Mostrar el registro sencillo del ítem
dc.contributor.author | Barrio, Jesus | es_ES |
dc.contributor.author | Mateo-Mateo, Diego | es_ES |
dc.contributor.author | Albero-Sancho, Josep | es_ES |
dc.contributor.author | García Gómez, Hermenegildo | es_ES |
dc.contributor.author | Shalom, Menny | es_ES |
dc.date.accessioned | 2020-10-27T04:31:59Z | |
dc.date.available | 2020-10-27T04:31:59Z | |
dc.date.issued | 2019-11-27 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/153223 | |
dc.description.abstract | [EN] The Sabatier reaction, i.e., the hydrogenation of CO2 to methane (CH4) using hydrogen (H-2), constitutes a potentially scalable method to store energy in a product with a high energy density. However, up to today, this reaction has been mainly thermally driven and conducted at high temperatures (typically 400-600 degrees C). Using light as a renewable energy source will allow for a more sustainable process by lowering the reaction temperature. Here, it is demonstrated that Ni nanoparticles support on graphitic carbon nitride (g-CN) are a highly efficient and stable photocatalyst for the gas-phase CO2 methanation at low temperature (150 degrees C). Detailed mechanistic studies reveal a very low activation energy for the reaction and high activity under visible light, leading to a remarkable and continuous CH4 production of 28 mu mol g(-1) h(-1) of CH4 for 24 h. | es_ES |
dc.description.sponsorship | J.B. and D.M. contributed equally to this work. The authors would like to thank the technical staff of the Instituto de Tecnología Química for assistance with the experimental characterization. This research was funded by the Israel Science Foundation (ISF), grant No. 1161/17, and supported by the Minerva Center No. 117873. Financial support from the Spanish Ministry of Economy and Competitiveness (Severo Ochoa, and CTQ2015-69563-CO2-R1) and the Generalitat Valenciana (Prometeo 2017/083) is also gratefully acknowledged. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation | MINECO/CTQ2015-69563-CO2-R1 | es_ES |
dc.relation.ispartof | Advanced energy materials (Online) | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Carbon nitride | es_ES |
dc.subject | CO2 reduction | es_ES |
dc.subject | Ni nanoparticles | es_ES |
dc.subject | Photocatalysis | es_ES |
dc.subject | Sabatier reaction | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | A Heterogeneous Carbon Nitride Nickel Photocatalyst for Efficient Low-Temperature CO2 Methanation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/aenm.201902738 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ISF//1161%2F17/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Minerva Foundation//117873/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F083/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Barrio, J.; Mateo-Mateo, D.; Albero-Sancho, J.; García Gómez, H.; Shalom, M. (2019). A Heterogeneous Carbon Nitride Nickel Photocatalyst for Efficient Low-Temperature CO2 Methanation. Advanced energy materials (Online). 9(44):1-7. https://doi.org/10.1002/aenm.201902738 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/aenm.201902738 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 7 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.description.issue | 44 | es_ES |
dc.identifier.eissn | 1614-6840 | es_ES |
dc.relation.pasarela | S\407314 | es_ES |
dc.contributor.funder | Minerva Foundation | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Israel Science Foundation | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Dau, H., Fujita, E., & Sun, L. (2017). Artificial Photosynthesis: Beyond Mimicking Nature. ChemSusChem, 10(22), 4228-4235. doi:10.1002/cssc.201702106 | es_ES |
dc.description.references | Detz, R. J., Reek, J. N. H., & van der Zwaan, B. C. C. (2018). The future of solar fuels: when could they become competitive? Energy & Environmental Science, 11(7), 1653-1669. doi:10.1039/c8ee00111a | es_ES |
dc.description.references | Corma, A., & Garcia, H. (2013). Photocatalytic reduction of CO2 for fuel production: Possibilities and challenges. Journal of Catalysis, 308, 168-175. doi:10.1016/j.jcat.2013.06.008 | es_ES |
dc.description.references | Remiro‐Buenamañana, S., & García, H. (2018). Photoassisted CO2Conversion to Fuels. ChemCatChem, 11(1), 342-356. doi:10.1002/cctc.201801409 | es_ES |
dc.description.references | Li, K., Peng, B., & Peng, T. (2016). Recent Advances in Heterogeneous Photocatalytic CO2 Conversion to Solar Fuels. ACS Catalysis, 6(11), 7485-7527. doi:10.1021/acscatal.6b02089 | es_ES |
dc.description.references | Habisreutinger, S. N., Schmidt-Mende, L., & Stolarczyk, J. K. (2013). Photocatalytic Reduction of CO2on TiO2and Other Semiconductors. Angewandte Chemie International Edition, 52(29), 7372-7408. doi:10.1002/anie.201207199 | es_ES |
dc.description.references | Brooks, K. P., Hu, J., Zhu, H., & Kee, R. J. (2007). Methanation of carbon dioxide by hydrogen reduction using the Sabatier process in microchannel reactors. Chemical Engineering Science, 62(4), 1161-1170. doi:10.1016/j.ces.2006.11.020 | es_ES |
dc.description.references | Li, W., Wang, H., Jiang, X., Zhu, J., Liu, Z., Guo, X., & Song, C. (2018). A short review of recent advances in CO2 hydrogenation to hydrocarbons over heterogeneous catalysts. RSC Advances, 8(14), 7651-7669. doi:10.1039/c7ra13546g | es_ES |
dc.description.references | Ulmer, U., Dingle, T., Duchesne, P. N., Morris, R. H., Tavasoli, A., Wood, T., & Ozin, G. A. (2019). Fundamentals and applications of photocatalytic CO2 methanation. Nature Communications, 10(1). doi:10.1038/s41467-019-10996-2 | es_ES |
dc.description.references | Aziz, M. A. A., Jalil, A. A., Triwahyono, S., Mukti, R. R., Taufiq-Yap, Y. H., & Sazegar, M. R. (2014). Highly active Ni-promoted mesostructured silica nanoparticles for CO2 methanation. Applied Catalysis B: Environmental, 147, 359-368. doi:10.1016/j.apcatb.2013.09.015 | es_ES |
dc.description.references | Sharma, S., Hu, Z., Zhang, P., McFarland, E. W., & Metiu, H. (2011). CO2 methanation on Ru-doped ceria. Journal of Catalysis, 278(2), 297-309. doi:10.1016/j.jcat.2010.12.015 | es_ES |
dc.description.references | Gao, J., Liu, Q., Gu, F., Liu, B., Zhong, Z., & Su, F. (2015). Recent advances in methanation catalysts for the production of synthetic natural gas. RSC Advances, 5(29), 22759-22776. doi:10.1039/c4ra16114a | es_ES |
dc.description.references | Chen, Y., Long, J., & Li, Z. (2019). Efficient Photothermal CO2 Methanation over RuO2/SrTiO3. Trends in Chemistry, 1(5), 459-460. doi:10.1016/j.trechm.2019.06.005 | es_ES |
dc.description.references | Mateo, D., Albero, J., & García, H. (2019). Titanium-Perovskite-Supported RuO2 Nanoparticles for Photocatalytic CO2 Methanation. Joule, 3(8), 1949-1962. doi:10.1016/j.joule.2019.06.001 | es_ES |
dc.description.references | Mateo, D., De Masi, D., Albero, J., Lacroix, L., Fazzini, P., Chaudret, B., & García, H. (2018). Synergism of Au and Ru Nanoparticles in Low‐Temperature Photoassisted CO 2 Methanation. Chemistry – A European Journal, 24(69), 18436-18443. doi:10.1002/chem.201803022 | es_ES |
dc.description.references | Zhou, Z., Zhang, Y., Shen, Y., Liu, S., & Zhang, Y. (2018). Molecular engineering of polymeric carbon nitride: advancing applications from photocatalysis to biosensing and more. Chemical Society Reviews, 47(7), 2298-2321. doi:10.1039/c7cs00840f | es_ES |
dc.description.references | Ren, Y., Zeng, D., & Ong, W.-J. (2019). Interfacial engineering of graphitic carbon nitride (g-C3N4)-based metal sulfide heterojunction photocatalysts for energy conversion: A review. Chinese Journal of Catalysis, 40(3), 289-319. doi:10.1016/s1872-2067(19)63293-6 | es_ES |
dc.description.references | Zhao, G., Yang, H., Liu, M., & Xu, X. (2018). Metal-Free Graphitic Carbon Nitride Photocatalyst Goes Into Two-Dimensional Time. Frontiers in Chemistry, 6. doi:10.3389/fchem.2018.00551 | es_ES |
dc.description.references | Wang, X., Maeda, K., Thomas, A., Takanabe, K., Xin, G., Carlsson, J. M., … Antonietti, M. (2008). A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Materials, 8(1), 76-80. doi:10.1038/nmat2317 | es_ES |
dc.description.references | Yang, Y., Wang, S., Li, Y., Wang, J., & Wang, L. (2017). Strategies for Efficient Solar Water Splitting Using Carbon Nitride. Chemistry - An Asian Journal, 12(13), 1421-1434. doi:10.1002/asia.201700540 | es_ES |
dc.description.references | Volokh, M., Peng, G., Barrio, J., & Shalom, M. (2019). Carbon Nitride Materials for Water Splitting Photoelectrochemical Cells. Angewandte Chemie International Edition, 58(19), 6138-6151. doi:10.1002/anie.201806514 | es_ES |
dc.description.references | Xu, J., Brenner, T. J. K., Chabanne, L., Neher, D., Antonietti, M., & Shalom, M. (2014). Liquid-Based Growth of Polymeric Carbon Nitride Layers and Their Use in a Mesostructured Polymer Solar Cell with Voc Exceeding 1 V. Journal of the American Chemical Society, 136(39), 13486-13489. doi:10.1021/ja508329c | es_ES |
dc.description.references | Safaei, J., Mohamed, N. A., Mohamad Noh, M. F., Soh, M. F., Ludin, N. A., Ibrahim, M. A., … Mat Teridi, M. A. (2018). Graphitic carbon nitride (g-C3N4) electrodes for energy conversion and storage: a review on photoelectrochemical water splitting, solar cells and supercapacitors. Journal of Materials Chemistry A, 6(45), 22346-22380. doi:10.1039/c8ta08001a | es_ES |
dc.description.references | Xu, J., Shalom, M., Piersimoni, F., Antonietti, M., Neher, D., & Brenner, T. J. K. (2015). Color-Tunable Photoluminescence and NIR Electroluminescence in Carbon Nitride Thin Films and Light-Emitting Diodes. Advanced Optical Materials, 3(7), 913-917. doi:10.1002/adom.201500019 | es_ES |
dc.description.references | Zheng, Q., Durkin, D. P., Elenewski, J. E., Sun, Y., Banek, N. A., Hua, L., … Shuai, D. (2016). Visible-Light-Responsive Graphitic Carbon Nitride: Rational Design and Photocatalytic Applications for Water Treatment. Environmental Science & Technology, 50(23), 12938-12948. doi:10.1021/acs.est.6b02579 | es_ES |
dc.description.references | Barrio, J., & Shalom, M. (2018). Ultralong Nanostructured Carbon Nitride Wires and Self-Standing C-Rich Filters from Supramolecular Microspheres. ACS Applied Materials & Interfaces, 10(46), 39688-39694. doi:10.1021/acsami.8b13873 | es_ES |
dc.description.references | Chen, L., & Song, J. (2017). Tailored Graphitic Carbon Nitride Nanostructures: Synthesis, Modification, and Sensing Applications. Advanced Functional Materials, 27(39), 1702695. doi:10.1002/adfm.201702695 | es_ES |
dc.description.references | Lin, J., Pan, Z., & Wang, X. (2013). Photochemical Reduction of CO2 by Graphitic Carbon Nitride Polymers. ACS Sustainable Chemistry & Engineering, 2(3), 353-358. doi:10.1021/sc4004295 | es_ES |
dc.description.references | Tada, S., Shimizu, T., Kameyama, H., Haneda, T., & Kikuchi, R. (2012). Ni/CeO2 catalysts with high CO2 methanation activity and high CH4 selectivity at low temperatures. International Journal of Hydrogen Energy, 37(7), 5527-5531. doi:10.1016/j.ijhydene.2011.12.122 | es_ES |
dc.description.references | Karelovic, A., & Ruiz, P. (2013). Mechanistic study of low temperature CO2 methanation over Rh/TiO2 catalysts. Journal of Catalysis, 301, 141-153. doi:10.1016/j.jcat.2013.02.009 | es_ES |
dc.description.references | Tada, S., Ochieng, O. J., Kikuchi, R., Haneda, T., & Kameyama, H. (2014). Promotion of CO2 methanation activity and CH4 selectivity at low temperatures over Ru/CeO2/Al2O3 catalysts. International Journal of Hydrogen Energy, 39(19), 10090-10100. doi:10.1016/j.ijhydene.2014.04.133 | es_ES |
dc.description.references | Shalom, M., Ressnig, D., Yang, X., Clavel, G., Fellinger, T. P., & Antonietti, M. (2015). Nickel nitride as an efficient electrocatalyst for water splitting. Journal of Materials Chemistry A, 3(15), 8171-8177. doi:10.1039/c5ta00078e | es_ES |
dc.description.references | Singh, M. K., Agarwal, A., Gopal, R., Swarnkar, R. K., & Kotnala, R. K. (2011). Dumbbell shaped nickel nanocrystals synthesized by a laser induced fragmentation method. Journal of Materials Chemistry, 21(30), 11074. doi:10.1039/c1jm12320c | es_ES |
dc.description.references | Mateo, D., Albero, J., & García, H. (2017). Photoassisted methanation using Cu2O nanoparticles supported on graphene as a photocatalyst. Energy & Environmental Science, 10(11), 2392-2400. doi:10.1039/c7ee02287e | es_ES |
dc.description.references | Kopyscinski, J., Schildhauer, T. J., Vogel, F., Biollaz, S. M. A., & Wokaun, A. (2010). Applying spatially resolved concentration and temperature measurements in a catalytic plate reactor for the kinetic study of CO methanation. Journal of Catalysis, 271(2), 262-279. doi:10.1016/j.jcat.2010.02.008 | es_ES |
dc.description.references | Lu, B., & Kawamoto, K. (2014). Transition metal-rich mesoporous silicas and their enhanced catalytic properties. Catal. Sci. Technol., 4(12), 4313-4321. doi:10.1039/c4cy00688g | es_ES |
dc.description.references | Kwak, J. H., Kovarik, L., & Szanyi, J. (2013). CO2 Reduction on Supported Ru/Al2O3 Catalysts: Cluster Size Dependence of Product Selectivity. ACS Catalysis, 3(11), 2449-2455. doi:10.1021/cs400381f | es_ES |
dc.description.references | Mateo, D., Albero, J., & García, H. (2018). Graphene supported NiO/Ni nanoparticles as efficient photocatalyst for gas phase CO2 reduction with hydrogen. Applied Catalysis B: Environmental, 224, 563-571. doi:10.1016/j.apcatb.2017.10.071 | es_ES |
dc.description.references | Gao, M., Yu, Y., Yang, W., Li, J., Xu, S., Feng, M., & Li, H. (2019). Ni nanoparticles supported on graphitic carbon nitride as visible light catalysts for hydrolytic dehydrogenation of ammonia borane. Nanoscale, 11(8), 3506-3513. doi:10.1039/c8nr09005j | es_ES |
dc.description.references | Liao, C., Yang, B., Zhang, N., Liu, M., Chen, G., Jiang, X., … Zhou, W. (2019). Constructing Conductive Interfaces between Nickel Oxide Nanocrystals and Polymer Carbon Nitride for Efficient Electrocatalytic Oxygen Evolution Reaction. Advanced Functional Materials, 29(40), 1904020. doi:10.1002/adfm.201904020 | es_ES |
dc.description.references | Millet, M.-M., Algara-Siller, G., Wrabetz, S., Mazheika, A., Girgsdies, F., Teschner, D., … Frei, E. (2019). Ni Single Atom Catalysts for CO2 Activation. Journal of the American Chemical Society, 141(6), 2451-2461. doi:10.1021/jacs.8b11729 | es_ES |
dc.description.references | Barrio, J., & Shalom, M. (2018). Rational Design of Carbon Nitride Materials by Supramolecular Preorganization of Monomers. ChemCatChem, 10(24), 5573-5586. doi:10.1002/cctc.201801410 | es_ES |
dc.description.references | Shalom, M., Inal, S., Fettkenhauer, C., Neher, D., & Antonietti, M. (2013). Improving Carbon Nitride Photocatalysis by Supramolecular Preorganization of Monomers. Journal of the American Chemical Society, 135(19), 7118-7121. doi:10.1021/ja402521s | es_ES |
dc.description.references | Zhang, G., Li, G., & Wang, X. (2015). Surface Modification of Carbon Nitride Polymers by Core-Shell Nickel/Nickel Oxide Cocatalysts for Hydrogen Evolution Photocatalysis. ChemCatChem, 7(18), 2864-2870. doi:10.1002/cctc.201500069 | es_ES |