- -

Reduction of indole-3-acetic acid methyltransferase activity compensates for high-temperature male sterility in Arabidopsis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Reduction of indole-3-acetic acid methyltransferase activity compensates for high-temperature male sterility in Arabidopsis

Mostrar el registro completo del ítem

Abbas, M.; Hernández-García, J.; Blanco-Touriñán, N.; Aliaga, N.; Minguet, E.; Alabadí Diego, D.; Blazquez Rodriguez, MA. (2018). Reduction of indole-3-acetic acid methyltransferase activity compensates for high-temperature male sterility in Arabidopsis. Plant Biotechnology Journal. 16(1):272-279. https://doi.org/10.1111/pbi.12768

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/153039

Ficheros en el ítem

Metadatos del ítem

Título: Reduction of indole-3-acetic acid methyltransferase activity compensates for high-temperature male sterility in Arabidopsis
Autor: Abbas, Mohamad Hernández-García, Jorge Blanco-Touriñán, Noel Aliaga, Norma Minguet, E.G. ALABADÍ DIEGO, DAVID BLAZQUEZ RODRIGUEZ, MIGUEL ANGEL
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Universitat Politècnica de València. Departamento de Producción Vegetal - Departament de Producció Vegetal
Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Fecha difusión:
Palabras clave: Pollen , Auxin , Fertility
Derechos de uso: Reserva de todos los derechos
Fuente:
Plant Biotechnology Journal. (issn: 1467-7644 )
DOI: 10.1111/pbi.12768
Editorial:
Blackwell Publishing
Versión del editor: https://doi.org/10.1111/pbi.12768
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/644435/EU/Evaluation of Plant Signaling Networks in Natural Environments/
info:eu-repo/grantAgreement/MINECO//BIO2013-43184-P/ES/PAPEL DE LA PREFOLDINA EN EL NUCLEO DEPENDIENTE DE DELLAS EN ARABIDOPSIS./
info:eu-repo/grantAgreement/MINECO//AGL2014-57200-JIN/ES/MEJORA DE LA PRODUCTIVIDAD DE LOS CULTIVOS AGRICOLAS EN CONDICIONES DE ESTRES POR ALTAS TEMPERATURAS/
Agradecimientos:
We thank Torben Jahrmann (Semillas Fito, Barcelona, Spain) for discussions of the work, and Prof. Michael Holdsworth (University of Nottingham, UK) for edition and comments on the manuscript. Work in the authors' laboratory ...[+]
Tipo: Artículo

References

Abbas, M., Berckhan, S., Rooney, D. J., Gibbs, D. J., Vicente Conde, J., Sousa Correia, C., … Holdsworth, M. J. (2015). Oxygen Sensing Coordinates Photomorphogenesis to Facilitate Seedling Survival. Current Biology, 25(11), 1483-1488. doi:10.1016/j.cub.2015.03.060

Alabadi, D., Blazquez, M. A., Carbonell, J., Ferrandiz, C., & Perez-Amador, M. A. (2009). Instructive roles for hormones in plant development. The International Journal of Developmental Biology, 53(8-9-10), 1597-1608. doi:10.1387/ijdb.072423da

Alonso, J. M. (2003). Genome-Wide Insertional Mutagenesis of Arabidopsis thaliana. Science, 301(5633), 653-657. doi:10.1126/science.1086391 [+]
Abbas, M., Berckhan, S., Rooney, D. J., Gibbs, D. J., Vicente Conde, J., Sousa Correia, C., … Holdsworth, M. J. (2015). Oxygen Sensing Coordinates Photomorphogenesis to Facilitate Seedling Survival. Current Biology, 25(11), 1483-1488. doi:10.1016/j.cub.2015.03.060

Alabadi, D., Blazquez, M. A., Carbonell, J., Ferrandiz, C., & Perez-Amador, M. A. (2009). Instructive roles for hormones in plant development. The International Journal of Developmental Biology, 53(8-9-10), 1597-1608. doi:10.1387/ijdb.072423da

Alonso, J. M. (2003). Genome-Wide Insertional Mutagenesis of Arabidopsis thaliana. Science, 301(5633), 653-657. doi:10.1126/science.1086391

Aoki, Y., Okamura, Y., Tadaka, S., Kinoshita, K., & Obayashi, T. (2015). ATTED-II in 2016: A Plant Coexpression Database Towards Lineage-Specific Coexpression. Plant and Cell Physiology, 57(1), e5-e5. doi:10.1093/pcp/pcv165

Bewley , J.D. Bradford , K.J. Hilhorst , H.W.M. Nonogaki , H. 2013 Seeds: Physiology of Development, Germination and Dormancy New York Springer

Chen, Q., Dai, X., De-Paoli, H., Cheng, Y., Takebayashi, Y., Kasahara, H., … Zhao, Y. (2014). Auxin Overproduction in Shoots Cannot Rescue Auxin Deficiencies in Arabidopsis Roots. Plant and Cell Physiology, 55(6), 1072-1079. doi:10.1093/pcp/pcu039

Cheng, Y., Dai, X., & Zhao, Y. (2006). Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues inArabidopsis. Genes & Development, 20(13), 1790-1799. doi:10.1101/gad.1415106

Bosco, C. D., Dovzhenko, A., Liu, X., Woerner, N., Rensch, T., Eismann, M., … Palme, K. (2012). The endoplasmic reticulum localized PIN8 is a pollen-specific auxin carrier involved in intracellular auxin homeostasis. The Plant Journal, 71(5), 860-870. doi:10.1111/j.1365-313x.2012.05037.x

Ding, Z., Wang, B., Moreno, I., Dupláková, N., Simon, S., Carraro, N., … Friml, J. (2012). ER-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in Arabidopsis. Nature Communications, 3(1). doi:10.1038/ncomms1941

Domingo, C., Andrés, F., Tharreau, D., Iglesias, D. J., & Talón, M. (2009). Constitutive Expression of OsGH3.1 Reduces Auxin Content and Enhances Defense Response and Resistance to a Fungal Pathogen in Rice. Molecular Plant-Microbe Interactions®, 22(2), 201-210. doi:10.1094/mpmi-22-2-0201

Dorcey, E., Urbez, C., Blázquez, M. A., Carbonell, J., & Perez-Amador, M. A. (2009). Fertilization-dependent auxin response in ovules triggers fruit development through the modulation of gibberellin metabolism in Arabidopsis. The Plant Journal, 58(2), 318-332. doi:10.1111/j.1365-313x.2008.03781.x

Firon, N., Pressman, E., Meir, S., Khoury, R., & Altahan, L. (2012). Ethylene is involved in maintaining tomato (Solanum lycopersicum) pollen quality under heat-stress conditions. AoB PLANTS, 2012. doi:10.1093/aobpla/pls024

Gremski, K., Ditta, G., & Yanofsky, M. F. (2007). The HECATE genes regulate female reproductive tract development in Arabidopsis thaliana. Development, 134(20), 3593-3601. doi:10.1242/dev.011510

Hedhly, A., Hormaza, J. I., & Herrero, M. (2009). Global warming and sexual plant reproduction. Trends in Plant Science, 14(1), 30-36. doi:10.1016/j.tplants.2008.11.001

Hentrich, M., Sánchez-Parra, B., Pérez Alonso, M.-M., Carrasco Loba, V., Carrillo, L., Vicente-Carbajosa, J., … Pollmann, S. (2013). YUCCA8andYUCCA9overexpression reveals a link between auxin signaling and lignification through the induction of ethylene biosynthesis. Plant Signaling & Behavior, 8(11), e26363. doi:10.4161/psb.26363

Herridge, R. P., Day, R. C., Baldwin, S., & Macknight, R. C. (2011). Rapid analysis of seed size in Arabidopsis for mutant and QTL discovery. Plant Methods, 7(1), 3. doi:10.1186/1746-4811-7-3

Jain, M., Prasad, P. V. V., Boote, K. J., Hartwell, A. L., & Chourey, P. S. (2007). Effects of season-long high temperature growth conditions on sugar-to-starch metabolism in developing microspores of grain sorghum (Sorghum bicolor L. Moench). Planta, 227(1), 67-79. doi:10.1007/s00425-007-0595-y

Jefferson, R. A., Kavanagh, T. A., & Bevan, M. W. (1987). GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO Journal, 6(13), 3901-3907. doi:10.1002/j.1460-2075.1987.tb02730.x

Jiang, L., Yang, S.-L., Xie, L.-F., Puah, C. S., Zhang, X.-Q., Yang, W.-C., … Ye, D. (2005). VANGUARD1 Encodes a Pectin Methylesterase That Enhances Pollen Tube Growth in the Arabidopsis Style and Transmitting Tract. The Plant Cell, 17(2), 584-596. doi:10.1105/tpc.104.027631

Jiang, W., Zhou, H., Bi, H., Fromm, M., Yang, B., & Weeks, D. P. (2013). Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Research, 41(20), e188-e188. doi:10.1093/nar/gkt780

KAKANI, V. G., PRASAD, P. V. V., CRAUFURD, P. Q., & WHEELER, T. R. (2002). Response of in vitro pollen germination and pollen tube growth of groundnut (Arachis hypogaea L.) genotypes to temperature. Plant, Cell & Environment, 25(12), 1651-1661. doi:10.1046/j.1365-3040.2002.00943.x

KAKANI, V. G., REDDY, K. R., KOTI, S., WALLACE, T. P., PRASAD, P. V. V., REDDY, V. R., & ZHAO, D. (2005). Differences in in vitro Pollen Germination and Pollen Tube Growth of Cotton Cultivars in Response to High Temperature. Annals of Botany, 96(1), 59-67. doi:10.1093/aob/mci149

Kazan, K. (2013). Auxin and the integration of environmental signals into plant root development. Annals of Botany, 112(9), 1655-1665. doi:10.1093/aob/mct229

Kim, S. Y., Hong, C. B., & Lee, I. (2001). Heat Shock Stress Causes Stage-specific Male Sterility in Arabidopsis thaliana. Journal of Plant Research, 114(3), 301-307. doi:10.1007/pl00013991

Kim, J. I., Sharkhuu, A., Jin, J. B., Li, P., Jeong, J. C., Baek, D., … Bressan, R. A. (2007). yucca6, a Dominant Mutation in Arabidopsis, Affects Auxin Accumulation and Auxin-Related Phenotypes. Plant Physiology, 145(3), 722-735. doi:10.1104/pp.107.104935

Kim, J. I., Baek, D., Park, H. C., Chun, H. J., Oh, D.-H., Lee, M. K., … Yun, D.-J. (2013). Overexpression of Arabidopsis YUCCA6 in Potato Results in High-Auxin Developmental Phenotypes and Enhanced Resistance to Water Deficit. Molecular Plant, 6(2), 337-349. doi:10.1093/mp/sss100

Kolachevskaya, O. O., Alekseeva, V. V., Sergeeva, L. I., Rukavtsova, E. B., Getman, I. A., Vreugdenhil, D., … Romanov, G. A. (2015). Expression of auxin synthesis genetms1under control of tuber-specific promoter enhances potato tuberizationin vitro. Journal of Integrative Plant Biology, 57(9), 734-744. doi:10.1111/jipb.12314

Kumar, R., Agarwal, P., Tyagi, A. K., & Sharma, A. K. (2012). Genome-wide investigation and expression analysis suggest diverse roles of auxin-responsive GH3 genes during development and response to different stimuli in tomato (Solanum lycopersicum). Molecular Genetics and Genomics, 287(3), 221-235. doi:10.1007/s00438-011-0672-6

Li, L., Hou, X., Tsuge, T., Ding, M., Aoyama, T., Oka, A., … Qu, L.-J. (2007). The possible action mechanisms of indole-3-acetic acid methyl ester in Arabidopsis. Plant Cell Reports, 27(3), 575-584. doi:10.1007/s00299-007-0458-9

Ljung, K. (2013). Auxin metabolism and homeostasis during plant development. Development, 140(5), 943-950. doi:10.1242/dev.086363

Lobell, D. B., Bänziger, M., Magorokosho, C., & Vivek, B. (2011). Nonlinear heat effects on African maize as evidenced by historical yield trials. Nature Climate Change, 1(1), 42-45. doi:10.1038/nclimate1043

Mashiguchi, K., Tanaka, K., Sakai, T., Sugawara, S., Kawaide, H., Natsume, M., … Kasahara, H. (2011). The main auxin biosynthesis pathway in Arabidopsis. Proceedings of the National Academy of Sciences, 108(45), 18512-18517. doi:10.1073/pnas.1108434108

Mezzetti, B., Landi, L., Pandolfini, T., & Spena, A. (2004). BMC Biotechnology, 4(1), 4. doi:10.1186/1472-6750-4-4

OSHINO, T., MIURA, S., KIKUCHI, S., HAMADA, K., YANO, K., WATANABE, M., & HIGASHITANI, A. (2010). Auxin depletion in barley plants under high-temperature conditions represses DNA proliferation in organelles and nuclei via transcriptional alterations. Plant, Cell & Environment, 34(2), 284-290. doi:10.1111/j.1365-3040.2010.02242.x

Park, J.-E., Park, J.-Y., Kim, Y.-S., Staswick, P. E., Jeon, J., Yun, J., … Park, C.-M. (2007). GH3-mediated Auxin Homeostasis Links Growth Regulation with Stress Adaptation Response in Arabidopsis. Journal of Biological Chemistry, 282(13), 10036-10046. doi:10.1074/jbc.m610524200

Pavlidis, P., & Noble, W. S. (2003). Matrix2png: a utility for visualizing matrix data. Bioinformatics, 19(2), 295-296. doi:10.1093/bioinformatics/19.2.295

Peng, S., Huang, J., Sheehy, J. E., Laza, R. C., Visperas, R. M., Zhong, X., … Cassman, K. G. (2004). Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences, 101(27), 9971-9975. doi:10.1073/pnas.0403720101

Plackett, A. R. G., Powers, S. J., Fernandez-Garcia, N., Urbanova, T., Takebayashi, Y., Seo, M., … Hedden, P. (2012). Analysis of the Developmental Roles of the Arabidopsis Gibberellin 20-Oxidases Demonstrates That GA20ox1, -2, and -3 Are the Dominant Paralogs. The Plant Cell, 24(3), 941-960. doi:10.1105/tpc.111.095109

Qin, G., Gu, H., Zhao, Y., Ma, Z., Shi, G., Yang, Y., … Qu, L.-J. (2005). An Indole-3-Acetic Acid Carboxyl Methyltransferase Regulates Arabidopsis Leaf Development. The Plant Cell, 17(10), 2693-2704. doi:10.1105/tpc.105.034959

Rotino, G. L., Perri, E., Zottini, M., Sommer, H., & Spena, A. (1997). Genetic engineering of parthenocarpic plants. Nature Biotechnology, 15(13), 1398-1401. doi:10.1038/nbt1297-1398

Sabatini, S., Beis, D., Wolkenfelt, H., Murfett, J., Guilfoyle, T., Malamy, J., … Scheres, B. (1999). An Auxin-Dependent Distal Organizer of Pattern and Polarity in the Arabidopsis Root. Cell, 99(5), 463-472. doi:10.1016/s0092-8674(00)81535-4

Sakata, T., Oshino, T., Miura, S., Tomabechi, M., Tsunaga, Y., Higashitani, N., … Higashitani, A. (2010). Auxins reverse plant male sterility caused by high temperatures. Proceedings of the National Academy of Sciences, 107(19), 8569-8574. doi:10.1073/pnas.1000869107

Sakata, T., Yagihashi, N., & Atsushi, H. (2010). Tissue-specific auxin signaling in response to temperature fluctuation. Plant Signaling & Behavior, 5(11), 1510-1512. doi:10.4161/psb.5.11.13706

Snider, J. L., Oosterhuis, D. M., Loka, D. A., & Kawakami, E. M. (2011). High temperature limits in vivo pollen tube growth rates by altering diurnal carbohydrate balance in field-grown Gossypium hirsutum pistils. Journal of Plant Physiology, 168(11), 1168-1175. doi:10.1016/j.jplph.2010.12.011

Spitzer, M., Wildenhain, J., Rappsilber, J., & Tyers, M. (2014). BoxPlotR: a web tool for generation of box plots. Nature Methods, 11(2), 121-122. doi:10.1038/nmeth.2811

Terol, J., Domingo, C., & Talón, M. (2006). The GH3 family in plants: Genome wide analysis in rice and evolutionary history based on EST analysis. Gene, 371(2), 279-290. doi:10.1016/j.gene.2005.12.014

Till, B. J. (2003). Large-Scale Discovery of Induced Point Mutations With High-Throughput TILLING. Genome Research, 13(3), 524-530. doi:10.1101/gr.977903

Wardlaw, I., Dawson, I., & Munibi, P. (1989). The tolerance of wheat to hight temperatures during reproductive growth. 2. Grain development. Australian Journal of Agricultural Research, 40(1), 15. doi:10.1071/ar9890015

Won, C., Shen, X., Mashiguchi, K., Zheng, Z., Dai, X., Cheng, Y., … Zhao, Y. (2011). Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN AMINOTRANSFERASES OF ARABIDOPSIS and YUCCAs in Arabidopsis. Proceedings of the National Academy of Sciences, 108(45), 18518-18523. doi:10.1073/pnas.1108436108

Wu, J.-Z., Lin, Y., Zhang, X.-L., Pang, D.-W., & Zhao, J. (2008). IAA stimulates pollen tube growth and mediates the modification of its wall composition and structure in Torenia fournieri. Journal of Experimental Botany, 59(9), 2529-2543. doi:10.1093/jxb/ern119

Yang, Y., Yue, R., Sun, T., Zhang, L., Chen, W., Zeng, H., … Shen, C. (2014). Genome-wide identification, expression analysis of GH3 family genes in Medicago truncatula under stress-related hormones and Sinorhizobium meliloti infection. Applied Microbiology and Biotechnology, 99(2), 841-854. doi:10.1007/s00253-014-6311-5

Yuan, H., Zhao, K., Lei, H., Shen, X., Liu, Y., Liao, X., & Li, T. (2013). Genome-wide analysis of the GH3 family in apple (Malus × domestica). BMC Genomics, 14(1), 297. doi:10.1186/1471-2164-14-297

Zhang, M., Zheng, X., Song, S., Zeng, Q., Hou, L., Li, D., … Pei, Y. (2011). Spatiotemporal manipulation of auxin biosynthesis in cotton ovule epidermal cells enhances fiber yield and quality. Nature Biotechnology, 29(5), 453-458. doi:10.1038/nbt.1843

Zhao, N., Ferrer, J.-L., Ross, J., Guan, J., Yang, Y., Pichersky, E., … Chen, F. (2007). Structural, Biochemical, and Phylogenetic Analyses Suggest That Indole-3-Acetic Acid Methyltransferase Is an Evolutionarily Ancient Member of the SABATH Family. Plant Physiology, 146(2), 455-467. doi:10.1104/pp.107.110049

Zinn, K. E., Tunc-Ozdemir, M., & Harper, J. F. (2010). Temperature stress and plant sexual reproduction: uncovering the weakest links. Journal of Experimental Botany, 61(7), 1959-1968. doi:10.1093/jxb/erq053

Zubieta, C., Ross, J. R., Koscheski, P., Yang, Y., Pichersky, E., & Noel, J. P. (2003). Structural Basis for Substrate Recognition in the Salicylic Acid Carboxyl Methyltransferase Family. The Plant Cell, 15(8), 1704-1716. doi:10.1105/tpc.014548

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem