Bayraktar, E., Tatoglu, E., & Zaim, S. (2013). Measuring the relative efficiency of quality management practices in Turkish public and private universities. Journal of the Operational Research Society, 64(12), 1810-1830. doi:10.1057/jors.2013.2
Mayston, D. J. (2017). Convexity, quality and efficiency in education. Journal of the Operational Research Society, 68(4), 446-455. doi:10.1057/jors.2015.91
Palomares-Montero, D., García-Aracil, A., & Castro-Martínez, E. (2008). Assessment of Higher Education Institutions: A Bibliographic Review of Indicatorsâ Systems. Revista española de Documentación Científica, 31(2). doi:10.3989/redc.2008.v31.i2.425
[+]
Bayraktar, E., Tatoglu, E., & Zaim, S. (2013). Measuring the relative efficiency of quality management practices in Turkish public and private universities. Journal of the Operational Research Society, 64(12), 1810-1830. doi:10.1057/jors.2013.2
Mayston, D. J. (2017). Convexity, quality and efficiency in education. Journal of the Operational Research Society, 68(4), 446-455. doi:10.1057/jors.2015.91
Palomares-Montero, D., García-Aracil, A., & Castro-Martínez, E. (2008). Assessment of Higher Education Institutions: A Bibliographic Review of Indicatorsâ Systems. Revista española de Documentación Científica, 31(2). doi:10.3989/redc.2008.v31.i2.425
Witte, K. D., & López-Torres, L. (2017). Efficiency in education: a review of literature and a way forward. Journal of the Operational Research Society, 68(4), 339-363. doi:10.1057/jors.2015.92
Barra, C., & Zotti, R. (2016). Measuring Efficiency in Higher Education: An Empirical Study Using a Bootstrapped Data Envelopment Analysis. International Advances in Economic Research, 22(1), 11-33. doi:10.1007/s11294-015-9558-4
Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429-444. doi:10.1016/0377-2217(78)90138-8
Agasisti, T., & Bianco, A. D. (2009). Measuring efficiency of Higher Education institutions. International Journal of Management and Decision Making, 10(5/6), 443. doi:10.1504/ijmdm.2009.026687
Agasisti, T., Barra, C., & Zotti, R. (2016). Evaluating the efficiency of Italian public universities (2008–2011) in presence of (unobserved) heterogeneity. Socio-Economic Planning Sciences, 55, 47-58. doi:10.1016/j.seps.2016.06.002
Da Silva e Souza, G., & Gomes, E. G. (2015). Management of agricultural research centers in Brazil: A DEA application using a dynamic GMM approach. European Journal of Operational Research, 240(3), 819-824. doi:10.1016/j.ejor.2014.07.027
Gökşen, Y., Doğan, O., & Özkarabacak, B. (2015). A Data Envelopment Analysis Application for Measuring Efficiency of University Departments. Procedia Economics and Finance, 19, 226-237. doi:10.1016/s2212-5671(15)00024-6
Katharaki, M., & Katharakis, G. (2010). A comparative assessment of Greek universities’ efficiency using quantitative analysis. International Journal of Educational Research, 49(4-5), 115-128. doi:10.1016/j.ijer.2010.11.001
Podinovski, V. V., & Wan Husain, W. R. (2015). The hybrid returns-to-scale model and its extension by production trade-offs: an application to the efficiency assessment of public universities in Malaysia. Annals of Operations Research, 250(1), 65-84. doi:10.1007/s10479-015-1854-0
Thanassoulis, E., Kortelainen, M., Johnes, G., & Johnes, J. (2011). Costs and efficiency of higher education institutions in England: a DEA analysis. Journal of the Operational Research Society, 62(7), 1282-1297. doi:10.1057/jors.2010.68
Wu, J., Chu, J., Sun, J., & Zhu, Q. (2016). DEA cross-efficiency evaluation based on Pareto improvement. European Journal of Operational Research, 248(2), 571-579. doi:10.1016/j.ejor.2015.07.042
Kwon, H.-B., & Lee, J. (2015). Two-stage production modeling of large U.S. banks: A DEA-neural network approach. Expert Systems with Applications, 42(19), 6758-6766. doi:10.1016/j.eswa.2015.04.062
Tao, L., Liu, X., & Chen, Y. (2012). Online banking performance evaluation using data envelopment analysis and axiomatic fuzzy set clustering. Quality & Quantity, 47(2), 1259-1273. doi:10.1007/s11135-012-9767-3
Tsolas, I. E., & Charles, V. (2015). Incorporating risk into bank efficiency: A satisficing DEA approach to assess the Greek banking crisis. Expert Systems with Applications, 42(7), 3491-3500. doi:10.1016/j.eswa.2014.12.033
Wanke, P., & Barros, C. (2014). Two-stage DEA: An application to major Brazilian banks. Expert Systems with Applications, 41(5), 2337-2344. doi:10.1016/j.eswa.2013.09.031
Aristovnik, A., Seljak, J., & Mencinger, J. (2014). Performance measurement of police forces at the local level: A non-parametric mathematical programming approach. Expert Systems with Applications, 41(4), 1647-1653. doi:10.1016/j.eswa.2013.08.061
Fang, L., & Li, H. (2015). Centralized resource allocation based on the cost–revenue analysis. Computers & Industrial Engineering, 85, 395-401. doi:10.1016/j.cie.2015.04.018
Du, J., Cook, W. D., Liang, L., & Zhu, J. (2014). Fixed cost and resource allocation based on DEA cross-efficiency. European Journal of Operational Research, 235(1), 206-214. doi:10.1016/j.ejor.2013.10.002
Lozano, S. (2015). A joint-inputs Network DEA approach to production and pollution-generating technologies. Expert Systems with Applications, 42(21), 7960-7968. doi:10.1016/j.eswa.2015.06.023
Woo, C., Chung, Y., Chun, D., Seo, H., & Hong, S. (2015). The static and dynamic environmental efficiency of renewable energy: A Malmquist index analysis of OECD countries. Renewable and Sustainable Energy Reviews, 47, 367-376. doi:10.1016/j.rser.2015.03.070
Azadeh, A., Motevali Haghighi, S., Zarrin, M., & Khaefi, S. (2015). Performance evaluation of Iranian electricity distribution units by using stochastic data envelopment analysis. International Journal of Electrical Power & Energy Systems, 73, 919-931. doi:10.1016/j.ijepes.2015.06.002
Omrani, H., Gharizadeh Beiragh, R., & Shafiei Kaleibari, S. (2015). Performance assessment of Iranian electricity distribution companies by an integrated cooperative game data envelopment analysis principal component analysis approach. International Journal of Electrical Power & Energy Systems, 64, 617-625. doi:10.1016/j.ijepes.2014.07.045
Escorcia Caballero, R., Visbal Cadavid, D., & Agudelo Toloza, J. M. (2015). Eficiencia en las instituciones educativas públicas de la ciudad de Santa Marta (Colombia) mediante "Análisis Envolvente de Datos. Ingeniare. Revista chilena de ingeniería, 23(4), 579-593. doi:10.4067/s0718-33052015000400009
Grosskopf, S., Hayes, K., & Taylor, L. L. (2014). Applied efficiency analysis in education. Economics and Business Letters, 3(1), 19. doi:10.17811/ebl.3.1.2014.19-26
Huguenin, J.-M. (2015). Determinants of school efficiency. International Journal of Educational Management, 29(5), 539-562. doi:10.1108/ijem-12-2013-0183
Avilés Sacoto, S., Güemes Castorena, D., Cook, W. D., & Cantú Delgado, H. (2015). Time-staged outputs in DEA. Omega, 55, 1-9. doi:10.1016/j.omega.2015.01.019
De Witte, K., & Rogge, N. (2011). Accounting for exogenous influences in performance evaluations of teachers. Economics of Education Review, 30(4), 641-653. doi:10.1016/j.econedurev.2011.02.002
Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis. Management Science, 30(9), 1078-1092. doi:10.1287/mnsc.30.9.1078
Tone, K. (2001). A slacks-based measure of efficiency in data envelopment analysis. European Journal of Operational Research, 130(3), 498-509. doi:10.1016/s0377-2217(99)00407-5
Farrell, M. J. (1957). The Measurement of Productive Efficiency. Journal of the Royal Statistical Society. Series A (General), 120(3), 253. doi:10.2307/2343100
Scheel, H., & Scholtes, S. (2003). Continuity of DEA Efficiency Measures. Operations Research, 51(1), 149-159. doi:10.1287/opre.51.1.149.12803
Andersen, P., & Petersen, N. C. (1993). A Procedure for Ranking Efficient Units in Data Envelopment Analysis. Management Science, 39(10), 1261-1264. doi:10.1287/mnsc.39.10.1261
Fang, H.-H., Lee, H.-S., Hwang, S.-N., & Chung, C.-C. (2013). A slacks-based measure of super-efficiency in data envelopment analysis: An alternative approach. Omega, 41(4), 731-734. doi:10.1016/j.omega.2012.10.004
Doyle, J., & Green, R. (1994). Efficiency and Cross-efficiency in DEA: Derivations, Meanings and Uses. Journal of the Operational Research Society, 45(5), 567-578. doi:10.1057/jors.1994.84
Sexton, T. R., Silkman, R. H., & Hogan, A. J. (1986). Data envelopment analysis: Critique and extensions. New Directions for Program Evaluation, 1986(32), 73-105. doi:10.1002/ev.1441
Yang, G., Yang, J., Liu, W., & Li, X. (2013). Cross-efficiency aggregation in DEA models using the evidential-reasoning approach. European Journal of Operational Research, 231(2), 393-404. doi:10.1016/j.ejor.2013.05.017
Zerafat Angiz, M., Mustafa, A., & Kamali, M. J. (2013). Cross-ranking of Decision Making Units in Data Envelopment Analysis. Applied Mathematical Modelling, 37(1-2), 398-405. doi:10.1016/j.apm.2012.02.038
Banker, R. D., & Chang, H. (2006). The super-efficiency procedure for outlier identification, not for ranking efficient units. European Journal of Operational Research, 175(2), 1311-1320. doi:10.1016/j.ejor.2005.06.028
Thanassoulis, E., Shiraz, R. K., & Maniadakis, N. (2015). A cost Malmquist productivity index capturing group performance. European Journal of Operational Research, 241(3), 796-805. doi:10.1016/j.ejor.2014.09.002
Wijesiri, M., & Meoli, M. (2015). Productivity change of microfinance institutions in Kenya: A bootstrap Malmquist approach. Journal of Retailing and Consumer Services, 25, 115-121. doi:10.1016/j.jretconser.2015.04.004
Eskelinen, J. (2017). Comparison of variable selection techniques for data envelopment analysis in a retail bank. European Journal of Operational Research, 259(2), 778-788. doi:10.1016/j.ejor.2016.11.009
Jenkins, L., & Anderson, M. (2003). A multivariate statistical approach to reducing the number of variables in data envelopment analysis. European Journal of Operational Research, 147(1), 51-61. doi:10.1016/s0377-2217(02)00243-6
Land, K. C., Knox Lovell, C. A., & Thore, S. (1994). Productive efficiency under capitalism and state socialism: Technological Forecasting and Social Change, 46(2), 139-152. doi:10.1016/0040-1625(94)90022-1
[-]