Mostrar el registro sencillo del ítem
dc.contributor.author | Morin, J.A. | es_ES |
dc.contributor.author | Cerrón, F. | es_ES |
dc.contributor.author | Jarillo, J. | es_ES |
dc.contributor.author | Beltran-Heredia, E. | es_ES |
dc.contributor.author | Ciesielski, G.L. | es_ES |
dc.contributor.author | Arias-Gonzalez, J. R. | es_ES |
dc.contributor.author | Kaguni, L.S. | es_ES |
dc.contributor.author | Cao, F.J. | es_ES |
dc.contributor.author | Ibarra, B. | es_ES |
dc.date.accessioned | 2020-10-28T04:33:12Z | |
dc.date.available | 2020-10-28T04:33:12Z | |
dc.date.issued | 2017-07-07 | es_ES |
dc.identifier.issn | 0305-1048 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/153374 | |
dc.description.abstract | [EN] Single-stranded DNA-binding proteins (SSBs) play a key role in genome maintenance, binding and organizing single-stranded DNA (ssDNA) intermediates. Multimeric SSBs, such as the human mitochondrial SSB (HmtSSB), present multiple sites to interact with ssDNA, which has been shown in vitro to enable them to bind a variable number of single-stranded nucleotides depending on the salt and protein concentration. It has long been suggested that different binding modes might be used selectively for different functions. To study this possibility, we used optical tweezers to determine and compare the structure and energetics of long, individual HmtSSB¿DNA complexes assembled on preformed ssDNA and on ssDNA generated gradually during `in situ¿ DNA synthesis. We show that HmtSSB binds to preformed ss-DNA in two major modes, depending on salt and protein concentration. However, when protein binding was coupled to strand-displacement DNA synthesis, only one of the two binding modes was observed under all experimental conditions. Our results reveal a key role for the gradual generation of ssDNA in modulating the binding mode of a multimeric SSB protein and consequently, in generating the appropriate nucleoprotein structure for DNA synthetic reactions required for genome maintenance. | es_ES |
dc.description.sponsorship | We are grateful to Prof. M. Salas laboratory (CBMSO-CSIC) for generously providing the Phi29 DNA polymerase and to Juan P. García Villaluenga (UCM) for useful discussions. Spanish Ministry of Economy and Competitiveness [MAT2015-71806-R to J.R.A-G, FIS2010-17440, FIS2015-67765-R to F.J.C., BFU2012-31825, BFU2015-63714-R to B.I.]; Spanish Ministry of Education, Culture and Sport [FPU13/02934 to J.J., FPU13/02826 to E.B-H.]; National Institutes of Health [GM45925 to L.S.K.]; University of Tampere (to G.L.C.); Programa de Financiacion Universidad Complutense de Madrid-Santander Universidades [CT45/15-CT46/15 to F.C.]. Funding for open access charge: Spanish Ministry of Economy and Competitiveness [BFU2015-63714-R]. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Oxford University Press | es_ES |
dc.relation.ispartof | Nucleic Acids Research | es_ES |
dc.rights | Reconocimiento - No comercial (by-nc) | es_ES |
dc.subject | DNA | es_ES |
dc.subject | DNA polymerase | es_ES |
dc.subject | Replication | es_ES |
dc.subject | Single-molecule | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | DNA synthesis determines the binding mode of the human mitochondrial single-stranded DNA-binding protein | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1093/nar/gkx395 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//FIS2010-17440/ES/FISICA DE LOS PROCESOS FUERA DEL EQUILIBRIO: RETROALIMENTACION, ENTROPIA E INFORMACION/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NIH//GM45925/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BFU2012-31825/ES/DINAMICA DE LA REPLICACION DEL ADN MITOCONDRIAL A NIVEL DE MOLECULAS INDIVIDUALES./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2015-71806-R/ES/INFLUENCIA DEL CALOR EMITIDO POR NANOPARTICULAS MAGNETICAS SOBRE BIOMOLECULAS DETERMINADO MEDIANTE PINZAS OPTICAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//FIS2015-67765-R/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BFU2015-63714-R/ES/CARACTERIZACION A NIVEL DE MOLECULAS INDIVIDUALES DE LA DINAMICA DEL FUNCIONAMIENTO COORDINADO DE LAS PROTEINAS IMPLICADAS EN LAS REPLICACION DEL ADN MITOCONDRIAL HUMANO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU13%2F02934/ES/FPU13%2F02934/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU13%2F02826/ES/FPU13%2F02826/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UCM//CT45%2F15-CT46%2F15/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Morin, J.; Cerrón, F.; Jarillo, J.; Beltran-Heredia, E.; Ciesielski, G.; Arias-Gonzalez, JR.; Kaguni, L.... (2017). DNA synthesis determines the binding mode of the human mitochondrial single-stranded DNA-binding protein. Nucleic Acids Research. 45(12):7237-7248. https://doi.org/10.1093/nar/gkx395 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1093/nar/gkx395 | es_ES |
dc.description.upvformatpinicio | 7237 | es_ES |
dc.description.upvformatpfin | 7248 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 45 | es_ES |
dc.description.issue | 12 | es_ES |
dc.identifier.pmid | 28486639 | es_ES |
dc.identifier.pmcid | PMC5499585 | es_ES |
dc.relation.pasarela | S\407987 | es_ES |
dc.contributor.funder | University of Tampere | es_ES |
dc.contributor.funder | Santander Universidades | es_ES |
dc.contributor.funder | Universidad Complutense de Madrid | es_ES |
dc.contributor.funder | National Institutes of Health, EEUU | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Shereda, R. D., Kozlov, A. G., Lohman, T. M., Cox, M. M., & Keck, J. L. (2008). SSB as an Organizer/Mobilizer of Genome Maintenance Complexes. Critical Reviews in Biochemistry and Molecular Biology, 43(5), 289-318. doi:10.1080/10409230802341296 | es_ES |
dc.description.references | Flynn, R. L., & Zou, L. (2010). Oligonucleotide/oligosaccharide-binding fold proteins: a growing family of genome guardians. Critical Reviews in Biochemistry and Molecular Biology, 45(4), 266-275. doi:10.3109/10409238.2010.488216 | es_ES |
dc.description.references | Murzin, A. G. (1993). OB(oligonucleotide/oligosaccharide binding)-fold: common structural and functional solution for non-homologous sequences. The EMBO Journal, 12(3), 861-867. doi:10.1002/j.1460-2075.1993.tb05726.x | es_ES |
dc.description.references | Kozlov, A. G., Weiland, E., Mittal, A., Waldman, V., Antony, E., Fazio, N., … Lohman, T. M. (2015). Intrinsically Disordered C-Terminal Tails of E. coli Single-Stranded DNA Binding Protein Regulate Cooperative Binding to Single-Stranded DNA. Journal of Molecular Biology, 427(4), 763-774. doi:10.1016/j.jmb.2014.12.020 | es_ES |
dc.description.references | Kuznetsov, S. V., Kozlov, A. G., Lohman, T. M., & Ansari, A. (2006). Microsecond Dynamics of Protein–DNA Interactions: Direct Observation of the Wrapping/Unwrapping Kinetics of Single-stranded DNA around the E.coli SSB Tetramer. Journal of Molecular Biology, 359(1), 55-65. doi:10.1016/j.jmb.2006.02.070 | es_ES |
dc.description.references | Lohman, T. M., & Ferrari, M. E. (1994). Escherichia Coli Single-Stranded DNA-Binding Protein: Multiple DNA-Binding Modes and Cooperativities. Annual Review of Biochemistry, 63(1), 527-570. doi:10.1146/annurev.bi.63.070194.002523 | es_ES |
dc.description.references | Maier, D., Farr, C. L., Poeck, B., Alahari, A., Vogel, M., Fischer, S., … Schneuwly, S. (2001). Mitochondrial Single-stranded DNA-binding Protein Is Required for Mitochondrial DNA Replication and Development in Drosophila melanogaster. Molecular Biology of the Cell, 12(4), 821-830. doi:10.1091/mbc.12.4.821 | es_ES |
dc.description.references | Ruhanen, H., Borrie, S., Szabadkai, G., Tyynismaa, H., Jones, A. W. E., Kang, D., … Yasukawa, T. (2010). Mitochondrial single-stranded DNA binding protein is required for maintenance of mitochondrial DNA and 7S DNA but is not required for mitochondrial nucleoid organisation. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1803(8), 931-939. doi:10.1016/j.bbamcr.2010.04.008 | es_ES |
dc.description.references | Farr, C. L., Matsushima, Y., Lagina, A. T., Luo, N., & Kaguni, L. S. (2004). Physiological and Biochemical Defects in Functional Interactions of Mitochondrial DNA Polymerase and DNA-binding Mutants of Single-stranded DNA-binding Protein. Journal of Biological Chemistry, 279(17), 17047-17053. doi:10.1074/jbc.m400283200 | es_ES |
dc.description.references | Van Tuyle, G. C., & Pavco, P. A. (1985). The rat liver mitochondrial DNA-protein complex: displaced single strands of replicative intermediates are protein coated. The Journal of Cell Biology, 100(1), 251-257. doi:10.1083/jcb.100.1.251 | es_ES |
dc.description.references | Clayton, D. A. (1982). Replication of animal mitochondrial DNA. Cell, 28(4), 693-705. doi:10.1016/0092-8674(82)90049-6 | es_ES |
dc.description.references | Farr, C. L., Wang, Y., & Kaguni, L. S. (1999). Functional Interactions of Mitochondrial DNA Polymerase and Single-stranded DNA-binding Protein. Journal of Biological Chemistry, 274(21), 14779-14785. doi:10.1074/jbc.274.21.14779 | es_ES |
dc.description.references | Korhonen, J. A., Gaspari, M., & Falkenberg, M. (2003). TWINKLE Has 5′ → 3′ DNA Helicase Activity and Is Specifically Stimulated by Mitochondrial Single-stranded DNA-binding Protein. Journal of Biological Chemistry, 278(49), 48627-48632. doi:10.1074/jbc.m306981200 | es_ES |
dc.description.references | Miralles Fusté, J., Shi, Y., Wanrooij, S., Zhu, X., Jemt, E., Persson, Ö., … Falkenberg, M. (2014). In Vivo Occupancy of Mitochondrial Single-Stranded DNA Binding Protein Supports the Strand Displacement Mode of DNA Replication. PLoS Genetics, 10(12), e1004832. doi:10.1371/journal.pgen.1004832 | es_ES |
dc.description.references | Oliveira, M. T., & Kaguni, L. S. (2011). Reduced Stimulation of Recombinant DNA Polymerase γ and Mitochondrial DNA (mtDNA) Helicase by Variants of Mitochondrial Single-stranded DNA-binding Protein (mtSSB) Correlates with Defects in mtDNA Replication in Animal Cells. Journal of Biological Chemistry, 286(47), 40649-40658. doi:10.1074/jbc.m111.289983 | es_ES |
dc.description.references | Williams, A. J., & Kaguni, L. S. (1995). Stimulation ofDrosophilaMitochondrial DNA Polymerase by Single-stranded DNA-binding Protein. Journal of Biological Chemistry, 270(2), 860-865. doi:10.1074/jbc.270.2.860 | es_ES |
dc.description.references | Bogenhagen, D. F., Wang, Y., Shen, E. L., & Kobayashi, R. (2003). Protein Components of Mitochondrial DNA Nucleoids in Higher Eukaryotes. Molecular & Cellular Proteomics, 2(11), 1205-1216. doi:10.1074/mcp.m300035-mcp200 | es_ES |
dc.description.references | BARAT-GUERIDE, M., DUFRESNE, C., & RICKWOOD, D. (1989). Effect of DNA conformation on the transcription of mitochondrial DNA. European Journal of Biochemistry, 183(2), 297-302. doi:10.1111/j.1432-1033.1989.tb14928.x | es_ES |
dc.description.references | Yang, C., Curth, U., Urbanke, C., & Kang, C. (1997). Crystal structure of human mitochondrial single-stranded DNA binding protein at 2.4 Å resolution. Nature Structural Biology, 4(2), 153-157. doi:10.1038/nsb0297-153 | es_ES |
dc.description.references | Raghunathan, S., Ricard, C. S., Lohman, T. M., & Waksman, G. (1997). Crystal structure of the homo-tetrameric DNA binding domain of Escherichia coli single-stranded DNA-binding protein determined by multiwavelength x-ray diffraction on the selenomethionyl protein at 2.9-A resolution. Proceedings of the National Academy of Sciences, 94(13), 6652-6657. doi:10.1073/pnas.94.13.6652 | es_ES |
dc.description.references | CURTH, U., URBANKE, C., GREIPEL, J., GERBERDING, H., TIRANTI, V., & ZEVIANI, M. (1994). Single-stranded-DNA-binding proteins from human mitochondria and Escherichia coli have analogous physicochemical properties. European Journal of Biochemistry, 221(1), 435-443. doi:10.1111/j.1432-1033.1994.tb18756.x | es_ES |
dc.description.references | Overman, L. B., & Lohman, T. M. (1994). Linkage of pH, Anion and Cation Effects in Protein-Nucleic Acid Equilibria. Journal of Molecular Biology, 236(1), 165-178. doi:10.1006/jmbi.1994.1126 | es_ES |
dc.description.references | Bhattacharyya, B., George, N. P., Thurmes, T. M., Zhou, R., Jani, N., Wessel, S. R., … Keck, J. L. (2013). Structural mechanisms of PriA-mediated DNA replication restart. Proceedings of the National Academy of Sciences, 111(4), 1373-1378. doi:10.1073/pnas.1318001111 | es_ES |
dc.description.references | Carlini, L. E., Porter, R. D., Curth, U., & Urbanke, C. (1993). Viability and preliminary in vivo characterization of site directed mutants of Escherichia coli single-stranded DNA-binding protein. Molecular Microbiology, 10(5), 1067-1075. doi:10.1111/j.1365-2958.1993.tb00977.x | es_ES |
dc.description.references | Griffith, J. D., Harris, L. D., & Register, J. (1984). Visualization of SSB-ssDNA Complexes Active in the Assembly of Stable RecA-DNA Filaments. Cold Spring Harbor Symposia on Quantitative Biology, 49(0), 553-559. doi:10.1101/sqb.1984.049.01.062 | es_ES |
dc.description.references | Morrical, S. W., & Cox, M. M. (1990). Stabilization of recA protein-ssDNA complexes by the single-stranded DNA binding protein of Escherichia coli. Biochemistry, 29(3), 837-843. doi:10.1021/bi00455a034 | es_ES |
dc.description.references | Muniyappa, K., Williams, K., Chase, J. W., & Radding, C. M. (1990). Active nucleoprotein filaments of single-stranded binding protein and recA protein on single-stranded DNA have a regular repeating structure. Nucleic Acids Research, 18(13), 3967-3973. doi:10.1093/nar/18.13.3967 | es_ES |
dc.description.references | Wessel, S. R., Marceau, A. H., Massoni, S. C., Zhou, R., Ha, T., Sandler, S. J., & Keck, J. L. (2013). PriC-mediated DNA Replication Restart Requires PriC Complex Formation with the Single-stranded DNA-binding Protein. Journal of Biological Chemistry, 288(24), 17569-17578. doi:10.1074/jbc.m113.478156 | es_ES |
dc.description.references | Bell, J. C., Liu, B., & Kowalczykowski, S. C. (2015). Imaging and energetics of single SSB-ssDNA molecules reveal intramolecular condensation and insight into RecOR function. eLife, 4. doi:10.7554/elife.08646 | es_ES |
dc.description.references | Suksombat, S., Khafizov, R., Kozlov, A. G., Lohman, T. M., & Chemla, Y. R. (2015). Structural dynamics of E. coli single-stranded DNA binding protein reveal DNA wrapping and unwrapping pathways. eLife, 4. doi:10.7554/elife.08193 | es_ES |
dc.description.references | Zhou, R., Kozlov, A. G., Roy, R., Zhang, J., Korolev, S., Lohman, T. M., & Ha, T. (2011). SSB Functions as a Sliding Platform that Migrates on DNA via Reptation. Cell, 146(2), 222-232. doi:10.1016/j.cell.2011.06.036 | es_ES |
dc.description.references | Pant, K., Karpel, R. L., Rouzina, I., & Williams, M. C. (2004). Mechanical Measurement of Single-molecule Binding Rates: Kinetics of DNA Helix-destabilization by T4 Gene 32 Protein. Journal of Molecular Biology, 336(4), 851-870. doi:10.1016/j.jmb.2003.12.025 | es_ES |
dc.description.references | Pant, K., Karpel, R. L., Rouzina, I., & Williams, M. C. (2005). Salt Dependent Binding of T4 Gene 32 Protein to Single and Double-stranded DNA: Single Molecule Force Spectroscopy Measurements. Journal of Molecular Biology, 349(2), 317-330. doi:10.1016/j.jmb.2005.03.065 | es_ES |
dc.description.references | Robberson, D. L., & Clayton, D. A. (1972). Replication of Mitochondrial DNA in Mouse L Cells and Their Thymidine Kinase- Derivatives: Displacement Replication on a Covalently-Closed Circular Template. Proceedings of the National Academy of Sciences, 69(12), 3810-3814. doi:10.1073/pnas.69.12.3810 | es_ES |
dc.description.references | Ciesielski, G. L., Bermek, O., Rosado-Ruiz, F. A., Hovde, S. L., Neitzke, O. J., Griffith, J. D., & Kaguni, L. S. (2015). Mitochondrial Single-stranded DNA-binding Proteins Stimulate the Activity of DNA Polymerase γ by Organization of the Template DNA. Journal of Biological Chemistry, 290(48), 28697-28707. doi:10.1074/jbc.m115.673707 | es_ES |
dc.description.references | Lázaro, J. M., Blanco, L., & Salas, M. (1995). [5] Purification of bacteriophage φ29 DNA polymerase. DNA Replication, 42-49. doi:10.1016/0076-6879(95)62007-9 | es_ES |
dc.description.references | Ibarra, B., Chemla, Y. R., Plyasunov, S., Smith, S. B., Lázaro, J. M., Salas, M., & Bustamante, C. (2009). Proofreading dynamics of a processive DNA polymerase. The EMBO Journal, 28(18), 2794-2802. doi:10.1038/emboj.2009.219 | es_ES |
dc.description.references | Morin, J. A., Cao, F. J., Lazaro, J. M., Arias-Gonzalez, J. R., Valpuesta, J. M., Carrascosa, J. L., … Ibarra, B. (2012). Active DNA unwinding dynamics during processive DNA replication. Proceedings of the National Academy of Sciences, 109(21), 8115-8120. doi:10.1073/pnas.1204759109 | es_ES |
dc.description.references | Smith, S. B., Cui, Y., & Bustamante, C. (2003). [7] Optical-trap force transducer that operates by direct measurement of light momentum. Biophotonics, Part B, 134-162. doi:10.1016/s0076-6879(03)61009-8 | es_ES |
dc.description.references | Bosco, A., Camunas-Soler, J., & Ritort, F. (2013). Elastic properties and secondary structure formation of single-stranded DNA at monovalent and divalent salt conditions. Nucleic Acids Research, 42(3), 2064-2074. doi:10.1093/nar/gkt1089 | es_ES |
dc.description.references | Smith, S., Finzi, L., & Bustamante, C. (1992). Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science, 258(5085), 1122-1126. doi:10.1126/science.1439819 | es_ES |
dc.description.references | Longley, M. J., Smith, L. A., & Copeland, W. C. (2009). Preparation of Human Mitochondrial Single-Stranded DNA-Binding Protein. Mitochondrial DNA, 73-85. doi:10.1007/978-1-59745-521-3_5 | es_ES |
dc.description.references | Li, K., & Williams, R. S. (1997). Tetramerization and Single-stranded DNA Binding Properties of Native and Mutated Forms of Murine Mitochondrial Single-stranded DNA-binding Proteins. Journal of Biological Chemistry, 272(13), 8686-8694. doi:10.1074/jbc.272.13.8686 | es_ES |
dc.description.references | Jarillo, J., Morín, J. A., Beltrán-Heredia, E., Villaluenga, J. P. G., Ibarra, B., & Cao, F. J. (2017). Mechanics, thermodynamics, and kinetics of ligand binding to biopolymers. PLOS ONE, 12(4), e0174830. doi:10.1371/journal.pone.0174830 | es_ES |
dc.description.references | Bujalowski, W., & Lohman, T. M. (1986). Escherichia coli single-strand binding protein forms multiple, distinct complexes with single-stranded DNA. Biochemistry, 25(24), 7799-7802. doi:10.1021/bi00372a003 | es_ES |
dc.description.references | Thömmes, P., Farr, C. L., Marton, R. F., Kaguni, L. S., & Cotterill, S. (1995). Mitochondrial Single-stranded DNA-binding Protein fromDrosophilaEmbryos. Journal of Biological Chemistry, 270(36), 21137-21143. doi:10.1074/jbc.270.36.21137 | es_ES |
dc.description.references | Rodriguez, I., Lazaro, J. M., Blanco, L., Kamtekar, S., Berman, A. J., Wang, J., … de Vega, M. (2005). A specific subdomain in 29 DNA polymerase confers both processivity and strand-displacement capacity. Proceedings of the National Academy of Sciences, 102(18), 6407-6412. doi:10.1073/pnas.0500597102 | es_ES |
dc.description.references | Kamtekar, S., Berman, A. J., Wang, J., Lázaro, J. M., de Vega, M., Blanco, L., … Steitz, T. A. (2004). Insights into Strand Displacement and Processivity from the Crystal Structure of the Protein-Primed DNA Polymerase of Bacteriophage φ29. Molecular Cell, 16(4), 609-618. doi:10.1016/j.molcel.2004.10.019 | es_ES |
dc.description.references | Chrysogelos, S., & Griffith, J. (1982). Escherichia coli single-strand binding protein organizes single-stranded DNA in nucleosome-like units. Proceedings of the National Academy of Sciences, 79(19), 5803-5807. doi:10.1073/pnas.79.19.5803 | es_ES |
dc.description.references | Hamon, L., Pastre, D., Dupaigne, P., Breton, C. L., Cam, E. L., & Pietrement, O. (2007). High-resolution AFM imaging of single-stranded DNA-binding (SSB) protein--DNA complexes. Nucleic Acids Research, 35(8), e58-e58. doi:10.1093/nar/gkm147 | es_ES |
dc.description.references | Takamatsu, C., Umeda, S., Ohsato, T., Ohno, T., Abe, Y., Fukuoh, A., … Kang, D. (2002). Regulation of mitochondrial D‐loops by transcription factor A and single‐stranded DNA‐binding protein. EMBO reports, 3(5), 451-456. doi:10.1093/embo-reports/kvf099 | es_ES |
dc.description.references | Wang, Y., & Bogenhagen, D. F. (2006). Human Mitochondrial DNA Nucleoids Are Linked to Protein Folding Machinery and Metabolic Enzymes at the Mitochondrial Inner Membrane. Journal of Biological Chemistry, 281(35), 25791-25802. doi:10.1074/jbc.m604501200 | es_ES |
dc.description.references | Brown, T. A. (2005). Replication of mitochondrial DNA occurs by strand displacement with alternative light-strand origins, not via a strand-coupled mechanism. Genes & Development, 19(20), 2466-2476. doi:10.1101/gad.1352105 | es_ES |