- -

Wide stability in a new family of optimal fourth-order iterative methods

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Wide stability in a new family of optimal fourth-order iterative methods

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Chicharro López, Francisco Israel es_ES
dc.contributor.author Cordero Barbero, Alicia es_ES
dc.contributor.author Garrido-Saez, Neus es_ES
dc.contributor.author Torregrosa Sánchez, Juan Ramón es_ES
dc.date.accessioned 2020-10-27T04:31:50Z
dc.date.available 2020-10-27T04:31:50Z
dc.date.issued 2019-03-11 es_ES
dc.identifier.uri http://hdl.handle.net/10251/153219
dc.description "This is the peer reviewed version of the following article: Chicharro, F. I., Cordero, A., Garrido, N., & Torregrosa, J. R. (2019). Wide stability in a new family of optimal fourth-order iterative methods. Computational and Mathematical Methods, 1(2), e1023, which has been published in final form at https://doi.org/10.1002/cmm4.1023. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving." es_ES
dc.description.abstract [EN] A new family of two¿steps fourth¿order iterative methods for solving nonlinear equations is introduced based on the weight functions procedure. This family is optimal in the sense of Kung¿Traub conjecture and it is extended to design a class of iterative schemes with four step and seventh order of convergence. We are interested in analyzing the dynamical behavior of different elements of the fourth¿order class. This analysis gives us important information about the stability of these members of the family. The methods are also tested with nonlinear functions and compared with other known schemes. The results show the good features of the introduced class. es_ES
dc.description.sponsorship This research was partially supported by the Ministerio de Ciencia, Innovación y Universidades PGC-2018-095896-B-C22 and by the Generalitat Valenciana PROMETEO/2016/089. The authors also want to thank the anonymous referees for their suggestions and comments that have improved the final version of this paper. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Computational and Mathematical Methods es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Complex dynamics es_ES
dc.subject Iterative methods es_ES
dc.subject Weight functions es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Wide stability in a new family of optimal fourth-order iterative methods es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/cmm4.1023 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F089/ES/Resolución de ecuaciones y sistemas no lineales mediante técnicas iterativas: análisis dinámico y aplicaciones/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Chicharro López, FI.; Cordero Barbero, A.; Garrido-Saez, N.; Torregrosa Sánchez, JR. (2019). Wide stability in a new family of optimal fourth-order iterative methods. Computational and Mathematical Methods. 1(2):1-14. https://doi.org/10.1002/cmm4.1023 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/cmm4.1023 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 1 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 2577-7408 es_ES
dc.relation.pasarela S\383173 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Amat, S., & Busquier, S. (Eds.). (2016). Advances in Iterative Methods for Nonlinear Equations. SEMA SIMAI Springer Series. doi:10.1007/978-3-319-39228-8 es_ES
dc.description.references Kung, H. T., & Traub, J. F. (1974). Optimal Order of One-Point and Multipoint Iteration. Journal of the ACM, 21(4), 643-651. doi:10.1145/321850.321860 es_ES
dc.description.references King, R. F. (1973). A Family of Fourth Order Methods for Nonlinear Equations. SIAM Journal on Numerical Analysis, 10(5), 876-879. doi:10.1137/0710072 es_ES
dc.description.references Soleymani, F. (2011). Novel Computational Iterative Methods with Optimal Order for Nonlinear Equations. Advances in Numerical Analysis, 2011, 1-10. doi:10.1155/2011/270903 es_ES
dc.description.references ChicharroFI CorderoA TorregrosaJR.Memory and dynamics for a family of King‐type iterative methods. In: Proceedings of the 17th International Conference on Computational and Mathematical Methods in Science and Engineering (CMMSE);2017;Rota Spain. es_ES
dc.description.references Blanchard, P. (1984). Complex analytic dynamics on the Riemann sphere. Bulletin of the American Mathematical Society, 11(1), 85-142. doi:10.1090/s0273-0979-1984-15240-6 es_ES
dc.description.references Chicharro, F., Cordero, A., & Torregrosa, J. (2015). Dynamics and Fractal Dimension of Steffensen-Type Methods. Algorithms, 8(2), 271-279. doi:10.3390/a8020271 es_ES
dc.description.references Chicharro, F. I., Cordero, A., & Torregrosa, J. R. (2013). Drawing Dynamical and Parameters Planes of Iterative Families and Methods. The Scientific World Journal, 2013, 1-11. doi:10.1155/2013/780153 es_ES
dc.description.references Varona, J. L. (2002). Graphic and numerical comparison between iterative methods. The Mathematical Intelligencer, 24(1), 37-46. doi:10.1007/bf03025310 es_ES
dc.description.references Amat, S., Busquier, S., & Magreñán, Á. A. (2013). Reducing Chaos and Bifurcations in Newton-Type Methods. Abstract and Applied Analysis, 2013, 1-10. doi:10.1155/2013/726701 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem