- -

Characterization of Sheep Wool as a Sustainable Material for Acoustic Applications

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Characterization of Sheep Wool as a Sustainable Material for Acoustic Applications

Mostrar el registro completo del ítem

Rey Tormos, RMD.; Uris Martínez, A.; Alba, J.; Candelas Valiente, P. (2017). Characterization of Sheep Wool as a Sustainable Material for Acoustic Applications. Materials. 10(11):1-11. https://doi.org/10.3390/ma10111277

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/153222

Ficheros en el ítem

Metadatos del ítem

Título: Characterization of Sheep Wool as a Sustainable Material for Acoustic Applications
Autor: Rey Tormos, Romina María del Uris Martínez, Antonio Alba, Jesus Candelas Valiente, Pilar
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Fecha difusión:
Resumen:
[EN] In recent years, natural materials are becoming a valid alternative to traditional sound absorbers due to reduced production costs and environmental protection. This paper reports the acoustical characterization of ...[+]
Palabras clave: Natural material , Sound absorption , Flow resistance , Sheep wool , Delany-bazley model
Derechos de uso: Reconocimiento (by)
Fuente:
Materials. (eissn: 1996-1944 )
DOI: 10.3390/ma10111277
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/ma10111277
Código del Proyecto:
info:eu-repo/grantAgreement/EC/ECO-INNOVATION/ECO%2F13%2F630249/EU/WOOL4BUILD: Improved isolation material for eco-building based on natural wool/
info:eu-repo/grantAgreement/MINECO//BIA2013-41537-R/ES/DESARROLLO DE NUEVOS ECO-MATERIALES Y SOLUCIONES CONSTRUCTIVAS SOSTENIBLES PARA EDIFICACION BASADAS EN EL USO DE RESIDUOS Y MATERIAS PRIMAS RENOVABLES/
Agradecimientos:
This work was financially supported by the project BIA2013-41537-R (BIAEFIREMAT "Development of new eco-materials and sustainable constructive solutions based on the use of waste and renewable raw materials"), funded by ...[+]
Tipo: Artículo

References

Pinto, J., Cruz, D., Paiva, A., Pereira, S., Tavares, P., Fernandes, L., & Varum, H. (2012). Characterization of corn cob as a possible raw building material. Construction and Building Materials, 34, 28-33. doi:10.1016/j.conbuildmat.2012.02.014

Briga-Sá, A., Nascimento, D., Teixeira, N., Pinto, J., Caldeira, F., Varum, H., & Paiva, A. (2013). Textile waste as an alternative thermal insulation building material solution. Construction and Building Materials, 38, 155-160. doi:10.1016/j.conbuildmat.2012.08.037

Binici, H., Eken, M., Dolaz, M., Aksogan, O., & Kara, M. (2014). An environmentally friendly thermal insulation material from sunflower stalk, textile waste and stubble fibres. Construction and Building Materials, 51, 24-33. doi:10.1016/j.conbuildmat.2013.10.038 [+]
Pinto, J., Cruz, D., Paiva, A., Pereira, S., Tavares, P., Fernandes, L., & Varum, H. (2012). Characterization of corn cob as a possible raw building material. Construction and Building Materials, 34, 28-33. doi:10.1016/j.conbuildmat.2012.02.014

Briga-Sá, A., Nascimento, D., Teixeira, N., Pinto, J., Caldeira, F., Varum, H., & Paiva, A. (2013). Textile waste as an alternative thermal insulation building material solution. Construction and Building Materials, 38, 155-160. doi:10.1016/j.conbuildmat.2012.08.037

Binici, H., Eken, M., Dolaz, M., Aksogan, O., & Kara, M. (2014). An environmentally friendly thermal insulation material from sunflower stalk, textile waste and stubble fibres. Construction and Building Materials, 51, 24-33. doi:10.1016/j.conbuildmat.2013.10.038

Korjenic, A., Klarić, S., Hadžić, A., & Korjenic, S. (2015). Sheep Wool as a Construction Material for Energy Efficiency Improvement. Energies, 8(6), 5765-5781. doi:10.3390/en8065765

Lopez Hurtado, P., Rouilly, A., Vandenbossche, V., & Raynaud, C. (2016). A review on the properties of cellulose fibre insulation. Building and Environment, 96, 170-177. doi:10.1016/j.buildenv.2015.09.031

Lopez Hurtado, P., Rouilly, A., Raynaud, C., & Vandenbossche, V. (2016). The properties of cellulose insulation applied via the wet spray process. Building and Environment, 107, 43-51. doi:10.1016/j.buildenv.2016.07.017

Binici, H., Aksogan, O., & Demirhan, C. (2016). Mechanical, thermal and acoustical characterizations of an insulation composite made of bio-based materials. Sustainable Cities and Society, 20, 17-26. doi:10.1016/j.scs.2015.09.004

Asdrubali, F., Bianchi, F., Cotana, F., D’Alessandro, F., Pertosa, M., Pisello, A. L., & Schiavoni, S. (2016). Experimental thermo-acoustic characterization of innovative common reed bio-based panels for building envelope. Building and Environment, 102, 217-229. doi:10.1016/j.buildenv.2016.03.022

Ballagh, K. O. (1996). Acoustical properties of wool. Applied Acoustics, 48(2), 101-120. doi:10.1016/0003-682x(95)00042-8

Ersoy, S., & Küçük, H. (2009). Investigation of industrial tea-leaf-fibre waste material for its sound absorption properties. Applied Acoustics, 70(1), 215-220. doi:10.1016/j.apacoust.2007.12.005

Oldham, D. J., Egan, C. A., & Cookson, R. D. (2011). Sustainable acoustic absorbers from the biomass. Applied Acoustics, 72(6), 350-363. doi:10.1016/j.apacoust.2010.12.009

Berardi, U., & Iannace, G. (2015). Acoustic characterization of natural fibers for sound absorption applications. Building and Environment, 94, 840-852. doi:10.1016/j.buildenv.2015.05.029

Mati-Baouche, N., de Baynast, H., Michaud, P., Dupont, T., & Leclaire, P. (2016). Sound absorption properties of a sunflower composite made from crushed stem particles and from chitosan bio-binder. Applied Acoustics, 111, 179-187. doi:10.1016/j.apacoust.2016.04.021

Rwawiire, S., Tomkova, B., Militky, J., Hes, L., & Kale, B. M. (2017). Acoustic and thermal properties of a cellulose nonwoven natural fabric (barkcloth). Applied Acoustics, 116, 177-183. doi:10.1016/j.apacoust.2016.09.027

López, J. P., El Mansouri, N.-E., Alba, J., Del Rey, R., Mutjé, P., & Vilaseca, F. (2012). ACOUSTIC PROPERTIES OF POLYPROPYLENE COMPOSITES REINFORCED WITH STONE GROUNDWOOD. BioResources, 7(4). doi:10.15376/biores.7.4.4586-4599

Arenas, J. P., Rebolledo, J., Del Rey, R., & Alba, J. (2014). Sound Absorption Properties of Unbleached Cellulose Loose-Fill Insulation Material. BioResources, 9(4). doi:10.15376/biores.9.4.6227-6240

Reixach, R., Del Rey, R., Alba, J., Arbat, G., Espinach, F. X., & Mutjé, P. (2015). Acoustic properties of agroforestry waste orange pruning fibers reinforced polypropylene composites as an alternative to laminated gypsum boards. Construction and Building Materials, 77, 124-129. doi:10.1016/j.conbuildmat.2014.12.041

Del Rey, R., Alba, J., Ramis, J., & Sanchís, V. J. (2011). Nuevos materiales absorbentes acústicos obtenidos a partir de restos de botellas de plástico. Materiales de Construcción, 61(304), 547-558. doi:10.3989/mc.2011.59610

Ramis, J., Alba, J., Del Rey, R., Escuder, E., & Sanchís, V. J. (2010). Nuevos materiales absorbentes acústicos basados en fibra de kenaf. Materiales de Construcción, 60(299), 133-143. doi:10.3989/mc.2010.50809

Ingard, K. U., & Dear, T. A. (1985). Measurement of acoustic flow resistance. Journal of Sound and Vibration, 103(4), 567-572. doi:10.1016/s0022-460x(85)80024-9

Dragonetti, R., Ianniello, C., & Romano, R. A. (2011). Measurement of the resistivity of porous materials with an alternating air-flow method. The Journal of the Acoustical Society of America, 129(2), 753-764. doi:10.1121/1.3523433

Rey, R. del, Alba, J., Arenas, J. P., & Ramis, J. (2013). Technical Notes: Evaluation of Two Alternative Procedures for Measuring Airflow Resistance of Sound Absorbing Materials. Archives of Acoustics, 38(4), 547-554. doi:10.2478/aoa-2013-0064

Rey, R. del, Alba, J., Arenas, J. P., & Sanchis, V. J. (2012). An empirical modelling of porous sound absorbing materials made of recycled foam. Applied Acoustics, 73(6-7), 604-609. doi:10.1016/j.apacoust.2011.12.009

Delany, M. E., & Bazley, E. N. (1970). Acoustical properties of fibrous absorbent materials. Applied Acoustics, 3(2), 105-116. doi:10.1016/0003-682x(70)90031-9

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem