Mostrar el registro sencillo del ítem
dc.contributor.author | Rey Tormos, Romina María del | es_ES |
dc.contributor.author | Uris Martínez, Antonio | es_ES |
dc.contributor.author | Alba, Jesus | es_ES |
dc.contributor.author | Candelas Valiente, Pilar | es_ES |
dc.date.accessioned | 2020-10-27T04:31:57Z | |
dc.date.available | 2020-10-27T04:31:57Z | |
dc.date.issued | 2017-11-07 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/153222 | |
dc.description.abstract | [EN] In recent years, natural materials are becoming a valid alternative to traditional sound absorbers due to reduced production costs and environmental protection. This paper reports the acoustical characterization of sheep wool. Measurements on normal incidence and diffuse-incidence sound absorption coefficients of different samples are reported. The airflow resistance has also been measured. The results prove that sheep wool has a comparable sound absorption performance to that of mineral wool or recycled polyurethane foam. An empirical model is used to calculate the sound absorption of sheep wool samples. A reasonable agreement on the acoustic absorption of all sheep wool samples is obtained. | es_ES |
dc.description.sponsorship | This work was financially supported by the project BIA2013-41537-R (BIAEFIREMAT "Development of new eco-materials and sustainable constructive solutions based on the use of waste and renewable raw materials"), funded by the Ministry of Economy and Competitiveness of Spain and co-financed with ERDF funds, within the National RDI Programme focused on the Challenges of Society 2013 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Materials | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Natural material | es_ES |
dc.subject | Sound absorption | es_ES |
dc.subject | Flow resistance | es_ES |
dc.subject | Sheep wool | es_ES |
dc.subject | Delany-bazley model | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Characterization of Sheep Wool as a Sustainable Material for Acoustic Applications | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/ma10111277 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/ECO-INNOVATION/ECO%2F13%2F630249/EU/WOOL4BUILD: Improved isolation material for eco-building based on natural wool/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BIA2013-41537-R/ES/DESARROLLO DE NUEVOS ECO-MATERIALES Y SOLUCIONES CONSTRUCTIVAS SOSTENIBLES PARA EDIFICACION BASADAS EN EL USO DE RESIDUOS Y MATERIAS PRIMAS RENOVABLES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Rey Tormos, RMD.; Uris Martínez, A.; Alba, J.; Candelas Valiente, P. (2017). Characterization of Sheep Wool as a Sustainable Material for Acoustic Applications. Materials. 10(11):1-11. https://doi.org/10.3390/ma10111277 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/ma10111277 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 11 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 11 | es_ES |
dc.identifier.eissn | 1996-1944 | es_ES |
dc.identifier.pmid | 29112133 | es_ES |
dc.identifier.pmcid | PMC5706224 | es_ES |
dc.relation.pasarela | S\348304 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |
dc.description.references | Pinto, J., Cruz, D., Paiva, A., Pereira, S., Tavares, P., Fernandes, L., & Varum, H. (2012). Characterization of corn cob as a possible raw building material. Construction and Building Materials, 34, 28-33. doi:10.1016/j.conbuildmat.2012.02.014 | es_ES |
dc.description.references | Briga-Sá, A., Nascimento, D., Teixeira, N., Pinto, J., Caldeira, F., Varum, H., & Paiva, A. (2013). Textile waste as an alternative thermal insulation building material solution. Construction and Building Materials, 38, 155-160. doi:10.1016/j.conbuildmat.2012.08.037 | es_ES |
dc.description.references | Binici, H., Eken, M., Dolaz, M., Aksogan, O., & Kara, M. (2014). An environmentally friendly thermal insulation material from sunflower stalk, textile waste and stubble fibres. Construction and Building Materials, 51, 24-33. doi:10.1016/j.conbuildmat.2013.10.038 | es_ES |
dc.description.references | Korjenic, A., Klarić, S., Hadžić, A., & Korjenic, S. (2015). Sheep Wool as a Construction Material for Energy Efficiency Improvement. Energies, 8(6), 5765-5781. doi:10.3390/en8065765 | es_ES |
dc.description.references | Lopez Hurtado, P., Rouilly, A., Vandenbossche, V., & Raynaud, C. (2016). A review on the properties of cellulose fibre insulation. Building and Environment, 96, 170-177. doi:10.1016/j.buildenv.2015.09.031 | es_ES |
dc.description.references | Lopez Hurtado, P., Rouilly, A., Raynaud, C., & Vandenbossche, V. (2016). The properties of cellulose insulation applied via the wet spray process. Building and Environment, 107, 43-51. doi:10.1016/j.buildenv.2016.07.017 | es_ES |
dc.description.references | Binici, H., Aksogan, O., & Demirhan, C. (2016). Mechanical, thermal and acoustical characterizations of an insulation composite made of bio-based materials. Sustainable Cities and Society, 20, 17-26. doi:10.1016/j.scs.2015.09.004 | es_ES |
dc.description.references | Asdrubali, F., Bianchi, F., Cotana, F., D’Alessandro, F., Pertosa, M., Pisello, A. L., & Schiavoni, S. (2016). Experimental thermo-acoustic characterization of innovative common reed bio-based panels for building envelope. Building and Environment, 102, 217-229. doi:10.1016/j.buildenv.2016.03.022 | es_ES |
dc.description.references | Ballagh, K. O. (1996). Acoustical properties of wool. Applied Acoustics, 48(2), 101-120. doi:10.1016/0003-682x(95)00042-8 | es_ES |
dc.description.references | Ersoy, S., & Küçük, H. (2009). Investigation of industrial tea-leaf-fibre waste material for its sound absorption properties. Applied Acoustics, 70(1), 215-220. doi:10.1016/j.apacoust.2007.12.005 | es_ES |
dc.description.references | Oldham, D. J., Egan, C. A., & Cookson, R. D. (2011). Sustainable acoustic absorbers from the biomass. Applied Acoustics, 72(6), 350-363. doi:10.1016/j.apacoust.2010.12.009 | es_ES |
dc.description.references | Berardi, U., & Iannace, G. (2015). Acoustic characterization of natural fibers for sound absorption applications. Building and Environment, 94, 840-852. doi:10.1016/j.buildenv.2015.05.029 | es_ES |
dc.description.references | Mati-Baouche, N., de Baynast, H., Michaud, P., Dupont, T., & Leclaire, P. (2016). Sound absorption properties of a sunflower composite made from crushed stem particles and from chitosan bio-binder. Applied Acoustics, 111, 179-187. doi:10.1016/j.apacoust.2016.04.021 | es_ES |
dc.description.references | Rwawiire, S., Tomkova, B., Militky, J., Hes, L., & Kale, B. M. (2017). Acoustic and thermal properties of a cellulose nonwoven natural fabric (barkcloth). Applied Acoustics, 116, 177-183. doi:10.1016/j.apacoust.2016.09.027 | es_ES |
dc.description.references | López, J. P., El Mansouri, N.-E., Alba, J., Del Rey, R., Mutjé, P., & Vilaseca, F. (2012). ACOUSTIC PROPERTIES OF POLYPROPYLENE COMPOSITES REINFORCED WITH STONE GROUNDWOOD. BioResources, 7(4). doi:10.15376/biores.7.4.4586-4599 | es_ES |
dc.description.references | Arenas, J. P., Rebolledo, J., Del Rey, R., & Alba, J. (2014). Sound Absorption Properties of Unbleached Cellulose Loose-Fill Insulation Material. BioResources, 9(4). doi:10.15376/biores.9.4.6227-6240 | es_ES |
dc.description.references | Reixach, R., Del Rey, R., Alba, J., Arbat, G., Espinach, F. X., & Mutjé, P. (2015). Acoustic properties of agroforestry waste orange pruning fibers reinforced polypropylene composites as an alternative to laminated gypsum boards. Construction and Building Materials, 77, 124-129. doi:10.1016/j.conbuildmat.2014.12.041 | es_ES |
dc.description.references | Del Rey, R., Alba, J., Ramis, J., & Sanchís, V. J. (2011). Nuevos materiales absorbentes acústicos obtenidos a partir de restos de botellas de plástico. Materiales de Construcción, 61(304), 547-558. doi:10.3989/mc.2011.59610 | es_ES |
dc.description.references | Ramis, J., Alba, J., Del Rey, R., Escuder, E., & Sanchís, V. J. (2010). Nuevos materiales absorbentes acústicos basados en fibra de kenaf. Materiales de Construcción, 60(299), 133-143. doi:10.3989/mc.2010.50809 | es_ES |
dc.description.references | Ingard, K. U., & Dear, T. A. (1985). Measurement of acoustic flow resistance. Journal of Sound and Vibration, 103(4), 567-572. doi:10.1016/s0022-460x(85)80024-9 | es_ES |
dc.description.references | Dragonetti, R., Ianniello, C., & Romano, R. A. (2011). Measurement of the resistivity of porous materials with an alternating air-flow method. The Journal of the Acoustical Society of America, 129(2), 753-764. doi:10.1121/1.3523433 | es_ES |
dc.description.references | Rey, R. del, Alba, J., Arenas, J. P., & Ramis, J. (2013). Technical Notes: Evaluation of Two Alternative Procedures for Measuring Airflow Resistance of Sound Absorbing Materials. Archives of Acoustics, 38(4), 547-554. doi:10.2478/aoa-2013-0064 | es_ES |
dc.description.references | Rey, R. del, Alba, J., Arenas, J. P., & Sanchis, V. J. (2012). An empirical modelling of porous sound absorbing materials made of recycled foam. Applied Acoustics, 73(6-7), 604-609. doi:10.1016/j.apacoust.2011.12.009 | es_ES |
dc.description.references | Delany, M. E., & Bazley, E. N. (1970). Acoustical properties of fibrous absorbent materials. Applied Acoustics, 3(2), 105-116. doi:10.1016/0003-682x(70)90031-9 | es_ES |