- -

DNA synthesis determines the binding mode of the human mitochondrial single-stranded DNA-binding protein

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

DNA synthesis determines the binding mode of the human mitochondrial single-stranded DNA-binding protein

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Morin, J.A. es_ES
dc.contributor.author Cerrón, F. es_ES
dc.contributor.author Jarillo, J. es_ES
dc.contributor.author Beltran-Heredia, E. es_ES
dc.contributor.author Ciesielski, G.L. es_ES
dc.contributor.author Arias-Gonzalez, J. R. es_ES
dc.contributor.author Kaguni, L.S. es_ES
dc.contributor.author Cao, F.J. es_ES
dc.contributor.author Ibarra, B. es_ES
dc.date.accessioned 2020-10-28T04:33:12Z
dc.date.available 2020-10-28T04:33:12Z
dc.date.issued 2017-07-07 es_ES
dc.identifier.issn 0305-1048 es_ES
dc.identifier.uri http://hdl.handle.net/10251/153374
dc.description.abstract [EN] Single-stranded DNA-binding proteins (SSBs) play a key role in genome maintenance, binding and organizing single-stranded DNA (ssDNA) intermediates. Multimeric SSBs, such as the human mitochondrial SSB (HmtSSB), present multiple sites to interact with ssDNA, which has been shown in vitro to enable them to bind a variable number of single-stranded nucleotides depending on the salt and protein concentration. It has long been suggested that different binding modes might be used selectively for different functions. To study this possibility, we used optical tweezers to determine and compare the structure and energetics of long, individual HmtSSB¿DNA complexes assembled on preformed ssDNA and on ssDNA generated gradually during `in situ¿ DNA synthesis. We show that HmtSSB binds to preformed ss-DNA in two major modes, depending on salt and protein concentration. However, when protein binding was coupled to strand-displacement DNA synthesis, only one of the two binding modes was observed under all experimental conditions. Our results reveal a key role for the gradual generation of ssDNA in modulating the binding mode of a multimeric SSB protein and consequently, in generating the appropriate nucleoprotein structure for DNA synthetic reactions required for genome maintenance. es_ES
dc.description.sponsorship We are grateful to Prof. M. Salas laboratory (CBMSO-CSIC) for generously providing the Phi29 DNA polymerase and to Juan P. García Villaluenga (UCM) for useful discussions. Spanish Ministry of Economy and Competitiveness [MAT2015-71806-R to J.R.A-G, FIS2010-17440, FIS2015-67765-R to F.J.C., BFU2012-31825, BFU2015-63714-R to B.I.]; Spanish Ministry of Education, Culture and Sport [FPU13/02934 to J.J., FPU13/02826 to E.B-H.]; National Institutes of Health [GM45925 to L.S.K.]; University of Tampere (to G.L.C.); Programa de Financiacion Universidad Complutense de Madrid-Santander Universidades [CT45/15-CT46/15 to F.C.]. Funding for open access charge: Spanish Ministry of Economy and Competitiveness [BFU2015-63714-R]. es_ES
dc.language Inglés es_ES
dc.publisher Oxford University Press es_ES
dc.relation.ispartof Nucleic Acids Research es_ES
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.subject DNA es_ES
dc.subject DNA polymerase es_ES
dc.subject Replication es_ES
dc.subject Single-molecule es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title DNA synthesis determines the binding mode of the human mitochondrial single-stranded DNA-binding protein es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1093/nar/gkx395 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//FIS2010-17440/ES/FISICA DE LOS PROCESOS FUERA DEL EQUILIBRIO: RETROALIMENTACION, ENTROPIA E INFORMACION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//GM45925/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BFU2012-31825/ES/DINAMICA DE LA REPLICACION DEL ADN MITOCONDRIAL A NIVEL DE MOLECULAS INDIVIDUALES./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2015-71806-R/ES/INFLUENCIA DEL CALOR EMITIDO POR NANOPARTICULAS MAGNETICAS SOBRE BIOMOLECULAS DETERMINADO MEDIANTE PINZAS OPTICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//FIS2015-67765-R/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BFU2015-63714-R/ES/CARACTERIZACION A NIVEL DE MOLECULAS INDIVIDUALES DE LA DINAMICA DEL FUNCIONAMIENTO COORDINADO DE LAS PROTEINAS IMPLICADAS EN LAS REPLICACION DEL ADN MITOCONDRIAL HUMANO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU13%2F02934/ES/FPU13%2F02934/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU13%2F02826/ES/FPU13%2F02826/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UCM//CT45%2F15-CT46%2F15/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Morin, J.; Cerrón, F.; Jarillo, J.; Beltran-Heredia, E.; Ciesielski, G.; Arias-Gonzalez, JR.; Kaguni, L.... (2017). DNA synthesis determines the binding mode of the human mitochondrial single-stranded DNA-binding protein. Nucleic Acids Research. 45(12):7237-7248. https://doi.org/10.1093/nar/gkx395 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1093/nar/gkx395 es_ES
dc.description.upvformatpinicio 7237 es_ES
dc.description.upvformatpfin 7248 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 45 es_ES
dc.description.issue 12 es_ES
dc.identifier.pmid 28486639 es_ES
dc.identifier.pmcid PMC5499585 es_ES
dc.relation.pasarela S\407987 es_ES
dc.contributor.funder University of Tampere es_ES
dc.contributor.funder Santander Universidades es_ES
dc.contributor.funder Universidad Complutense de Madrid es_ES
dc.contributor.funder National Institutes of Health, EEUU es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Shereda, R. D., Kozlov, A. G., Lohman, T. M., Cox, M. M., & Keck, J. L. (2008). SSB as an Organizer/Mobilizer of Genome Maintenance Complexes. Critical Reviews in Biochemistry and Molecular Biology, 43(5), 289-318. doi:10.1080/10409230802341296 es_ES
dc.description.references Flynn, R. L., & Zou, L. (2010). Oligonucleotide/oligosaccharide-binding fold proteins: a growing family of genome guardians. Critical Reviews in Biochemistry and Molecular Biology, 45(4), 266-275. doi:10.3109/10409238.2010.488216 es_ES
dc.description.references Murzin, A. G. (1993). OB(oligonucleotide/oligosaccharide binding)-fold: common structural and functional solution for non-homologous sequences. The EMBO Journal, 12(3), 861-867. doi:10.1002/j.1460-2075.1993.tb05726.x es_ES
dc.description.references Kozlov, A. G., Weiland, E., Mittal, A., Waldman, V., Antony, E., Fazio, N., … Lohman, T. M. (2015). Intrinsically Disordered C-Terminal Tails of E. coli Single-Stranded DNA Binding Protein Regulate Cooperative Binding to Single-Stranded DNA. Journal of Molecular Biology, 427(4), 763-774. doi:10.1016/j.jmb.2014.12.020 es_ES
dc.description.references Kuznetsov, S. V., Kozlov, A. G., Lohman, T. M., & Ansari, A. (2006). Microsecond Dynamics of Protein–DNA Interactions: Direct Observation of the Wrapping/Unwrapping Kinetics of Single-stranded DNA around the E.coli SSB Tetramer. Journal of Molecular Biology, 359(1), 55-65. doi:10.1016/j.jmb.2006.02.070 es_ES
dc.description.references Lohman, T. M., & Ferrari, M. E. (1994). Escherichia Coli Single-Stranded DNA-Binding Protein: Multiple DNA-Binding Modes and Cooperativities. Annual Review of Biochemistry, 63(1), 527-570. doi:10.1146/annurev.bi.63.070194.002523 es_ES
dc.description.references Maier, D., Farr, C. L., Poeck, B., Alahari, A., Vogel, M., Fischer, S., … Schneuwly, S. (2001). Mitochondrial Single-stranded DNA-binding Protein Is Required for Mitochondrial DNA Replication and Development in Drosophila melanogaster. Molecular Biology of the Cell, 12(4), 821-830. doi:10.1091/mbc.12.4.821 es_ES
dc.description.references Ruhanen, H., Borrie, S., Szabadkai, G., Tyynismaa, H., Jones, A. W. E., Kang, D., … Yasukawa, T. (2010). Mitochondrial single-stranded DNA binding protein is required for maintenance of mitochondrial DNA and 7S DNA but is not required for mitochondrial nucleoid organisation. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1803(8), 931-939. doi:10.1016/j.bbamcr.2010.04.008 es_ES
dc.description.references Farr, C. L., Matsushima, Y., Lagina, A. T., Luo, N., & Kaguni, L. S. (2004). Physiological and Biochemical Defects in Functional Interactions of Mitochondrial DNA Polymerase and DNA-binding Mutants of Single-stranded DNA-binding Protein. Journal of Biological Chemistry, 279(17), 17047-17053. doi:10.1074/jbc.m400283200 es_ES
dc.description.references Van Tuyle, G. C., & Pavco, P. A. (1985). The rat liver mitochondrial DNA-protein complex: displaced single strands of replicative intermediates are protein coated. The Journal of Cell Biology, 100(1), 251-257. doi:10.1083/jcb.100.1.251 es_ES
dc.description.references Clayton, D. A. (1982). Replication of animal mitochondrial DNA. Cell, 28(4), 693-705. doi:10.1016/0092-8674(82)90049-6 es_ES
dc.description.references Farr, C. L., Wang, Y., & Kaguni, L. S. (1999). Functional Interactions of Mitochondrial DNA Polymerase and Single-stranded DNA-binding Protein. Journal of Biological Chemistry, 274(21), 14779-14785. doi:10.1074/jbc.274.21.14779 es_ES
dc.description.references Korhonen, J. A., Gaspari, M., & Falkenberg, M. (2003). TWINKLE Has 5′ → 3′ DNA Helicase Activity and Is Specifically Stimulated by Mitochondrial Single-stranded DNA-binding Protein. Journal of Biological Chemistry, 278(49), 48627-48632. doi:10.1074/jbc.m306981200 es_ES
dc.description.references Miralles Fusté, J., Shi, Y., Wanrooij, S., Zhu, X., Jemt, E., Persson, Ö., … Falkenberg, M. (2014). In Vivo Occupancy of Mitochondrial Single-Stranded DNA Binding Protein Supports the Strand Displacement Mode of DNA Replication. PLoS Genetics, 10(12), e1004832. doi:10.1371/journal.pgen.1004832 es_ES
dc.description.references Oliveira, M. T., & Kaguni, L. S. (2011). Reduced Stimulation of Recombinant DNA Polymerase γ and Mitochondrial DNA (mtDNA) Helicase by Variants of Mitochondrial Single-stranded DNA-binding Protein (mtSSB) Correlates with Defects in mtDNA Replication in Animal Cells. Journal of Biological Chemistry, 286(47), 40649-40658. doi:10.1074/jbc.m111.289983 es_ES
dc.description.references Williams, A. J., & Kaguni, L. S. (1995). Stimulation ofDrosophilaMitochondrial DNA Polymerase by Single-stranded DNA-binding Protein. Journal of Biological Chemistry, 270(2), 860-865. doi:10.1074/jbc.270.2.860 es_ES
dc.description.references Bogenhagen, D. F., Wang, Y., Shen, E. L., & Kobayashi, R. (2003). Protein Components of Mitochondrial DNA Nucleoids in Higher Eukaryotes. Molecular & Cellular Proteomics, 2(11), 1205-1216. doi:10.1074/mcp.m300035-mcp200 es_ES
dc.description.references BARAT-GUERIDE, M., DUFRESNE, C., & RICKWOOD, D. (1989). Effect of DNA conformation on the transcription of mitochondrial DNA. European Journal of Biochemistry, 183(2), 297-302. doi:10.1111/j.1432-1033.1989.tb14928.x es_ES
dc.description.references Yang, C., Curth, U., Urbanke, C., & Kang, C. (1997). Crystal structure of human mitochondrial single-stranded DNA binding protein at 2.4 Å resolution. Nature Structural Biology, 4(2), 153-157. doi:10.1038/nsb0297-153 es_ES
dc.description.references Raghunathan, S., Ricard, C. S., Lohman, T. M., & Waksman, G. (1997). Crystal structure of the homo-tetrameric DNA binding domain of Escherichia coli single-stranded DNA-binding protein determined by multiwavelength x-ray diffraction on the selenomethionyl protein at 2.9-A resolution. Proceedings of the National Academy of Sciences, 94(13), 6652-6657. doi:10.1073/pnas.94.13.6652 es_ES
dc.description.references CURTH, U., URBANKE, C., GREIPEL, J., GERBERDING, H., TIRANTI, V., & ZEVIANI, M. (1994). Single-stranded-DNA-binding proteins from human mitochondria and Escherichia coli have analogous physicochemical properties. European Journal of Biochemistry, 221(1), 435-443. doi:10.1111/j.1432-1033.1994.tb18756.x es_ES
dc.description.references Overman, L. B., & Lohman, T. M. (1994). Linkage of pH, Anion and Cation Effects in Protein-Nucleic Acid Equilibria. Journal of Molecular Biology, 236(1), 165-178. doi:10.1006/jmbi.1994.1126 es_ES
dc.description.references Bhattacharyya, B., George, N. P., Thurmes, T. M., Zhou, R., Jani, N., Wessel, S. R., … Keck, J. L. (2013). Structural mechanisms of PriA-mediated DNA replication restart. Proceedings of the National Academy of Sciences, 111(4), 1373-1378. doi:10.1073/pnas.1318001111 es_ES
dc.description.references Carlini, L. E., Porter, R. D., Curth, U., & Urbanke, C. (1993). Viability and preliminary in vivo characterization of site directed mutants of Escherichia coli single-stranded DNA-binding protein. Molecular Microbiology, 10(5), 1067-1075. doi:10.1111/j.1365-2958.1993.tb00977.x es_ES
dc.description.references Griffith, J. D., Harris, L. D., & Register, J. (1984). Visualization of SSB-ssDNA Complexes Active in the Assembly of Stable RecA-DNA Filaments. Cold Spring Harbor Symposia on Quantitative Biology, 49(0), 553-559. doi:10.1101/sqb.1984.049.01.062 es_ES
dc.description.references Morrical, S. W., & Cox, M. M. (1990). Stabilization of recA protein-ssDNA complexes by the single-stranded DNA binding protein of Escherichia coli. Biochemistry, 29(3), 837-843. doi:10.1021/bi00455a034 es_ES
dc.description.references Muniyappa, K., Williams, K., Chase, J. W., & Radding, C. M. (1990). Active nucleoprotein filaments of single-stranded binding protein and recA protein on single-stranded DNA have a regular repeating structure. Nucleic Acids Research, 18(13), 3967-3973. doi:10.1093/nar/18.13.3967 es_ES
dc.description.references Wessel, S. R., Marceau, A. H., Massoni, S. C., Zhou, R., Ha, T., Sandler, S. J., & Keck, J. L. (2013). PriC-mediated DNA Replication Restart Requires PriC Complex Formation with the Single-stranded DNA-binding Protein. Journal of Biological Chemistry, 288(24), 17569-17578. doi:10.1074/jbc.m113.478156 es_ES
dc.description.references Bell, J. C., Liu, B., & Kowalczykowski, S. C. (2015). Imaging and energetics of single SSB-ssDNA molecules reveal intramolecular condensation and insight into RecOR function. eLife, 4. doi:10.7554/elife.08646 es_ES
dc.description.references Suksombat, S., Khafizov, R., Kozlov, A. G., Lohman, T. M., & Chemla, Y. R. (2015). Structural dynamics of E. coli single-stranded DNA binding protein reveal DNA wrapping and unwrapping pathways. eLife, 4. doi:10.7554/elife.08193 es_ES
dc.description.references Zhou, R., Kozlov, A. G., Roy, R., Zhang, J., Korolev, S., Lohman, T. M., & Ha, T. (2011). SSB Functions as a Sliding Platform that Migrates on DNA via Reptation. Cell, 146(2), 222-232. doi:10.1016/j.cell.2011.06.036 es_ES
dc.description.references Pant, K., Karpel, R. L., Rouzina, I., & Williams, M. C. (2004). Mechanical Measurement of Single-molecule Binding Rates: Kinetics of DNA Helix-destabilization by T4 Gene 32 Protein. Journal of Molecular Biology, 336(4), 851-870. doi:10.1016/j.jmb.2003.12.025 es_ES
dc.description.references Pant, K., Karpel, R. L., Rouzina, I., & Williams, M. C. (2005). Salt Dependent Binding of T4 Gene 32 Protein to Single and Double-stranded DNA: Single Molecule Force Spectroscopy Measurements. Journal of Molecular Biology, 349(2), 317-330. doi:10.1016/j.jmb.2005.03.065 es_ES
dc.description.references Robberson, D. L., & Clayton, D. A. (1972). Replication of Mitochondrial DNA in Mouse L Cells and Their Thymidine Kinase- Derivatives: Displacement Replication on a Covalently-Closed Circular Template. Proceedings of the National Academy of Sciences, 69(12), 3810-3814. doi:10.1073/pnas.69.12.3810 es_ES
dc.description.references Ciesielski, G. L., Bermek, O., Rosado-Ruiz, F. A., Hovde, S. L., Neitzke, O. J., Griffith, J. D., & Kaguni, L. S. (2015). Mitochondrial Single-stranded DNA-binding Proteins Stimulate the Activity of DNA Polymerase γ by Organization of the Template DNA. Journal of Biological Chemistry, 290(48), 28697-28707. doi:10.1074/jbc.m115.673707 es_ES
dc.description.references Lázaro, J. M., Blanco, L., & Salas, M. (1995). [5] Purification of bacteriophage φ29 DNA polymerase. DNA Replication, 42-49. doi:10.1016/0076-6879(95)62007-9 es_ES
dc.description.references Ibarra, B., Chemla, Y. R., Plyasunov, S., Smith, S. B., Lázaro, J. M., Salas, M., & Bustamante, C. (2009). Proofreading dynamics of a processive DNA polymerase. The EMBO Journal, 28(18), 2794-2802. doi:10.1038/emboj.2009.219 es_ES
dc.description.references Morin, J. A., Cao, F. J., Lazaro, J. M., Arias-Gonzalez, J. R., Valpuesta, J. M., Carrascosa, J. L., … Ibarra, B. (2012). Active DNA unwinding dynamics during processive DNA replication. Proceedings of the National Academy of Sciences, 109(21), 8115-8120. doi:10.1073/pnas.1204759109 es_ES
dc.description.references Smith, S. B., Cui, Y., & Bustamante, C. (2003). [7] Optical-trap force transducer that operates by direct measurement of light momentum. Biophotonics, Part B, 134-162. doi:10.1016/s0076-6879(03)61009-8 es_ES
dc.description.references Bosco, A., Camunas-Soler, J., & Ritort, F. (2013). Elastic properties and secondary structure formation of single-stranded DNA at monovalent and divalent salt conditions. Nucleic Acids Research, 42(3), 2064-2074. doi:10.1093/nar/gkt1089 es_ES
dc.description.references Smith, S., Finzi, L., & Bustamante, C. (1992). Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science, 258(5085), 1122-1126. doi:10.1126/science.1439819 es_ES
dc.description.references Longley, M. J., Smith, L. A., & Copeland, W. C. (2009). Preparation of Human Mitochondrial Single-Stranded DNA-Binding Protein. Mitochondrial DNA, 73-85. doi:10.1007/978-1-59745-521-3_5 es_ES
dc.description.references Li, K., & Williams, R. S. (1997). Tetramerization and Single-stranded DNA Binding Properties of Native and Mutated Forms of Murine Mitochondrial Single-stranded DNA-binding Proteins. Journal of Biological Chemistry, 272(13), 8686-8694. doi:10.1074/jbc.272.13.8686 es_ES
dc.description.references Jarillo, J., Morín, J. A., Beltrán-Heredia, E., Villaluenga, J. P. G., Ibarra, B., & Cao, F. J. (2017). Mechanics, thermodynamics, and kinetics of ligand binding to biopolymers. PLOS ONE, 12(4), e0174830. doi:10.1371/journal.pone.0174830 es_ES
dc.description.references Bujalowski, W., & Lohman, T. M. (1986). Escherichia coli single-strand binding protein forms multiple, distinct complexes with single-stranded DNA. Biochemistry, 25(24), 7799-7802. doi:10.1021/bi00372a003 es_ES
dc.description.references Thömmes, P., Farr, C. L., Marton, R. F., Kaguni, L. S., & Cotterill, S. (1995). Mitochondrial Single-stranded DNA-binding Protein fromDrosophilaEmbryos. Journal of Biological Chemistry, 270(36), 21137-21143. doi:10.1074/jbc.270.36.21137 es_ES
dc.description.references Rodriguez, I., Lazaro, J. M., Blanco, L., Kamtekar, S., Berman, A. J., Wang, J., … de Vega, M. (2005). A specific subdomain in  29 DNA polymerase confers both processivity and strand-displacement capacity. Proceedings of the National Academy of Sciences, 102(18), 6407-6412. doi:10.1073/pnas.0500597102 es_ES
dc.description.references Kamtekar, S., Berman, A. J., Wang, J., Lázaro, J. M., de Vega, M., Blanco, L., … Steitz, T. A. (2004). Insights into Strand Displacement and Processivity from the Crystal Structure of the Protein-Primed DNA Polymerase of Bacteriophage φ29. Molecular Cell, 16(4), 609-618. doi:10.1016/j.molcel.2004.10.019 es_ES
dc.description.references Chrysogelos, S., & Griffith, J. (1982). Escherichia coli single-strand binding protein organizes single-stranded DNA in nucleosome-like units. Proceedings of the National Academy of Sciences, 79(19), 5803-5807. doi:10.1073/pnas.79.19.5803 es_ES
dc.description.references Hamon, L., Pastre, D., Dupaigne, P., Breton, C. L., Cam, E. L., & Pietrement, O. (2007). High-resolution AFM imaging of single-stranded DNA-binding (SSB) protein--DNA complexes. Nucleic Acids Research, 35(8), e58-e58. doi:10.1093/nar/gkm147 es_ES
dc.description.references Takamatsu, C., Umeda, S., Ohsato, T., Ohno, T., Abe, Y., Fukuoh, A., … Kang, D. (2002). Regulation of mitochondrial D‐loops by transcription factor A and single‐stranded DNA‐binding protein. EMBO reports, 3(5), 451-456. doi:10.1093/embo-reports/kvf099 es_ES
dc.description.references Wang, Y., & Bogenhagen, D. F. (2006). Human Mitochondrial DNA Nucleoids Are Linked to Protein Folding Machinery and Metabolic Enzymes at the Mitochondrial Inner Membrane. Journal of Biological Chemistry, 281(35), 25791-25802. doi:10.1074/jbc.m604501200 es_ES
dc.description.references Brown, T. A. (2005). Replication of mitochondrial DNA occurs by strand displacement with alternative light-strand origins, not via a strand-coupled mechanism. Genes & Development, 19(20), 2466-2476. doi:10.1101/gad.1352105 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem