. doi:10.1073/pnas.1000869107 es_ES
dc.description.references Sakata, T., Yagihashi, N., & Atsushi, H. (2010). Tissue-specific auxin signaling in response to temperature fluctuation. Plant Signaling & Behavior, 5(11), 1510-1512. doi:10.4161/psb.5.11.13706 es_ES
dc.description.references Snider, J. L., Oosterhuis, D. M., Loka, D. A., & Kawakami, E. M. (2011). High temperature limits in vivo pollen tube growth rates by altering diurnal carbohydrate balance in field-grown Gossypium hirsutum pistils. Journal of Plant Physiology, 168(11), 1168-1175. doi:10.1016/j.jplph.2010.12.011 es_ES
dc.description.references Spitzer, M., Wildenhain, J., Rappsilber, J., & Tyers, M. (2014). BoxPlotR: a web tool for generation of box plots. Nature Methods, 11(2), 121-122. doi:10.1038/nmeth.2811 es_ES
dc.description.references Terol, J., Domingo, C., & Talón, M. (2006). The GH3 family in plants: Genome wide analysis in rice and evolutionary history based on EST analysis. Gene, 371(2), 279-290. doi:10.1016/j.gene.2005.12.014 es_ES
dc.description.references Till, B. J. (2003). Large-Scale Discovery of Induced Point Mutations With High-Throughput TILLING. Genome Research, 13(3), 524-530. doi:10.1101/gr.977903 es_ES
dc.description.references Wardlaw, I., Dawson, I., & Munibi, P. (1989). The tolerance of wheat to hight temperatures during reproductive growth. 2. Grain development. Australian Journal of Agricultural Research, 40(1), 15. doi:10.1071/ar9890015 es_ES
dc.description.references Won, C., Shen, X., Mashiguchi, K., Zheng, Z., Dai, X., Cheng, Y., … Zhao, Y. (2011). Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN AMINOTRANSFERASES OF ARABIDOPSIS and YUCCAs in Arabidopsis. Proceedings of the National Academy of Sciences, 108(45), 18518-18523. doi:10.1073/pnas.1108436108 es_ES
dc.description.references Wu, J.-Z., Lin, Y., Zhang, X.-L., Pang, D.-W., & Zhao, J. (2008). IAA stimulates pollen tube growth and mediates the modification of its wall composition and structure in Torenia fournieri. Journal of Experimental Botany, 59(9), 2529-2543. doi:10.1093/jxb/ern119 es_ES
dc.description.references Yang, Y., Yue, R., Sun, T., Zhang, L., Chen, W., Zeng, H., … Shen, C. (2014). Genome-wide identification, expression analysis of GH3 family genes in Medicago truncatula under stress-related hormones and Sinorhizobium meliloti infection. Applied Microbiology and Biotechnology, 99(2), 841-854. doi:10.1007/s00253-014-6311-5 es_ES
dc.description.references Yuan, H., Zhao, K., Lei, H., Shen, X., Liu, Y., Liao, X., & Li, T. (2013). Genome-wide analysis of the GH3 family in apple (Malus × domestica). BMC Genomics, 14(1), 297. doi:10.1186/1471-2164-14-297 es_ES
dc.description.references Zhang, M., Zheng, X., Song, S., Zeng, Q., Hou, L., Li, D., … Pei, Y. (2011). Spatiotemporal manipulation of auxin biosynthesis in cotton ovule epidermal cells enhances fiber yield and quality. Nature Biotechnology, 29(5), 453-458. doi:10.1038/nbt.1843 es_ES
dc.description.references Zhao, N., Ferrer, J.-L., Ross, J., Guan, J., Yang, Y., Pichersky, E., … Chen, F. (2007). Structural, Biochemical, and Phylogenetic Analyses Suggest That Indole-3-Acetic Acid Methyltransferase Is an Evolutionarily Ancient Member of the SABATH Family. Plant Physiology, 146(2), 455-467. doi:10.1104/pp.107.110049 es_ES
dc.description.references Zinn, K. E., Tunc-Ozdemir, M., & Harper, J. F. (2010). Temperature stress and plant sexual reproduction: uncovering the weakest links. Journal of Experimental Botany, 61(7), 1959-1968. doi:10.1093/jxb/erq053 es_ES
dc.description.references Zubieta, C., Ross, J. R., Koscheski, P., Yang, Y., Pichersky, E., & Noel, J. P. (2003). Structural Basis for Substrate Recognition in the Salicylic Acid Carboxyl Methyltransferase Family. The Plant Cell, 15(8), 1704-1716. doi:10.1105/tpc.014548 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem