- -

Wide stability in a new family of optimal fourth-order iterative methods

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Wide stability in a new family of optimal fourth-order iterative methods

Mostrar el registro completo del ítem

Chicharro López, FI.; Cordero Barbero, A.; Garrido-Saez, N.; Torregrosa Sánchez, JR. (2019). Wide stability in a new family of optimal fourth-order iterative methods. Computational and Mathematical Methods. 1(2):1-14. https://doi.org/10.1002/cmm4.1023

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/153219

Ficheros en el ítem

Metadatos del ítem

Título: Wide stability in a new family of optimal fourth-order iterative methods
Autor: Chicharro López, Francisco Israel Cordero Barbero, Alicia Garrido-Saez, Neus Torregrosa Sánchez, Juan Ramón
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] A new family of two¿steps fourth¿order iterative methods for solving nonlinear equations is introduced based on the weight functions procedure. This family is optimal in the sense of Kung¿Traub conjecture and it ...[+]
Palabras clave: Complex dynamics , Iterative methods , Weight functions
Derechos de uso: Cerrado
Fuente:
Computational and Mathematical Methods. (eissn: 2577-7408 )
DOI: 10.1002/cmm4.1023
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/cmm4.1023
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F089/ES/Resolución de ecuaciones y sistemas no lineales mediante técnicas iterativas: análisis dinámico y aplicaciones/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/
Descripción: "This is the peer reviewed version of the following article: Chicharro, F. I., Cordero, A., Garrido, N., & Torregrosa, J. R. (2019). Wide stability in a new family of optimal fourth-order iterative methods. Computational and Mathematical Methods, 1(2), e1023, which has been published in final form at https://doi.org/10.1002/cmm4.1023. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."
Agradecimientos:
This research was partially supported by the Ministerio de Ciencia, Innovación y Universidades PGC-2018-095896-B-C22 and by the Generalitat Valenciana PROMETEO/2016/089. The authors also want to thank the anonymous referees ...[+]
Tipo: Artículo

References

Amat, S., & Busquier, S. (Eds.). (2016). Advances in Iterative Methods for Nonlinear Equations. SEMA SIMAI Springer Series. doi:10.1007/978-3-319-39228-8

Kung, H. T., & Traub, J. F. (1974). Optimal Order of One-Point and Multipoint Iteration. Journal of the ACM, 21(4), 643-651. doi:10.1145/321850.321860

King, R. F. (1973). A Family of Fourth Order Methods for Nonlinear Equations. SIAM Journal on Numerical Analysis, 10(5), 876-879. doi:10.1137/0710072 [+]
Amat, S., & Busquier, S. (Eds.). (2016). Advances in Iterative Methods for Nonlinear Equations. SEMA SIMAI Springer Series. doi:10.1007/978-3-319-39228-8

Kung, H. T., & Traub, J. F. (1974). Optimal Order of One-Point and Multipoint Iteration. Journal of the ACM, 21(4), 643-651. doi:10.1145/321850.321860

King, R. F. (1973). A Family of Fourth Order Methods for Nonlinear Equations. SIAM Journal on Numerical Analysis, 10(5), 876-879. doi:10.1137/0710072

Soleymani, F. (2011). Novel Computational Iterative Methods with Optimal Order for Nonlinear Equations. Advances in Numerical Analysis, 2011, 1-10. doi:10.1155/2011/270903

ChicharroFI CorderoA TorregrosaJR.Memory and dynamics for a family of King‐type iterative methods. In: Proceedings of the 17th International Conference on Computational and Mathematical Methods in Science and Engineering (CMMSE);2017;Rota Spain.

Blanchard, P. (1984). Complex analytic dynamics on the Riemann sphere. Bulletin of the American Mathematical Society, 11(1), 85-142. doi:10.1090/s0273-0979-1984-15240-6

Chicharro, F., Cordero, A., & Torregrosa, J. (2015). Dynamics and Fractal Dimension of Steffensen-Type Methods. Algorithms, 8(2), 271-279. doi:10.3390/a8020271

Chicharro, F. I., Cordero, A., & Torregrosa, J. R. (2013). Drawing Dynamical and Parameters Planes of Iterative Families and Methods. The Scientific World Journal, 2013, 1-11. doi:10.1155/2013/780153

Varona, J. L. (2002). Graphic and numerical comparison between iterative methods. The Mathematical Intelligencer, 24(1), 37-46. doi:10.1007/bf03025310

Amat, S., Busquier, S., & Magreñán, Á. A. (2013). Reducing Chaos and Bifurcations in Newton-Type Methods. Abstract and Applied Analysis, 2013, 1-10. doi:10.1155/2013/726701

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem