- -

A Heterogeneous Carbon Nitride Nickel Photocatalyst for Efficient Low-Temperature CO2 Methanation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Heterogeneous Carbon Nitride Nickel Photocatalyst for Efficient Low-Temperature CO2 Methanation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Barrio, Jesus es_ES
dc.contributor.author Mateo-Mateo, Diego es_ES
dc.contributor.author Albero-Sancho, Josep es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.contributor.author Shalom, Menny es_ES
dc.date.accessioned 2020-10-27T04:31:59Z
dc.date.available 2020-10-27T04:31:59Z
dc.date.issued 2019-11-27 es_ES
dc.identifier.uri http://hdl.handle.net/10251/153223
dc.description.abstract [EN] The Sabatier reaction, i.e., the hydrogenation of CO2 to methane (CH4) using hydrogen (H-2), constitutes a potentially scalable method to store energy in a product with a high energy density. However, up to today, this reaction has been mainly thermally driven and conducted at high temperatures (typically 400-600 degrees C). Using light as a renewable energy source will allow for a more sustainable process by lowering the reaction temperature. Here, it is demonstrated that Ni nanoparticles support on graphitic carbon nitride (g-CN) are a highly efficient and stable photocatalyst for the gas-phase CO2 methanation at low temperature (150 degrees C). Detailed mechanistic studies reveal a very low activation energy for the reaction and high activity under visible light, leading to a remarkable and continuous CH4 production of 28 mu mol g(-1) h(-1) of CH4 for 24 h. es_ES
dc.description.sponsorship J.B. and D.M. contributed equally to this work. The authors would like to thank the technical staff of the Instituto de Tecnología Química for assistance with the experimental characterization. This research was funded by the Israel Science Foundation (ISF), grant No. 1161/17, and supported by the Minerva Center No. 117873. Financial support from the Spanish Ministry of Economy and Competitiveness (Severo Ochoa, and CTQ2015-69563-CO2-R1) and the Generalitat Valenciana (Prometeo 2017/083) is also gratefully acknowledged. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation MINECO/CTQ2015-69563-CO2-R1 es_ES
dc.relation.ispartof Advanced energy materials (Online) es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Carbon nitride es_ES
dc.subject CO2 reduction es_ES
dc.subject Ni nanoparticles es_ES
dc.subject Photocatalysis es_ES
dc.subject Sabatier reaction es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title A Heterogeneous Carbon Nitride Nickel Photocatalyst for Efficient Low-Temperature CO2 Methanation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/aenm.201902738 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ISF//1161%2F17/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Minerva Foundation//117873/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F083/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Barrio, J.; Mateo-Mateo, D.; Albero-Sancho, J.; García Gómez, H.; Shalom, M. (2019). A Heterogeneous Carbon Nitride Nickel Photocatalyst for Efficient Low-Temperature CO2 Methanation. Advanced energy materials (Online). 9(44):1-7. https://doi.org/10.1002/aenm.201902738 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/aenm.201902738 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 7 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 44 es_ES
dc.identifier.eissn 1614-6840 es_ES
dc.relation.pasarela S\407314 es_ES
dc.contributor.funder Minerva Foundation es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Israel Science Foundation es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Dau, H., Fujita, E., & Sun, L. (2017). Artificial Photosynthesis: Beyond Mimicking Nature. ChemSusChem, 10(22), 4228-4235. doi:10.1002/cssc.201702106 es_ES
dc.description.references Detz, R. J., Reek, J. N. H., & van der Zwaan, B. C. C. (2018). The future of solar fuels: when could they become competitive? Energy & Environmental Science, 11(7), 1653-1669. doi:10.1039/c8ee00111a es_ES
dc.description.references Corma, A., & Garcia, H. (2013). Photocatalytic reduction of CO2 for fuel production: Possibilities and challenges. Journal of Catalysis, 308, 168-175. doi:10.1016/j.jcat.2013.06.008 es_ES
dc.description.references Remiro‐Buenamañana, S., & García, H. (2018). Photoassisted CO2Conversion to Fuels. ChemCatChem, 11(1), 342-356. doi:10.1002/cctc.201801409 es_ES
dc.description.references Li, K., Peng, B., & Peng, T. (2016). Recent Advances in Heterogeneous Photocatalytic CO2 Conversion to Solar Fuels. ACS Catalysis, 6(11), 7485-7527. doi:10.1021/acscatal.6b02089 es_ES
dc.description.references Habisreutinger, S. N., Schmidt-Mende, L., & Stolarczyk, J. K. (2013). Photocatalytic Reduction of CO2on TiO2and Other Semiconductors. Angewandte Chemie International Edition, 52(29), 7372-7408. doi:10.1002/anie.201207199 es_ES
dc.description.references Brooks, K. P., Hu, J., Zhu, H., & Kee, R. J. (2007). Methanation of carbon dioxide by hydrogen reduction using the Sabatier process in microchannel reactors. Chemical Engineering Science, 62(4), 1161-1170. doi:10.1016/j.ces.2006.11.020 es_ES
dc.description.references Li, W., Wang, H., Jiang, X., Zhu, J., Liu, Z., Guo, X., & Song, C. (2018). A short review of recent advances in CO2 hydrogenation to hydrocarbons over heterogeneous catalysts. RSC Advances, 8(14), 7651-7669. doi:10.1039/c7ra13546g es_ES
dc.description.references Ulmer, U., Dingle, T., Duchesne, P. N., Morris, R. H., Tavasoli, A., Wood, T., & Ozin, G. A. (2019). Fundamentals and applications of photocatalytic CO2 methanation. Nature Communications, 10(1). doi:10.1038/s41467-019-10996-2 es_ES
dc.description.references Aziz, M. A. A., Jalil, A. A., Triwahyono, S., Mukti, R. R., Taufiq-Yap, Y. H., & Sazegar, M. R. (2014). Highly active Ni-promoted mesostructured silica nanoparticles for CO2 methanation. Applied Catalysis B: Environmental, 147, 359-368. doi:10.1016/j.apcatb.2013.09.015 es_ES
dc.description.references Sharma, S., Hu, Z., Zhang, P., McFarland, E. W., & Metiu, H. (2011). CO2 methanation on Ru-doped ceria. Journal of Catalysis, 278(2), 297-309. doi:10.1016/j.jcat.2010.12.015 es_ES
dc.description.references Gao, J., Liu, Q., Gu, F., Liu, B., Zhong, Z., & Su, F. (2015). Recent advances in methanation catalysts for the production of synthetic natural gas. RSC Advances, 5(29), 22759-22776. doi:10.1039/c4ra16114a es_ES
dc.description.references Chen, Y., Long, J., & Li, Z. (2019). Efficient Photothermal CO2 Methanation over RuO2/SrTiO3. Trends in Chemistry, 1(5), 459-460. doi:10.1016/j.trechm.2019.06.005 es_ES
dc.description.references Mateo, D., Albero, J., & García, H. (2019). Titanium-Perovskite-Supported RuO2 Nanoparticles for Photocatalytic CO2 Methanation. Joule, 3(8), 1949-1962. doi:10.1016/j.joule.2019.06.001 es_ES
dc.description.references Mateo, D., De Masi, D., Albero, J., Lacroix, L., Fazzini, P., Chaudret, B., & García, H. (2018). Synergism of Au and Ru Nanoparticles in Low‐Temperature Photoassisted CO 2 Methanation. Chemistry – A European Journal, 24(69), 18436-18443. doi:10.1002/chem.201803022 es_ES
dc.description.references Zhou, Z., Zhang, Y., Shen, Y., Liu, S., & Zhang, Y. (2018). Molecular engineering of polymeric carbon nitride: advancing applications from photocatalysis to biosensing and more. Chemical Society Reviews, 47(7), 2298-2321. doi:10.1039/c7cs00840f es_ES
dc.description.references Ren, Y., Zeng, D., & Ong, W.-J. (2019). Interfacial engineering of graphitic carbon nitride (g-C3N4)-based metal sulfide heterojunction photocatalysts for energy conversion: A review. Chinese Journal of Catalysis, 40(3), 289-319. doi:10.1016/s1872-2067(19)63293-6 es_ES
dc.description.references Zhao, G., Yang, H., Liu, M., & Xu, X. (2018). Metal-Free Graphitic Carbon Nitride Photocatalyst Goes Into Two-Dimensional Time. Frontiers in Chemistry, 6. doi:10.3389/fchem.2018.00551 es_ES
dc.description.references Wang, X., Maeda, K., Thomas, A., Takanabe, K., Xin, G., Carlsson, J. M., … Antonietti, M. (2008). A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Materials, 8(1), 76-80. doi:10.1038/nmat2317 es_ES
dc.description.references Yang, Y., Wang, S., Li, Y., Wang, J., & Wang, L. (2017). Strategies for Efficient Solar Water Splitting Using Carbon Nitride. Chemistry - An Asian Journal, 12(13), 1421-1434. doi:10.1002/asia.201700540 es_ES
dc.description.references Volokh, M., Peng, G., Barrio, J., & Shalom, M. (2019). Carbon Nitride Materials for Water Splitting Photoelectrochemical Cells. Angewandte Chemie International Edition, 58(19), 6138-6151. doi:10.1002/anie.201806514 es_ES
dc.description.references Xu, J., Brenner, T. J. K., Chabanne, L., Neher, D., Antonietti, M., & Shalom, M. (2014). Liquid-Based Growth of Polymeric Carbon Nitride Layers and Their Use in a Mesostructured Polymer Solar Cell with Voc Exceeding 1 V. Journal of the American Chemical Society, 136(39), 13486-13489. doi:10.1021/ja508329c es_ES
dc.description.references Safaei, J., Mohamed, N. A., Mohamad Noh, M. F., Soh, M. F., Ludin, N. A., Ibrahim, M. A., … Mat Teridi, M. A. (2018). Graphitic carbon nitride (g-C3N4) electrodes for energy conversion and storage: a review on photoelectrochemical water splitting, solar cells and supercapacitors. Journal of Materials Chemistry A, 6(45), 22346-22380. doi:10.1039/c8ta08001a es_ES
dc.description.references Xu, J., Shalom, M., Piersimoni, F., Antonietti, M., Neher, D., & Brenner, T. J. K. (2015). Color-Tunable Photoluminescence and NIR Electroluminescence in Carbon Nitride Thin Films and Light-Emitting Diodes. Advanced Optical Materials, 3(7), 913-917. doi:10.1002/adom.201500019 es_ES
dc.description.references Zheng, Q., Durkin, D. P., Elenewski, J. E., Sun, Y., Banek, N. A., Hua, L., … Shuai, D. (2016). Visible-Light-Responsive Graphitic Carbon Nitride: Rational Design and Photocatalytic Applications for Water Treatment. Environmental Science & Technology, 50(23), 12938-12948. doi:10.1021/acs.est.6b02579 es_ES
dc.description.references Barrio, J., & Shalom, M. (2018). Ultralong Nanostructured Carbon Nitride Wires and Self-Standing C-Rich Filters from Supramolecular Microspheres. ACS Applied Materials & Interfaces, 10(46), 39688-39694. doi:10.1021/acsami.8b13873 es_ES
dc.description.references Chen, L., & Song, J. (2017). Tailored Graphitic Carbon Nitride Nanostructures: Synthesis, Modification, and Sensing Applications. Advanced Functional Materials, 27(39), 1702695. doi:10.1002/adfm.201702695 es_ES
dc.description.references Lin, J., Pan, Z., & Wang, X. (2013). Photochemical Reduction of CO2 by Graphitic Carbon Nitride Polymers. ACS Sustainable Chemistry & Engineering, 2(3), 353-358. doi:10.1021/sc4004295 es_ES
dc.description.references Tada, S., Shimizu, T., Kameyama, H., Haneda, T., & Kikuchi, R. (2012). Ni/CeO2 catalysts with high CO2 methanation activity and high CH4 selectivity at low temperatures. International Journal of Hydrogen Energy, 37(7), 5527-5531. doi:10.1016/j.ijhydene.2011.12.122 es_ES
dc.description.references Karelovic, A., & Ruiz, P. (2013). Mechanistic study of low temperature CO2 methanation over Rh/TiO2 catalysts. Journal of Catalysis, 301, 141-153. doi:10.1016/j.jcat.2013.02.009 es_ES
dc.description.references Tada, S., Ochieng, O. J., Kikuchi, R., Haneda, T., & Kameyama, H. (2014). Promotion of CO2 methanation activity and CH4 selectivity at low temperatures over Ru/CeO2/Al2O3 catalysts. International Journal of Hydrogen Energy, 39(19), 10090-10100. doi:10.1016/j.ijhydene.2014.04.133 es_ES
dc.description.references Shalom, M., Ressnig, D., Yang, X., Clavel, G., Fellinger, T. P., & Antonietti, M. (2015). Nickel nitride as an efficient electrocatalyst for water splitting. Journal of Materials Chemistry A, 3(15), 8171-8177. doi:10.1039/c5ta00078e es_ES
dc.description.references Singh, M. K., Agarwal, A., Gopal, R., Swarnkar, R. K., & Kotnala, R. K. (2011). Dumbbell shaped nickel nanocrystals synthesized by a laser induced fragmentation method. Journal of Materials Chemistry, 21(30), 11074. doi:10.1039/c1jm12320c es_ES
dc.description.references Mateo, D., Albero, J., & García, H. (2017). Photoassisted methanation using Cu2O nanoparticles supported on graphene as a photocatalyst. Energy & Environmental Science, 10(11), 2392-2400. doi:10.1039/c7ee02287e es_ES
dc.description.references Kopyscinski, J., Schildhauer, T. J., Vogel, F., Biollaz, S. M. A., & Wokaun, A. (2010). Applying spatially resolved concentration and temperature measurements in a catalytic plate reactor for the kinetic study of CO methanation. Journal of Catalysis, 271(2), 262-279. doi:10.1016/j.jcat.2010.02.008 es_ES
dc.description.references Lu, B., & Kawamoto, K. (2014). Transition metal-rich mesoporous silicas and their enhanced catalytic properties. Catal. Sci. Technol., 4(12), 4313-4321. doi:10.1039/c4cy00688g es_ES
dc.description.references Kwak, J. H., Kovarik, L., & Szanyi, J. (2013). CO2 Reduction on Supported Ru/Al2O3 Catalysts: Cluster Size Dependence of Product Selectivity. ACS Catalysis, 3(11), 2449-2455. doi:10.1021/cs400381f es_ES
dc.description.references Mateo, D., Albero, J., & García, H. (2018). Graphene supported NiO/Ni nanoparticles as efficient photocatalyst for gas phase CO2 reduction with hydrogen. Applied Catalysis B: Environmental, 224, 563-571. doi:10.1016/j.apcatb.2017.10.071 es_ES
dc.description.references Gao, M., Yu, Y., Yang, W., Li, J., Xu, S., Feng, M., & Li, H. (2019). Ni nanoparticles supported on graphitic carbon nitride as visible light catalysts for hydrolytic dehydrogenation of ammonia borane. Nanoscale, 11(8), 3506-3513. doi:10.1039/c8nr09005j es_ES
dc.description.references Liao, C., Yang, B., Zhang, N., Liu, M., Chen, G., Jiang, X., … Zhou, W. (2019). Constructing Conductive Interfaces between Nickel Oxide Nanocrystals and Polymer Carbon Nitride for Efficient Electrocatalytic Oxygen Evolution Reaction. Advanced Functional Materials, 29(40), 1904020. doi:10.1002/adfm.201904020 es_ES
dc.description.references Millet, M.-M., Algara-Siller, G., Wrabetz, S., Mazheika, A., Girgsdies, F., Teschner, D., … Frei, E. (2019). Ni Single Atom Catalysts for CO2 Activation. Journal of the American Chemical Society, 141(6), 2451-2461. doi:10.1021/jacs.8b11729 es_ES
dc.description.references Barrio, J., & Shalom, M. (2018). Rational Design of Carbon Nitride Materials by Supramolecular Preorganization of Monomers. ChemCatChem, 10(24), 5573-5586. doi:10.1002/cctc.201801410 es_ES
dc.description.references Shalom, M., Inal, S., Fettkenhauer, C., Neher, D., & Antonietti, M. (2013). Improving Carbon Nitride Photocatalysis by Supramolecular Preorganization of Monomers. Journal of the American Chemical Society, 135(19), 7118-7121. doi:10.1021/ja402521s es_ES
dc.description.references Zhang, G., Li, G., & Wang, X. (2015). Surface Modification of Carbon Nitride Polymers by Core-Shell Nickel/Nickel Oxide Cocatalysts for Hydrogen Evolution Photocatalysis. ChemCatChem, 7(18), 2864-2870. doi:10.1002/cctc.201500069 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem