Hanessian, S., & Auzzas, L. (2008). The Practice of Ring Constraint in Peptidomimetics Using Bicyclic and Polycyclic Amino Acids. Accounts of Chemical Research, 41(10), 1241-1251. doi:10.1021/ar8000052
Nájera, C., & Yus, M. (1999). Pyroglutamic acid: a versatile building block in asymmetric synthesis. Tetrahedron: Asymmetry, 10(12), 2245-2303. doi:10.1016/s0957-4166(99)00213-x
Mollica, A., Stefanucci, A., Costante, R., & Novellino, E. (2014). Pyroglutamic Acid Derivatives: Building Blocks for Drug Discovery. HETEROCYCLES, 89(8), 1801. doi:10.3987/rev-14-800
[+]
Hanessian, S., & Auzzas, L. (2008). The Practice of Ring Constraint in Peptidomimetics Using Bicyclic and Polycyclic Amino Acids. Accounts of Chemical Research, 41(10), 1241-1251. doi:10.1021/ar8000052
Nájera, C., & Yus, M. (1999). Pyroglutamic acid: a versatile building block in asymmetric synthesis. Tetrahedron: Asymmetry, 10(12), 2245-2303. doi:10.1016/s0957-4166(99)00213-x
Mollica, A., Stefanucci, A., Costante, R., & Novellino, E. (2014). Pyroglutamic Acid Derivatives: Building Blocks for Drug Discovery. HETEROCYCLES, 89(8), 1801. doi:10.3987/rev-14-800
Zanato, C., Watson, S., Bewick, G. S., Harrison, W. T. A., & Zanda, M. (2014). Synthesis and biological evaluation of (−)-kainic acid analogues as phospholipase D-coupled metabotropic glutamate receptor ligands. Org. Biomol. Chem., 12(47), 9638-9643. doi:10.1039/c4ob02002b
Pansare, S. V., & Kulkarni, K. G. (2013). An enantioselective approach to (−)-aphanorphine featuring a stereoselective oxidative amidation. RSC Advances, 3(41), 19127. doi:10.1039/c3ra44037k
Yamada, K., Sato, T., Hosoi, M., Yamamoto, Y., & Tomioka, K. (2010). Stereoselective Formal Synthesis of (+)-Allokainic Acid via Thiol-Mediated Acyl Radical Cyclization. CHEMICAL & PHARMACEUTICAL BULLETIN, 58(11), 1511-1516. doi:10.1248/cpb.58.1511
Geoghegan, P., & O’Leary, P. (2010). Pyroglutamate-derived hydroxyamide ligands: synthesis and application to asymmetric catalysis. Tetrahedron: Asymmetry, 21(7), 867-870. doi:10.1016/j.tetasy.2010.04.055
Feling, R. H., Buchanan, G. O., Mincer, T. J., Kauffman, C. A., Jensen, P. R., & Fenical, W. (2003). Salinosporamide A: A Highly Cytotoxic Proteasome Inhibitor from a Novel Microbial Source, a Marine Bacterium of the New Genus Salinospora. Angewandte Chemie International Edition, 42(3), 355-357. doi:10.1002/anie.200390115
Feling, R. H., Buchanan, G. O., Mincer, T. J., Kauffman, C. A., Jensen, P. R., & Fenical, W. (2003). Angewandte Chemie, 115(3), 369-371. doi:10.1002/ange.200390083
Gulder, T. A. M., & Moore, B. S. (2010). Salinosporamide Natural Products: Potent 20 S Proteasome Inhibitors as Promising Cancer Chemotherapeutics. Angewandte Chemie International Edition, 49(49), 9346-9367. doi:10.1002/anie.201000728
Gulder, T. A. M., & Moore, B. S. (2010). Salinosporamid-Naturstoffe: potente Inhibitoren des 20S-Proteasoms als vielversprechende Krebs-Chemotherapeutika. Angewandte Chemie, 122(49), 9534-9556. doi:10.1002/ange.201000728
OMURA, S., FUJIMOTO, T., OTOGURO, K., MATSUZAKI, K., MORIGUCHI, R., TANAKA, H., & SASAKI, Y. (1991). Lactacystin, a novel microbial metabolite, induces neuritogenesis of neuroblastoma cells. The Journal of Antibiotics, 44(1), 113-116. doi:10.7164/antibiotics.44.113
OMURA, S., MATSUZAKI, K., FUJIMOTO, T., KOSUGE, K., FURUYA, T., FUJITA, S., & NAKAGAWA, A. (1991). Structure of lactacystin, a new microbial metabolite which induces differentiation of neuroblastoma cells. The Journal of Antibiotics, 44(1), 117-118. doi:10.7164/antibiotics.44.117
Fenteany, G., & Schreiber, S. L. (1998). Lactacystin, Proteasome Function, and Cell Fate. Journal of Biological Chemistry, 273(15), 8545-8548. doi:10.1074/jbc.273.15.8545
Manam, R. R., Macherla, V. R., Tsueng, G., Dring, C. W., Weiss, J., Neuteboom, S. T. C., … Potts, B. C. (2009). Antiprotealide Is a Natural Product. Journal of Natural Products, 72(2), 295-297. doi:10.1021/np800578e
Mori, T., Takahashi, K., Kashiwabara, M., Uemura, D., Katayama, C., Iwadare, S., … Matsuzaki, A. (1985). Structure of oxazolomycin, a novel β-lactone antibiotic. Tetrahedron Letters, 26(8), 1073-1076. doi:10.1016/s0040-4039(00)98515-0
Moloney, M., Trippier, P., Yaqoob, M., & Wang, Z. (2004). The Oxazolomycins: A Structurally Novel Class of Bioactive Compounds. Current Drug Discovery Technologies, 1(3), 181-199. doi:10.2174/1570163043334974
Sakai, R., Oiwa, C., Takaishi, K., Kamiya, H., & Tagawa, M. (1999). Dysibetaine: a new α,α-disubstituted α-amino acid derivative from the marine sponge Dysidea herbacea. Tetrahedron Letters, 40(38), 6941-6944. doi:10.1016/s0040-4039(99)01356-8
Sakai, R., Suzuki, K., Shimamoto, K., & Kamiya, H. (2004). Novel Betaines from a Micronesian SpongeDysideaherbacea. The Journal of Organic Chemistry, 69(4), 1180-1185. doi:10.1021/jo0355045
Rombouts, Y., Elass, E., Biot, C., Maes, E., Coddeville, B., Burguière, A., … Guérardel, Y. (2010). Structural Analysis of an Unusual BioactiveN-Acylated Lipo-Oligosaccharide LOS-IV inMycobacterium marinum. Journal of the American Chemical Society, 132(45), 16073-16084. doi:10.1021/ja105807s
Yuan, Q., Liu, D., & Zhang, W. (2017). Iridium-Catalyzed Asymmetric Hydrogenation of β,γ-Unsaturated γ-Lactams: Scope and Mechanistic Studies. Organic Letters, 19(5), 1144-1147. doi:10.1021/acs.orglett.7b00171
Pace, V., Rae, J. P., & Procter, D. J. (2013). Cu(I)–NHC Catalyzed Asymmetric Silyl Transfer to Unsaturated Lactams and Amides. Organic Letters, 16(2), 476-479. doi:10.1021/ol4033623
Moutevelis-Minakakis, P., Papavassilopoulou, E., & Mavromoustakos, T. (2012). Synthesis of New Optically Active 2-Pyrrolidinones. Molecules, 18(1), 50-73. doi:10.3390/molecules18010050
Bai, J.-F., Wang, L.-L., Peng, L., Guo, Y.-L., Jia, L.-N., Tian, F., … Wang, L.-X. (2012). Asymmetric Michael Addition of α-Substituted Isocyanoacetates with Maleimides Catalyzed by Chiral Tertiary Amine Thiourea. The Journal of Organic Chemistry, 77(6), 2947-2953. doi:10.1021/jo2025288
Just, M. J., Tekkam, S., Alam, M. A., Jonnalagadda, S. C., Johnson, J. L., & Mereddy, V. R. (2011). Stereoselective synthesis of functionalized pyroglutamates. Tetrahedron Letters, 52(41), 5349-5351. doi:10.1016/j.tetlet.2011.08.029
Chatterjee, B. G., & Sahu, D. P. (1977). A convenient synthesis of .gamma.-lactams via Michael addition. The Journal of Organic Chemistry, 42(19), 3162-3165. doi:10.1021/jo00439a011
Yang, J., Zhou, X., Zeng, Y., Huang, C., Xiao, Y., & Zhang, J. (2016). Synthesis of 2-fluoro-2-pyrrolines via tandem reaction of α-trifluoromethyl-α,β-unsaturated carbonyl compounds with N-tosylated 2-aminomalonates. Chemical Communications, 52(27), 4922-4925. doi:10.1039/c6cc00831c
Deredas, D., Albrecht, Ł., & Krawczyk, H. (2013). An efficient synthesis of β,γ,γ-trisubstituted-α-diethoxyphosphoryl-γ-lactams: a convenient approach to α-methylene-γ-lactams. Tetrahedron Letters, 54(24), 3088-3090. doi:10.1016/j.tetlet.2013.03.130
Scansetti, M., Hu, X., McDermott, B. P., & Lam, H. W. (2007). Synthesis of Pyroglutamic Acid Derivatives via Double Michael Reactions of Alkynones. Organic Letters, 9(11), 2159-2162. doi:10.1021/ol070674f
Takahashi, K., Midori, M., Kawano, K., Ishihara, J., & Hatakeyama, S. (2008). Entry to Heterocycles Based on Indium-Catalyzed Conia-Ene Reactions: Asymmetric Synthesis of (−)-Salinosporamide A. Angewandte Chemie International Edition, 47(33), 6244-6246. doi:10.1002/anie.200801967
Takahashi, K., Midori, M., Kawano, K., Ishihara, J., & Hatakeyama, S. (2008). Entry to Heterocycles Based on Indium-Catalyzed Conia-Ene Reactions: Asymmetric Synthesis of (−)-Salinosporamide A. Angewandte Chemie, 120(33), 6340-6342. doi:10.1002/ange.200801967
Keane, H. A., Hess, W., & Burton, J. W. (2012). Manganese(iii)-mediated radical cyclisations for the (Z)-selective synthesis of exo-alkylidene pyrrolidinones and pyrrolidines. Chemical Communications, 48(52), 6496. doi:10.1039/c2cc32382f
Hess, W., & Burton, J. W. (2011). A Zinc(II) Catalyst System for the Conia-Ene Reaction of Alkynyl-Aminomalonates Applicable to 5-Endo-Dig Reactions. Advanced Synthesis & Catalysis, 353(16), 2966-2970. doi:10.1002/adsc.201100401
Yoon, C. H., Flanigan, D. L., Chong, B.-D., & Jung, K. W. (2002). A Novel Synthetic Route to Chiral γ-Lactams from α-Amino Acids via Rh-Catalyzed Intramolecular C−H Insertion. The Journal of Organic Chemistry, 67(18), 6582-6584. doi:10.1021/jo0259717
Oba, M., Nishiyama, N., & Nishiyama, K. (2003). Synthesis and reactions of a novel 3,4-didehydropyroglutamate derivative. Chemical Communications, (6), 776-777. doi:10.1039/b300554b
Soloshonok, V. A., Ueki, H., Tiwari, R., Cai, C., & Hruby, V. J. (2004). Virtually Complete Control of Simple and Face Diastereoselectivity in the Michael Addition Reactions between Achiral Equivalents of a Nucleophilic Glycine and (S)- or (R)-3-(E-Enoyl)-4-phenyl-1,3-oxazolidin-2-ones: Practical Method for Preparation of β-Substituted Pyroglutamic Acids and Prolines. The Journal of Organic Chemistry, 69(15), 4984-4990. doi:10.1021/jo0495438
Ghorai, M. K., & Tiwari, D. P. (2010). Lewis Acid Catalyzed Highly Stereoselective Domino-Ring-Opening Cyclization of Activated Aziridines with Enolates: Synthesis of Functionalized Chiral γ-Lactams. The Journal of Organic Chemistry, 75(18), 6173-6181. doi:10.1021/jo101004x
Taylor, M. S., & Jacobsen, E. N. (2003). Enantioselective Michael Additions to α,β-Unsaturated Imides Catalyzed by a Salen−Al Complex. Journal of the American Chemical Society, 125(37), 11204-11205. doi:10.1021/ja037177o
Vellalath, S., Van, K. N., & Romo, D. (2013). Direct Catalytic Asymmetric Synthesis of N-Heterocycles from Commodity Acid Chlorides by Employing α,β-Unsaturated Acylammonium Salts. Angewandte Chemie International Edition, 52(51), 13688-13693. doi:10.1002/anie.201306050
Vellalath, S., Van, K. N., & Romo, D. (2013). Direct Catalytic Asymmetric Synthesis of N-Heterocycles from Commodity Acid Chlorides by Employing α,β-Unsaturated Acylammonium Salts. Angewandte Chemie, 125(51), 13933-13938. doi:10.1002/ange.201306050
Chen, L., Wu, Z.-J., Zhang, M.-L., Yue, D.-F., Zhang, X.-M., Xu, X.-Y., & Yuan, W.-C. (2015). Organocatalytic Asymmetric Michael/Cyclization Cascade Reactions of 3-Hydroxyoxindoles/3-Aminooxindoles with α,β-Unsaturated Acyl Phosphonates for the Construction of Spirocyclic Oxindole-γ-lactones/lactams. The Journal of Organic Chemistry, 80(24), 12668-12675. doi:10.1021/acs.joc.5b02253
Xue, Z.-Y., Song, Z.-M., & Wang, C.-J. (2015). Cu(i)/TF-BiphamPhos-catalyzed asymmetric Michael addition of cyclic ketimino esters to alkylidene malonates. Organic & Biomolecular Chemistry, 13(19), 5460-5466. doi:10.1039/c5ob00591d
Raup, D. E. A., Cardinal-David, B., Holte, D., & Scheidt, K. A. (2010). Cooperative catalysis by carbenes and Lewis acids in a highly stereoselective route to γ-lactams. Nature Chemistry, 2(9), 766-771. doi:10.1038/nchem.727
Zhao, X., DiRocco, D. A., & Rovis, T. (2011). N-Heterocyclic Carbene and Brønsted Acid Cooperative Catalysis: Asymmetric Synthesis oftrans-γ-Lactams. Journal of the American Chemical Society, 133(32), 12466-12469. doi:10.1021/ja205714g
Companyó, X., Geant, P.-Y., Mazzanti, A., Moyano, A., & Rios, R. (2014). Catalytic asymmetric one-pot synthesis of α-methylene-γ-lactams. Tetrahedron, 70(1), 75-82. doi:10.1016/j.tet.2013.11.028
Ito, Y., Sawamura, M., & Hayashi, T. (1986). Catalytic asymmetric aldol reaction: reaction of aldehydes with isocyanoacetate catalyzed by a chiral ferrocenylphosphine-gold(I) complex. Journal of the American Chemical Society, 108(20), 6405-6406. doi:10.1021/ja00280a056
Togni, A., & Pastor, S. D. (1990). Chiral cooperativity: the nature of the diastereoselective and enantioselective step in the gold(I)-catalyzed aldol reaction utilizing chiral ferrocenylamine ligands. The Journal of Organic Chemistry, 55(5), 1649-1664. doi:10.1021/jo00292a046
Sawamura, M., Nakayama, Y., Kato, T., & Ito, Y. (1995). Gold(I)-Catalyzed Asymmetric Aldol Reaction of N-Methoxy-N-methyl-.alpha.-isocyanoacetamide (.alpha.-Isocyano Weinreb Amide). An Efficient Synthesis of Optically Active .beta.-Hydroxy .alpha.-Amino Aldehydes and Ketones. The Journal of Organic Chemistry, 60(6), 1727-1732. doi:10.1021/jo00111a034
Sawamura, M., Hamashima, H., & Ito, Y. (1990). The asymmetric aldol reaction of tosylmethyl isocyanide and aldehydes catalyzed by chiral silver(I) complexes. The Journal of Organic Chemistry, 55(24), 5935-5936. doi:10.1021/jo00311a007
Gosiewska, S., Veld, M. H. in‘t, de Pater, J. J. M., Bruijnincx, P. C. A., Lutz, M., Spek, A. L., … Klein Gebbink, R. J. M. (2006). Novel enantiopure non-C2-symmetric NCN-pincer palladium complexes with l-proline chiral auxiliaries: mer η3-N,C,N versus square planar η4-N,C,N,O coordination. Tetrahedron: Asymmetry, 17(4), 674-686. doi:10.1016/j.tetasy.2005.12.040
Lin, N., Deng, Y.-Q., Zhang, Z.-W., Wang, Q., & Lu, G. (2014). Asymmetric synthesis of chiral β-hydroxy-α-amino acid derivatives by organocatalytic aldol reactions of isocyanoesters with β,γ-unsaturated α-ketoesters. Tetrahedron: Asymmetry, 25(8), 650-657. doi:10.1016/j.tetasy.2014.03.014
Sladojevich, F., Trabocchi, A., Guarna, A., & Dixon, D. J. (2011). A New Family of Cinchona-Derived Amino Phosphine Precatalysts: Application to the Highly Enantio- and Diastereoselective Silver-Catalyzed Isocyanoacetate Aldol Reaction. Journal of the American Chemical Society, 133(6), 1710-1713. doi:10.1021/ja110534g
De la Campa, R., Ortín, I., & Dixon, D. J. (2015). Direct Catalytic Enantio- and Diastereoselective Ketone Aldol Reactions of Isocyanoacetates. Angewandte Chemie International Edition, 54(16), 4895-4898. doi:10.1002/anie.201411852
De la Campa, R., Ortín, I., & Dixon, D. J. (2015). Direct Catalytic Enantio- and Diastereoselective Ketone Aldol Reactions of Isocyanoacetates. Angewandte Chemie, 127(16), 4977-4980. doi:10.1002/ange.201411852
Zhou, X.-T., Lin, Y.-R., Dai, L.-X., Sun, J., Xia, L.-J., & Tang, M.-H. (1999). A Catalytic Enantioselective Access to Optically Active 2-Imidazoline fromN-Sulfonylimines and Isocyanoacetates. The Journal of Organic Chemistry, 64(4), 1331-1334. doi:10.1021/jo980949s
Zhang, Z.-W., Lu, G., Chen, M.-M., Lin, N., Li, Y.-B., Hayashi, T., & Chan, A. S. C. (2010). Organocatalytic asymmetric Mannich-type reaction of N-sulfonylimines with isocyanoacetate leading to optically active 2-imidazoline-4-carboxylates. Tetrahedron: Asymmetry, 21(13-14), 1715-1721. doi:10.1016/j.tetasy.2010.04.029
Nakamura, S., Maeno, Y., Ohara, M., Yamamura, A., Funahashi, Y., & Shibata, N. (2012). Enantioselective Synthesis of Imidazolines with Quaternary Stereocenters by Organocatalytic Reaction of N-(Heteroarenesulfonyl)imines with Isocyanoacetates. Organic Letters, 14(12), 2960-2963. doi:10.1021/ol301256q
Ortín, I., & Dixon, D. J. (2014). Direct Catalytic Enantio- and Diastereoselective Mannich Reaction of Isocyanoacetates and Ketimines. Angewandte Chemie International Edition, 53(13), 3462-3465. doi:10.1002/anie.201309719
Ortín, I., & Dixon, D. J. (2014). Direct Catalytic Enantio- and Diastereoselective Mannich Reaction of Isocyanoacetates and Ketimines. Angewandte Chemie, 126(13), 3530-3533. doi:10.1002/ange.201309719
Shao, P.-L., Liao, J.-Y., Ho, Y. A., & Zhao, Y. (2014). Highly Diastereo- and Enantioselective Silver-Catalyzed Double [3+2] Cyclization of α-Imino Esters with Isocyanoacetate. Angewandte Chemie International Edition, 53(21), 5435-5439. doi:10.1002/anie.201402788
Shao, P.-L., Liao, J.-Y., Ho, Y. A., & Zhao, Y. (2014). Highly Diastereo- and Enantioselective Silver-Catalyzed Double [3+2] Cyclization of α-Imino Esters with Isocyanoacetate. Angewandte Chemie, 126(21), 5539-5543. doi:10.1002/ange.201402788
Hayashi, M., Iwanaga, M., Shiomi, N., Nakane, D., Masuda, H., & Nakamura, S. (2014). Direct Asymmetric Mannich-Type Reaction of α-Isocyanoacetates with Ketimines using Cinchona Alkaloid/Copper(II) Catalysts. Angewandte Chemie International Edition, 53(32), 8411-8415. doi:10.1002/anie.201404629
Hayashi, M., Iwanaga, M., Shiomi, N., Nakane, D., Masuda, H., & Nakamura, S. (2014). Direct Asymmetric Mannich-Type Reaction of α-Isocyanoacetates with Ketimines using Cinchona Alkaloid/Copper(II) Catalysts. Angewandte Chemie, 126(32), 8551-8555. doi:10.1002/ange.201404629
Zhao, M.-X., Jing, L., Zhou, H., & Shi, M. (2015). Cinchona alkaloid thiourea mediated asymmetric Mannich reaction of isocyanoacetates with isatin-derived ketimines and subsequent cyclization: enantioselective synthesis of spirooxindole imidazolines. RSC Advances, 5(92), 75648-75652. doi:10.1039/c5ra17075c
Nakamura, S., Yamaji, R., & Iwanaga, M. (2016). Enantioselective construction of imidazolines having vicinal tetra-substituted stereocenters by direct Mannich reaction of α-substituted α-isocyanoacetates with ketimines. Chemical Communications, 52(47), 7462-7465. doi:10.1039/c6cc02911f
De la Campa, R., Gammack Yamagata, A. D., Ortín, I., Franchino, A., Thompson, A. L., Odell, B., & Dixon, D. J. (2016). Catalytic enantio- and diastereoselective Mannich reaction of α-substituted isocyanoacetates and ketimines. Chemical Communications, 52(70), 10632-10635. doi:10.1039/c6cc04132a
Willis, M. C., Cutting, G. A., Piccio, V. J.-D., Durbin, M. J., & John, M. P. (2005). The Direct Catalytic Enantioselective Synthesis of Protected Aryl ?-Hydroxy-?-Amino Acids. Angewandte Chemie International Edition, 44(10), 1543-1545. doi:10.1002/anie.200462125
Willis, M. C., Cutting, G. A., Piccio, V. J.-D., Durbin, M. J., & John, M. P. (2005). The Direct Catalytic Enantioselective Synthesis of Protected Aryl ?-Hydroxy-?-Amino Acids. Angewandte Chemie, 117(10), 1567-1569. doi:10.1002/ange.200462125
Li, L., Klauber, E. G., & Seidel, D. (2008). Catalytic Enantioselective Aldol Additions of α-Isothiocyanato Imides to Aldehydes. Journal of the American Chemical Society, 130(37), 12248-12249. doi:10.1021/ja804838y
Yoshino, T., Morimoto, H., Lu, G., Matsunaga, S., & Shibasaki, M. (2009). Construction of Contiguous Tetrasubstituted Chiral Carbon Stereocenters via Direct Catalytic Asymmetric Aldol Reaction of α-Isothiocyanato Esters with Ketones. Journal of the American Chemical Society, 131(47), 17082-17083. doi:10.1021/ja908571w
Jiang, X., Cao, Y., Wang, Y., Liu, L., Shen, F., & Wang, R. (2010). A Unique Approach to the Concise Synthesis of Highly Optically Active Spirooxazolines and the Discovery of a More Potent Oxindole-Type Phytoalexin Analogue. Journal of the American Chemical Society, 132(43), 15328-15333. doi:10.1021/ja106349m
Chen, X., Zhu, Y., Qiao, Z., Xie, M., Lin, L., Liu, X., & Feng, X. (2010). Efficient Synthesis of β-Hydroxy-α-Amino Acid Derivatives via Direct Catalytic Asymmetric Aldol Reaction of α-Isothiocyanato Imide with Aldehydes. Chemistry - A European Journal, 16(33), 10124-10129. doi:10.1002/chem.201000284
Cao, Y.-M., Shen, F.-F., Zhang, F.-T., Zhang, J.-L., & Wang, R. (2014). Catalytic Asymmetric 1,2-Addition of α-Isothiocyanato Phosphonates: Synthesis of Chiral β-Hydroxy- or β-Amino-Substituted α-Amino Phosphonic Acid Derivatives. Angewandte Chemie International Edition, 53(7), 1862-1866. doi:10.1002/anie.201308514
Cao, Y.-M., Shen, F.-F., Zhang, F.-T., Zhang, J.-L., & Wang, R. (2014). Catalytic Asymmetric 1,2-Addition of α-Isothiocyanato Phosphonates: Synthesis of Chiral β-Hydroxy- or β-Amino-Substituted α-Amino Phosphonic Acid Derivatives. Angewandte Chemie, 126(7), 1893-1897. doi:10.1002/ange.201308514
Li, L., Ganesh, M., & Seidel, D. (2009). Catalytic Enantioselective Synthesis of α,β-Diamino Acid Derivatives. Journal of the American Chemical Society, 131(33), 11648-11649. doi:10.1021/ja9034494
Chen, X., Dong, S., Qiao, Z., Zhu, Y., Xie, M., Lin, L., … Feng, X. (2011). Guanidine Organocatalyst for the Asymmetric Mannich-Type Reaction between α-Isothiocyanato Imide and Sulfonyl Imines. Chemistry - A European Journal, 17(9), 2583-2586. doi:10.1002/chem.201002571
Lu, G., Yoshino, T., Morimoto, H., Matsunaga, S., & Shibasaki, M. (2011). Stereodivergent Direct Catalytic Asymmetric Mannich-Type Reactions of α-Isothiocyanato Ester with Ketimines. Angewandte Chemie International Edition, 50(19), 4382-4385. doi:10.1002/anie.201101034
Lu, G., Yoshino, T., Morimoto, H., Matsunaga, S., & Shibasaki, M. (2011). Stereodivergent Direct Catalytic Asymmetric Mannich-Type Reactions of α-Isothiocyanato Ester with Ketimines. Angewandte Chemie, 123(19), 4474-4477. doi:10.1002/ange.201101034
Kato, S., Yoshino, T., Shibasaki, M., Kanai, M., & Matsunaga, S. (2012). Catalytic Asymmetric Synthesis of Spirooxindoles by a Mannich-Type Reaction of Isothiocyanato Oxindoles. Angewandte Chemie International Edition, 51(28), 7007-7010. doi:10.1002/anie.201203005
Kato, S., Yoshino, T., Shibasaki, M., Kanai, M., & Matsunaga, S. (2012). Catalytic Asymmetric Synthesis of Spirooxindoles by a Mannich-Type Reaction of Isothiocyanato Oxindoles. Angewandte Chemie, 124(28), 7113-7116. doi:10.1002/ange.201203005
Du, D., Xu, Q., Li, X.-G., & Shi, M. (2016). Construction of Spirocyclic Oxindoles through Regio- and Stereoselective [3+2] or [3+2]/[4+2] Cascade Reaction of α,β-Unsaturated Imines with 3-Isothiocyanato Oxindole. Chemistry - A European Journal, 22(14), 4733-4737. doi:10.1002/chem.201600497
Wei, W.-T., Chen, C.-X., Lu, R.-J., Wang, J.-J., Zhang, X.-J., & Yan, M. (2012). Enantioselective synthesis of 3,3′-dihydropyrryl-spirooxindoles via an organocatalytic three-component reaction. Organic & Biomolecular Chemistry, 10(27), 5245. doi:10.1039/c2ob25629k
Wang, L.-L., Bai, J.-F., Peng, L., Qi, L.-W., Jia, L.-N., Guo, Y.-L., … Wang, L.-X. (2012). Organocatalytic stereocontrolled synthesis of 3,3′-pyrrolidinyl spirooxindoles by [3+2] annulation of isocyanoesters with methyleneindolinones. Chemical Communications, 48(42), 5175. doi:10.1039/c2cc30746d
Liao, J.-Y., Shao, P.-L., & Zhao, Y. (2015). Catalytic Divergent Synthesis of 3H or 1H Pyrroles by [3 + 2] Cyclization of Allenoates with Activated Isocyanides. Journal of the American Chemical Society, 137(2), 628-631. doi:10.1021/ja511895q
Peng, X.-J., Ho, Y. A., Wang, Z.-P., Shao, P.-L., Zhao, Y., & He, Y. (2017). Formal [3 + 2] cycloaddition of α-unsubstituted isocyanoacetates and methyleneindolinones: enantioselective synthesis of spirooxindoles. Organic Chemistry Frontiers, 4(1), 81-85. doi:10.1039/c6qo00555a
Cao, Y., Jiang, X., Liu, L., Shen, F., Zhang, F., & Wang, R. (2011). Enantioselective Michael/Cyclization Reaction Sequence: Scaffold-Inspired Synthesis of Spirooxindoles with Multiple Stereocenters. Angewandte Chemie International Edition, 50(39), 9124-9127. doi:10.1002/anie.201104216
Cao, Y., Jiang, X., Liu, L., Shen, F., Zhang, F., & Wang, R. (2011). Enantioselective Michael/Cyclization Reaction Sequence: Scaffold-Inspired Synthesis of Spirooxindoles with Multiple Stereocenters. Angewandte Chemie, 123(39), 9290-9293. doi:10.1002/ange.201104216
Tan, B., Zeng, X., Leong, W. W. Y., Shi, Z., Barbas, C. F., & Zhong, G. (2011). Core Structure-Based Design of Organocatalytic [3+2]-Cycloaddition Reactions: Highly Efficient and Stereocontrolled Syntheses of 3,3′-Pyrrolidonyl Spirooxindoles. Chemistry - A European Journal, 18(1), 63-67. doi:10.1002/chem.201103449
Wu, H., Zhang, L.-L., Tian, Z.-Q., Huang, Y.-D., & Wang, Y.-M. (2012). Highly Efficient Enantioselective Construction of Bispirooxindoles Containing Three Stereocenters through an Organocatalytic Cascade Michael-Cyclization Reaction. Chemistry - A European Journal, 19(5), 1747-1753. doi:10.1002/chem.201203221
Chen, Q., Liang, J., Wang, S., Wang, D., & Wang, R. (2013). An asymmetric approach toward chiral multicyclic spirooxindoles from isothiocyanato oxindoles and unsaturated pyrazolones by a chiral tertiary amine thiourea catalyst. Chemical Communications, 49(16), 1657. doi:10.1039/c3cc38386e
Du, D., Jiang, Y., Xu, Q., Tang, X.-Y., & Shi, M. (2015). Enantioselective [3+2] Cyclization of 3-Isothiocyanato Oxindoles with Trifluoromethylated 2-Butenedioic Acid Diesters. ChemCatChem, 7(8), 1366-1371. doi:10.1002/cctc.201500141
Zhao, H.-W., Tian, T., Pang, H.-L., Li, B., Chen, X.-Q., Yang, Z., … Liu, Y.-Y. (2016). Organocatalytic [3+2] Cycloadditions of Barbiturate-Based Olefins with 3-Isothiocyanato Oxindoles: Highly Diastereoselective and Enantioselective Synthesis of Dispirobarbiturates. Advanced Synthesis & Catalysis, 358(16), 2619-2630. doi:10.1002/adsc.201600270
Chowdhury, R., Kumar, M., & Ghosh, S. K. (2016). Organocatalyzed enantioselective Michael addition/cyclization cascade reaction of 3-isothiocyanato oxindoles with arylidene malonates. Organic & Biomolecular Chemistry, 14(47), 11250-11260. doi:10.1039/c6ob02104b
Šenica, L., Stopar, K., Friedrich, M., Grošelj, U., Plavec, J., Počkaj, M., … Svete, J. (2015). Synthesis and Rotational Isomerism of 1-Substituted Methyl (S)-[5-(2-Nitrophenyl)-1H-pyrazole-4-carbonyl]alaninates. The Journal of Organic Chemistry, 81(1), 146-161. doi:10.1021/acs.joc.5b02467
Shore, E. R., Awais, M., Kershaw, N. M., Gibson, R. R., Pandalaneni, S., Latawiec, D., … Sutton, R. (2016). Small Molecule Inhibitors of Cyclophilin D To Protect Mitochondrial Function as a Potential Treatment for Acute Pancreatitis. Journal of Medicinal Chemistry, 59(6), 2596-2611. doi:10.1021/acs.jmedchem.5b01801
Singh, G., & Aubé, J. (2016). Synthesis of cyclic 1,3-diols as scaffolds for spatially directed libraries. Organic & Biomolecular Chemistry, 14(18), 4299-4303. doi:10.1039/c6ob00598e
Sakamoto, S., Kazumi, N., Kobayashi, Y., Tsukano, C., & Takemoto, Y. (2014). Asymmetric Synthesis of Trisubstituted Oxazolidinones by the Thiourea-Catalyzed Aldol Reaction of 2-Isocyanatomalonate Diester. Organic Letters, 16(18), 4758-4761. doi:10.1021/ol502198e
Barbaro, G., Battaglia, A., Giorgianni, P., Guerrini, A., & Seconi, G. (1995). Synthesis and Reactivity of N-[Bis(trimethylsilyl)methyl]heterocumulenes. The Journal of Organic Chemistry, 60(19), 6032-6039. doi:10.1021/jo00124a011
Espinosa, M., Blay, G., Cardona, L., & Pedro, J. R. (2013). Asymmetric Conjugate Addition of Malonate Esters to α,β-UnsaturatedN-Sulfonyl Imines: An Expeditious Route to Chiral δ-Aminoesters and Piperidones. Chemistry - A European Journal, 19(44), 14861-14866. doi:10.1002/chem.201302687
Espinosa, M., Blay, G., Cardona, L., & Pedro, J. R. (2013). Corrigendum: Asymmetric Conjugate Addition of Malonate Esters to α,β-UnsaturatedN-Sulfonyl Imines: An Expeditious Route to Chiral δ-Aminoesters and Piperidones. Chemistry - A European Journal, 19(52), 17632-17632. doi:10.1002/chem.201304285
Espinosa, M., García-Ortiz, A., Blay, G., Cardona, L., Muñoz, M. C., & Pedro, J. R. (2016). E,Z-Stereodivergent synthesis of N-tosyl α,β-dehydroamino esters via a Mukaiyama–Michael addition. RSC Advances, 6(19), 15655-15659. doi:10.1039/c5ra27354d
CCDC 7 b 9 a The Cambridge Crystallographic Data Centre
[-]