- -

Assessing the Efficiency of Public Universities through DEA. A Case Study

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Assessing the Efficiency of Public Universities through DEA. A Case Study

Show full item record

Visbal-Cadavid, D.; Martínez-Gómez, M.; Guijarro, F. (2017). Assessing the Efficiency of Public Universities through DEA. A Case Study. Sustainability. 9(8):1-19. https://doi.org/10.3390/su9081416

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/153048

Files in this item

Item Metadata

Title: Assessing the Efficiency of Public Universities through DEA. A Case Study
Author: Visbal-Cadavid, Delimiro Martínez-Gómez, Mónica Guijarro, Francisco
UPV Unit: Universitat Politècnica de València. Departamento de Economía y Ciencias Sociales - Departament d'Economia i Ciències Socials
Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat
Issued date:
Abstract:
[EN] This paper presents the results of an efficiency study of Colombian public universities in 2012, conducted using the methodology of Data Envelopment Analysis (DEA) and the models CCR, BCC and SBM under output orientation. ...[+]
Subjects: Higher education , Data envelopment analysis , Efficiency , Cross-efficiency , Malmquist index
Copyrigths: Reconocimiento (by)
Source:
Sustainability. (eissn: 2071-1050 )
DOI: 10.3390/su9081416
Publisher:
MDPI AG
Publisher version: https://doi.org/10.3390/su9081416
Project ID:
info:eu-repo/grantAgreement/GVA//GV%2F2016%2F004/
Thanks:
Monica Martinez-Gomez has been funded by the research project GVA/20161004: Project of Conselleria d'Educacio, Investigacio, Cultura i Esport de la Generalitat Valenciana, through the project "Validacion de la competencia ...[+]
Type: Artículo

References

Bayraktar, E., Tatoglu, E., & Zaim, S. (2013). Measuring the relative efficiency of quality management practices in Turkish public and private universities. Journal of the Operational Research Society, 64(12), 1810-1830. doi:10.1057/jors.2013.2

Mayston, D. J. (2017). Convexity, quality and efficiency in education. Journal of the Operational Research Society, 68(4), 446-455. doi:10.1057/jors.2015.91

Palomares-Montero, D., García-Aracil, A., & Castro-Martínez, E. (2008). Assessment of Higher Education Institutions: A Bibliographic Review of Indicatorsâ Systems. Revista española de Documentación Científica, 31(2). doi:10.3989/redc.2008.v31.i2.425 [+]
Bayraktar, E., Tatoglu, E., & Zaim, S. (2013). Measuring the relative efficiency of quality management practices in Turkish public and private universities. Journal of the Operational Research Society, 64(12), 1810-1830. doi:10.1057/jors.2013.2

Mayston, D. J. (2017). Convexity, quality and efficiency in education. Journal of the Operational Research Society, 68(4), 446-455. doi:10.1057/jors.2015.91

Palomares-Montero, D., García-Aracil, A., & Castro-Martínez, E. (2008). Assessment of Higher Education Institutions: A Bibliographic Review of Indicatorsâ Systems. Revista española de Documentación Científica, 31(2). doi:10.3989/redc.2008.v31.i2.425

Witte, K. D., & López-Torres, L. (2017). Efficiency in education: a review of literature and a way forward. Journal of the Operational Research Society, 68(4), 339-363. doi:10.1057/jors.2015.92

Barra, C., & Zotti, R. (2016). Measuring Efficiency in Higher Education: An Empirical Study Using a Bootstrapped Data Envelopment Analysis. International Advances in Economic Research, 22(1), 11-33. doi:10.1007/s11294-015-9558-4

Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429-444. doi:10.1016/0377-2217(78)90138-8

Agasisti, T., & Bianco, A. D. (2009). Measuring efficiency of Higher Education institutions. International Journal of Management and Decision Making, 10(5/6), 443. doi:10.1504/ijmdm.2009.026687

Agasisti, T., Barra, C., & Zotti, R. (2016). Evaluating the efficiency of Italian public universities (2008–2011) in presence of (unobserved) heterogeneity. Socio-Economic Planning Sciences, 55, 47-58. doi:10.1016/j.seps.2016.06.002

Da Silva e Souza, G., & Gomes, E. G. (2015). Management of agricultural research centers in Brazil: A DEA application using a dynamic GMM approach. European Journal of Operational Research, 240(3), 819-824. doi:10.1016/j.ejor.2014.07.027

Gökşen, Y., Doğan, O., & Özkarabacak, B. (2015). A Data Envelopment Analysis Application for Measuring Efficiency of University Departments. Procedia Economics and Finance, 19, 226-237. doi:10.1016/s2212-5671(15)00024-6

Katharaki, M., & Katharakis, G. (2010). A comparative assessment of Greek universities’ efficiency using quantitative analysis. International Journal of Educational Research, 49(4-5), 115-128. doi:10.1016/j.ijer.2010.11.001

Podinovski, V. V., & Wan Husain, W. R. (2015). The hybrid returns-to-scale model and its extension by production trade-offs: an application to the efficiency assessment of public universities in Malaysia. Annals of Operations Research, 250(1), 65-84. doi:10.1007/s10479-015-1854-0

Thanassoulis, E., Kortelainen, M., Johnes, G., & Johnes, J. (2011). Costs and efficiency of higher education institutions in England: a DEA analysis. Journal of the Operational Research Society, 62(7), 1282-1297. doi:10.1057/jors.2010.68

Wu, J., Chu, J., Sun, J., & Zhu, Q. (2016). DEA cross-efficiency evaluation based on Pareto improvement. European Journal of Operational Research, 248(2), 571-579. doi:10.1016/j.ejor.2015.07.042

Kwon, H.-B., & Lee, J. (2015). Two-stage production modeling of large U.S. banks: A DEA-neural network approach. Expert Systems with Applications, 42(19), 6758-6766. doi:10.1016/j.eswa.2015.04.062

Tao, L., Liu, X., & Chen, Y. (2012). Online banking performance evaluation using data envelopment analysis and axiomatic fuzzy set clustering. Quality & Quantity, 47(2), 1259-1273. doi:10.1007/s11135-012-9767-3

Tsolas, I. E., & Charles, V. (2015). Incorporating risk into bank efficiency: A satisficing DEA approach to assess the Greek banking crisis. Expert Systems with Applications, 42(7), 3491-3500. doi:10.1016/j.eswa.2014.12.033

Wanke, P., & Barros, C. (2014). Two-stage DEA: An application to major Brazilian banks. Expert Systems with Applications, 41(5), 2337-2344. doi:10.1016/j.eswa.2013.09.031

Aristovnik, A., Seljak, J., & Mencinger, J. (2014). Performance measurement of police forces at the local level: A non-parametric mathematical programming approach. Expert Systems with Applications, 41(4), 1647-1653. doi:10.1016/j.eswa.2013.08.061

Fang, L., & Li, H. (2015). Centralized resource allocation based on the cost–revenue analysis. Computers & Industrial Engineering, 85, 395-401. doi:10.1016/j.cie.2015.04.018

Du, J., Cook, W. D., Liang, L., & Zhu, J. (2014). Fixed cost and resource allocation based on DEA cross-efficiency. European Journal of Operational Research, 235(1), 206-214. doi:10.1016/j.ejor.2013.10.002

Lozano, S. (2015). A joint-inputs Network DEA approach to production and pollution-generating technologies. Expert Systems with Applications, 42(21), 7960-7968. doi:10.1016/j.eswa.2015.06.023

Woo, C., Chung, Y., Chun, D., Seo, H., & Hong, S. (2015). The static and dynamic environmental efficiency of renewable energy: A Malmquist index analysis of OECD countries. Renewable and Sustainable Energy Reviews, 47, 367-376. doi:10.1016/j.rser.2015.03.070

Azadeh, A., Motevali Haghighi, S., Zarrin, M., & Khaefi, S. (2015). Performance evaluation of Iranian electricity distribution units by using stochastic data envelopment analysis. International Journal of Electrical Power & Energy Systems, 73, 919-931. doi:10.1016/j.ijepes.2015.06.002

Omrani, H., Gharizadeh Beiragh, R., & Shafiei Kaleibari, S. (2015). Performance assessment of Iranian electricity distribution companies by an integrated cooperative game data envelopment analysis principal component analysis approach. International Journal of Electrical Power & Energy Systems, 64, 617-625. doi:10.1016/j.ijepes.2014.07.045

Escorcia Caballero, R., Visbal Cadavid, D., & Agudelo Toloza, J. M. (2015). Eficiencia en las instituciones educativas públicas de la ciudad de Santa Marta (Colombia) mediante "Análisis Envolvente de Datos. Ingeniare. Revista chilena de ingeniería, 23(4), 579-593. doi:10.4067/s0718-33052015000400009

Grosskopf, S., Hayes, K., & Taylor, L. L. (2014). Applied efficiency analysis in education. Economics and Business Letters, 3(1), 19. doi:10.17811/ebl.3.1.2014.19-26

Huguenin, J.-M. (2015). Determinants of school efficiency. International Journal of Educational Management, 29(5), 539-562. doi:10.1108/ijem-12-2013-0183

Avilés Sacoto, S., Güemes Castorena, D., Cook, W. D., & Cantú Delgado, H. (2015). Time-staged outputs in DEA. Omega, 55, 1-9. doi:10.1016/j.omega.2015.01.019

De Witte, K., & Rogge, N. (2011). Accounting for exogenous influences in performance evaluations of teachers. Economics of Education Review, 30(4), 641-653. doi:10.1016/j.econedurev.2011.02.002

Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis. Management Science, 30(9), 1078-1092. doi:10.1287/mnsc.30.9.1078

Tone, K. (2001). A slacks-based measure of efficiency in data envelopment analysis. European Journal of Operational Research, 130(3), 498-509. doi:10.1016/s0377-2217(99)00407-5

Farrell, M. J. (1957). The Measurement of Productive Efficiency. Journal of the Royal Statistical Society. Series A (General), 120(3), 253. doi:10.2307/2343100

Scheel, H., & Scholtes, S. (2003). Continuity of DEA Efficiency Measures. Operations Research, 51(1), 149-159. doi:10.1287/opre.51.1.149.12803

Andersen, P., & Petersen, N. C. (1993). A Procedure for Ranking Efficient Units in Data Envelopment Analysis. Management Science, 39(10), 1261-1264. doi:10.1287/mnsc.39.10.1261

Fang, H.-H., Lee, H.-S., Hwang, S.-N., & Chung, C.-C. (2013). A slacks-based measure of super-efficiency in data envelopment analysis: An alternative approach. Omega, 41(4), 731-734. doi:10.1016/j.omega.2012.10.004

Doyle, J., & Green, R. (1994). Efficiency and Cross-efficiency in DEA: Derivations, Meanings and Uses. Journal of the Operational Research Society, 45(5), 567-578. doi:10.1057/jors.1994.84

Sexton, T. R., Silkman, R. H., & Hogan, A. J. (1986). Data envelopment analysis: Critique and extensions. New Directions for Program Evaluation, 1986(32), 73-105. doi:10.1002/ev.1441

Yang, G., Yang, J., Liu, W., & Li, X. (2013). Cross-efficiency aggregation in DEA models using the evidential-reasoning approach. European Journal of Operational Research, 231(2), 393-404. doi:10.1016/j.ejor.2013.05.017

Zerafat Angiz, M., Mustafa, A., & Kamali, M. J. (2013). Cross-ranking of Decision Making Units in Data Envelopment Analysis. Applied Mathematical Modelling, 37(1-2), 398-405. doi:10.1016/j.apm.2012.02.038

Banker, R. D., & Chang, H. (2006). The super-efficiency procedure for outlier identification, not for ranking efficient units. European Journal of Operational Research, 175(2), 1311-1320. doi:10.1016/j.ejor.2005.06.028

Thanassoulis, E., Shiraz, R. K., & Maniadakis, N. (2015). A cost Malmquist productivity index capturing group performance. European Journal of Operational Research, 241(3), 796-805. doi:10.1016/j.ejor.2014.09.002

Wijesiri, M., & Meoli, M. (2015). Productivity change of microfinance institutions in Kenya: A bootstrap Malmquist approach. Journal of Retailing and Consumer Services, 25, 115-121. doi:10.1016/j.jretconser.2015.04.004

Eskelinen, J. (2017). Comparison of variable selection techniques for data envelopment analysis in a retail bank. European Journal of Operational Research, 259(2), 778-788. doi:10.1016/j.ejor.2016.11.009

Jenkins, L., & Anderson, M. (2003). A multivariate statistical approach to reducing the number of variables in data envelopment analysis. European Journal of Operational Research, 147(1), 51-61. doi:10.1016/s0377-2217(02)00243-6

Land, K. C., Knox Lovell, C. A., & Thore, S. (1994). Productive efficiency under capitalism and state socialism: Technological Forecasting and Social Change, 46(2), 139-152. doi:10.1016/0040-1625(94)90022-1

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record