Adams, J. M., & Cory, S. (1975). Modified nucleosides and bizarre 5′-termini in mouse myeloma mRNA. Nature, 255(5503), 28-33. doi:10.1038/255028a0
Kleemann, A., Engel, J., Kutscher, B., & Reichert, D. (Eds.). (2009). Pharmaceutical Substances. doi:10.1055/b-003-108611
Dominissini, D., Moshitch-Moshkovitz, S., Schwartz, S., Salmon-Divon, M., Ungar, L., Osenberg, S., … Rechavi, G. (2012). Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature, 485(7397), 201-206. doi:10.1038/nature11112
[+]
Adams, J. M., & Cory, S. (1975). Modified nucleosides and bizarre 5′-termini in mouse myeloma mRNA. Nature, 255(5503), 28-33. doi:10.1038/255028a0
Kleemann, A., Engel, J., Kutscher, B., & Reichert, D. (Eds.). (2009). Pharmaceutical Substances. doi:10.1055/b-003-108611
Dominissini, D., Moshitch-Moshkovitz, S., Schwartz, S., Salmon-Divon, M., Ungar, L., Osenberg, S., … Rechavi, G. (2012). Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature, 485(7397), 201-206. doi:10.1038/nature11112
Chatterjee, J., Rechenmacher, F., & Kessler, H. (2012). N-Methylation of Peptides and Proteins: An Important Element for Modulating Biological Functions. Angewandte Chemie International Edition, 52(1), 254-269. doi:10.1002/anie.201205674
Chatterjee, J., Rechenmacher, F., & Kessler, H. (2012). N-Methylierung von Peptiden und Proteinen: ein wichtiges Element für die Regulation biologischer Funktionen. Angewandte Chemie, 125(1), 268-283. doi:10.1002/ange.201205674
Froidevaux, V., Negrell, C., Caillol, S., Pascault, J.-P., & Boutevin, B. (2016). Biobased Amines: From Synthesis to Polymers; Present and Future. Chemical Reviews, 116(22), 14181-14224. doi:10.1021/acs.chemrev.6b00486
Salvatore, R. N., Yoon, C. H., & Jung, K. W. (2001). Synthesis of secondary amines. Tetrahedron, 57(37), 7785-7811. doi:10.1016/s0040-4020(01)00722-0
Lamoureux, G., & Agüero, C. (2009). A comparison of several modern alkylating agents. Arkivoc, 2009(1), 251-264. doi:10.3998/ark.5550190.0010.108
Luo, H., Wu, G., Zhang, Y., & Wang, J. (2015). Silver(I)-CatalyzedN-Trifluoroethylation of Anilines andO-Trifluoroethylation of Amides with 2,2,2-Trifluorodiazoethane. Angewandte Chemie International Edition, 54(48), 14503-14507. doi:10.1002/anie.201507219
Luo, H., Wu, G., Zhang, Y., & Wang, J. (2015). Silver(I)-CatalyzedN-Trifluoroethylation of Anilines andO-Trifluoroethylation of Amides with 2,2,2-Trifluorodiazoethane. Angewandte Chemie, 127(48), 14711-14715. doi:10.1002/ange.201507219
Selva, M., Trotta, F., & Tundo, P. (1992). Esters and orthoesters as alkylating agents at high temperature. Applications to continuous-flow processes. Journal of the Chemical Society, Perkin Transactions 2, (4), 519. doi:10.1039/p29920000519
Padmanabhan, S., Reddy, N. L., & Durant, G. J. (1997). A Convenient One Pot Procedure for N-Methylation of Aromatic Amines Using Trimethyl Orthoformate. Synthetic Communications, 27(4), 691-699. doi:10.1080/00397919708003343
Rivetti, F., Romano, U., & Delledonne, D. (1996). Dimethylcarbonate and Its Production Technology. Green Chemistry, 70-80. doi:10.1021/bk-1996-0626.ch006
Ono, Y. (1997). Catalysis in the production and reactions of dimethyl carbonate, an environmentally benign building block. Applied Catalysis A: General, 155(2), 133-166. doi:10.1016/s0926-860x(96)00402-4
Pacheco, M. A., & Marshall, C. L. (1997). Review of Dimethyl Carbonate (DMC) Manufacture and Its Characteristics as a Fuel Additive. Energy & Fuels, 11(1), 2-29. doi:10.1021/ef9600974
Delledonne, D., Rivetti, F., & Romano, U. (2001). Developments in the production and application of dimethylcarbonate. Applied Catalysis A: General, 221(1-2), 241-251. doi:10.1016/s0926-860x(01)00796-7
Tundo, P., & Selva, M. (2002). The Chemistry of Dimethyl Carbonate. Accounts of Chemical Research, 35(9), 706-716. doi:10.1021/ar010076f
Selva, M., Tundo, P., & Perosa, A. (2003). Reaction of Functionalized Anilines with Dimethyl Carbonate over NaY Faujasite. 3. Chemoselectivity toward Mono-N-methylation. The Journal of Organic Chemistry, 68(19), 7374-7378. doi:10.1021/jo034548a
Tundo, P., Rossi, L., & Loris, A. (2005). Dimethyl Carbonate as an Ambident Electrophile. The Journal of Organic Chemistry, 70(6), 2219-2224. doi:10.1021/jo048532b
Selva, M., Perosa, A., Tundo, P., & Brunelli, D. (2006). SelectiveN,N-Dimethylation of Primary Aromatic Amines with Methyl Alkyl Carbonates in the Presence of Phosphonium Salts. The Journal of Organic Chemistry, 71(15), 5770-5773. doi:10.1021/jo060674d
Selva, M. (2007). Green approaches to highly selective processes: Reactions of dimethyl carbonate over both zeolites and base catalysts. Pure and Applied Chemistry, 79(11), 1855-1867. doi:10.1351/pac200779111855
Selva, M., & Perosa, A. (2008). Green chemistry metrics: a comparative evaluation of dimethyl carbonate, methyl iodide, dimethyl sulfate and methanol as methylating agents. Green Chemistry, 10(4), 457. doi:10.1039/b713985c
Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Metal organic frameworks as heterogeneous catalysts for the selective N-methylation of aromatic primary amines with dimethyl carbonate. Applied Catalysis A: General, 378(1), 19-25. doi:10.1016/j.apcata.2010.01.042
Kawai, K., Li, Y.-S., Song, M.-F., & Kasai, H. (2010). DNA methylation by dimethyl sulfoxide and methionine sulfoxide triggered by hydroxyl radical and implications for epigenetic modifications. Bioorganic & Medicinal Chemistry Letters, 20(1), 260-265. doi:10.1016/j.bmcl.2009.10.124
Jiang, X., Wang, C., Wei, Y., Xue, D., Liu, Z., & Xiao, J. (2013). A General Method for N-Methylation of Amines and Nitro Compounds with Dimethylsulfoxide. Chemistry - A European Journal, 20(1), 58-63. doi:10.1002/chem.201303802
Atkinson, B. N., & Williams, J. M. J. (2014). Dimethylsulfoxide as an N-Methylation Reagent for Amines and Aromatic Nitro Compounds. ChemCatChem, 6(7), 1860-1862. doi:10.1002/cctc.201400015
Eschweiler, W. (1905). Ersatz von an Stickstoff gebundenen Wasserstoffatomen durch die Methylgruppe mit Hülfe von Formaldehyd. Berichte der deutschen chemischen Gesellschaft, 38(1), 880-882. doi:10.1002/cber.190503801154
Clarke, H. T., Gillespie, H. B., & Weisshaus, S. Z. (1933). The Action of Formaldehyde on Amines and Amino Acids1. Journal of the American Chemical Society, 55(11), 4571-4587. doi:10.1021/ja01338a041
Kim, S., Oh, C. H., Ko, J. S., Ahn, K. H., & Kim, Y. J. (1985). Zinc-modified cyanoborohydride as a selective reducing agent. The Journal of Organic Chemistry, 50(11), 1927-1932. doi:10.1021/jo00211a028
Fache, F., Jacquot, L., & Lemaire, M. (1994). Extension of the eschweiler-clarke procedure to the N-alkylation of amides. Tetrahedron Letters, 35(20), 3313-3314. doi:10.1016/s0040-4039(00)76894-8
Gomez, S., Peters, J. A., & Maschmeyer, T. (2002). The Reductive Amination of Aldehydes and Ketones and the Hydrogenation of Nitriles: Mechanistic Aspects and Selectivity Control. Advanced Synthesis & Catalysis, 344(10), 1037-1057. doi:10.1002/1615-4169(200212)344:10<1037::aid-adsc1037>3.0.co;2-3
Steinhuebel, D., Sun, Y., Matsumura, K., Sayo, N., & Saito, T. (2009). Direct Asymmetric Reductive Amination. Journal of the American Chemical Society, 131(32), 11316-11317. doi:10.1021/ja905143m
Wakchaure, V. N., Zhou, J., Hoffmann, S., & List, B. (2010). Catalytic Asymmetric Reductive Amination of α-Branched Ketones. Angewandte Chemie International Edition, 49(27), 4612-4614. doi:10.1002/anie.201001715
Wakchaure, V. N., Zhou, J., Hoffmann, S., & List, B. (2010). Catalytic Asymmetric Reductive Amination of α-Branched Ketones. Angewandte Chemie, 122(27), 4716-4718. doi:10.1002/ange.201001715
Chusov, D., & List, B. (2014). Reductive Amination without an External Hydrogen Source. Angewandte Chemie International Edition, n/a-n/a. doi:10.1002/anie.201400059
Chusov, D., & List, B. (2014). Reduktive Aminierung ohne externe Wasserstoffquelle. Angewandte Chemie, 126(20), 5299-5302. doi:10.1002/ange.201400059
Raoufmoghaddam, S. (2014). Recent advances in catalytic C–N bond formation: a comparison of cascade hydroaminomethylation and reductive amination reactions with the corresponding hydroamidomethylation and reductive amidation reactions. Organic & Biomolecular Chemistry, 12(37), 7179. doi:10.1039/c4ob00620h
Jagadeesh, R. V., Murugesan, K., Alshammari, A. S., Neumann, H., Pohl, M.-M., Radnik, J., & Beller, M. (2017). MOF-derived cobalt nanoparticles catalyze a general synthesis of amines. Science, 358(6361), 326-332. doi:10.1126/science.aan6245
Hamada, H., Yamamoto, M., Kuwahara, Y., Matsuzaki, T., & Wakabayashi, K. (1985). The Co-amination of Phenol and Cyclohexanol with Palladium-on-carbon Catalyst in the Liquid Phase. An Application of a Hydrogen-transfer Reaction. Bulletin of the Chemical Society of Japan, 58(5), 1551-1555. doi:10.1246/bcsj.58.1551
Chen, Z., Zeng, H., Gong, H., Wang, H., & Li, C.-J. (2015). Palladium-catalyzed reductive coupling of phenols with anilines and amines: efficient conversion of phenolic lignin model monomers and analogues to cyclohexylamines. Chemical Science, 6(7), 4174-4178. doi:10.1039/c5sc00941c
Cui, X., Junge, K., & Beller, M. (2016). Palladium-Catalyzed Synthesis of Alkylated Amines from Aryl Ethers or Phenols. ACS Catalysis, 6(11), 7834-7838. doi:10.1021/acscatal.6b01687
Yan, L., Liu, X.-X., & Fu, Y. (2016). N-Alkylation of amines with phenols over highly active heterogeneous palladium hydride catalysts. RSC Advances, 6(111), 109702-109705. doi:10.1039/c6ra22383d
Zimmermann, B., Herwig, J., & Beller, M. (1999). The First Efficient Hydroaminomethylation with Ammonia: With Dual Metal Catalysts and Two-Phase Catalysis to Primary Amines. Angewandte Chemie International Edition, 38(16), 2372-2375. doi:10.1002/(sici)1521-3773(19990816)38:16<2372::aid-anie2372>3.0.co;2-h
Zimmermann, B., Herwig, J., & Beller, M. (1999). Erste effiziente Hydroaminomethylierung mit Ammoniak: mit dualen Metallkatalysatoren und Zweiphasenkatalyse zu primären Aminen. Angewandte Chemie, 111(16), 2515-2518. doi:10.1002/(sici)1521-3757(19990816)111:16<2515::aid-ange2515>3.0.co;2-a
Hartwig, J. F. (2002). CHEMICAL SYNTHESIS: Raising the Bar for the. Science, 297(5587), 1653-1654. doi:10.1126/science.1076371
Ahmed, M., Seayad, A. M., Jackstell, R., & Beller, M. (2003). Amines Made Easily: A Highly Selective Hydroaminomethylation of Olefins. Journal of the American Chemical Society, 125(34), 10311-10318. doi:10.1021/ja030143w
Ahmed, M., Buch, C., Routaboul, L., Jackstell, R., Klein, H., Spannenberg, A., & Beller, M. (2007). Hydroaminomethylation with Novel Rhodium–Carbene complexes: An Efficient Catalytic Approach to Pharmaceuticals. Chemistry - A European Journal, 13(5), 1594-1601. doi:10.1002/chem.200601155
Crozet, D., Urrutigoïty, M., & Kalck, P. (2011). Recent Advances in Amine Synthesis by Catalytic Hydroaminomethylation of Alkenes. ChemCatChem, 3(7), 1102-1118. doi:10.1002/cctc.201000411
Gülak, S., Wu, L., Liu, Q., Franke, R., Jackstell, R., & Beller, M. (2014). Phosphine‐ and Hydrogen‐Free: Highly Regioselective Ruthenium‐Catalyzed Hydroaminomethylation of Olefins. Angewandte Chemie International Edition, 53(28), 7320-7323. doi:10.1002/anie.201402368
Gülak, S., Wu, L., Liu, Q., Franke, R., Jackstell, R., & Beller, M. (2014). Phosphine‐ and Hydrogen‐Free: Highly Regioselective Ruthenium‐Catalyzed Hydroaminomethylation of Olefins. Angewandte Chemie, 126(28), 7448-7451. doi:10.1002/ange.201402368
Chen, C., Dong, X.-Q., & Zhang, X. (2016). Recent progress in rhodium-catalyzed hydroaminomethylation. Organic Chemistry Frontiers, 3(10), 1359-1370. doi:10.1039/c6qo00233a
Fleischer, I., Gehrtz, P., Hirschbeck, V., & Ciszek, B. (2016). Carbonylations of Alkenes in the Total Synthesis of Natural Compounds. Synthesis, 48(11), 1573-1596. doi:10.1055/s-0035-1560431
Kobayashi, S., & Ishitani, H. (1999). Catalytic Enantioselective Addition to Imines. Chemical Reviews, 99(5), 1069-1094. doi:10.1021/cr980414z
Lipshutz, B. H., & Shimizu, H. (2004). Copper(I)-Catalyzed Asymmetric Hydrosilylations of Imines at Ambient Temperatures. Angewandte Chemie International Edition, 43(17), 2228-2230. doi:10.1002/anie.200353294
Lipshutz, B. H., & Shimizu, H. (2004). Copper(I)-Catalyzed Asymmetric Hydrosilylations of Imines at Ambient Temperatures. Angewandte Chemie, 116(17), 2278-2280. doi:10.1002/ange.200353294
Nolin, K. A., Ahn, R. W., & Toste, F. D. (2005). Enantioselective Reduction of Imines Catalyzed by a Rhenium(V)−Oxo Complex. Journal of the American Chemical Society, 127(36), 12462-12463. doi:10.1021/ja050831a
Mršić, N., Minnaard, A. J., Feringa, B. L., & Vries, J. G. de. (2009). Iridium/Monodentate Phosphoramidite Catalyzed Asymmetric Hydrogenation ofN-Aryl Imines. Journal of the American Chemical Society, 131(24), 8358-8359. doi:10.1021/ja901961y
Nugent, T. C., & El-Shazly, M. (2010). Chiral Amine Synthesis - Recent Developments and Trends for Enamide Reduction, Reductive Amination, and Imine Reduction. Advanced Synthesis & Catalysis, 352(5), 753-819. doi:10.1002/adsc.200900719
Xie, J.-H., Zhu, S.-F., & Zhou, Q.-L. (2011). Transition Metal-Catalyzed Enantioselective Hydrogenation of Enamines and Imines. Chemical Reviews, 111(3), 1713-1760. doi:10.1021/cr100218m
Zhou, S., Fleischer, S., Junge, K., & Beller, M. (2011). Cooperative Transition-Metal and Chiral Brønsted Acid Catalysis: Enantioselective Hydrogenation of Imines To Form Amines. Angewandte Chemie International Edition, 50(22), 5120-5124. doi:10.1002/anie.201100878
Zhou, S., Fleischer, S., Junge, K., & Beller, M. (2011). Cooperative Transition-Metal and Chiral Brønsted Acid Catalysis: Enantioselective Hydrogenation of Imines To Form Amines. Angewandte Chemie, 123(22), 5226-5230. doi:10.1002/ange.201100878
Bartoszewicz, A., Ahlsten, N., & Martín-Matute, B. (2013). Enantioselective Synthesis of Alcohols and Amines by Iridium-Catalyzed Hydrogenation, Transfer Hydrogenation, and Related Processes. Chemistry - A European Journal, 19(23), 7274-7302. doi:10.1002/chem.201202836
Etayo, P., & Vidal-Ferran, A. (2013). Rhodium-catalysed asymmetric hydrogenation as a valuable synthetic tool for the preparation of chiral drugs. Chem. Soc. Rev., 42(2), 728-754. doi:10.1039/c2cs35410a
Lagaditis, P. O., Sues, P. E., Sonnenberg, J. F., Wan, K. Y., Lough, A. J., & Morris, R. H. (2014). Iron(II) Complexes Containing Unsymmetrical P–N–P′ Pincer Ligands for the Catalytic Asymmetric Hydrogenation of Ketones and Imines. Journal of the American Chemical Society, 136(4), 1367-1380. doi:10.1021/ja4082233
Rossi, S., Benaglia, M., Massolo, E., & Raimondi, L. (2014). Organocatalytic strategies for enantioselective metal-free reductions. Catalysis Science & Technology, 4(9), 2708. doi:10.1039/c4cy00033a
Hopmann, K. H., & Bayer, A. (2014). Enantioselective imine hydrogenation with iridium-catalysts: Reactions, mechanisms and stereocontrol. Coordination Chemistry Reviews, 268, 59-82. doi:10.1016/j.ccr.2014.01.023
Ghislieri, D., & Turner, N. J. (2013). Biocatalytic Approaches to the Synthesis of Enantiomerically Pure Chiral Amines. Topics in Catalysis, 57(5), 284-300. doi:10.1007/s11244-013-0184-1
Schrittwieser, J. H., Velikogne, S., & Kroutil, W. (2015). Biocatalytic Imine Reduction and Reductive Amination of Ketones. Advanced Synthesis & Catalysis, 357(8), 1655-1685. doi:10.1002/adsc.201500213
Zhu, C., Saito, K., Yamanaka, M., & Akiyama, T. (2015). Benzothiazoline: Versatile Hydrogen Donor for Organocatalytic Transfer Hydrogenation. Accounts of Chemical Research, 48(2), 388-398. doi:10.1021/ar500414x
Oku, T., & Ikariya, T. (2002). Enhanced Product Selectivity in Continuous N-Methylation of Amino Alcohols over Solid Acid–Base Catalysts with Supercritical Methanol. Angewandte Chemie International Edition, 41(18), 3476-3479. doi:10.1002/1521-3773(20020916)41:18<3476::aid-anie3476>3.0.co;2-5
Oku, T., Arita, Y., Tsuneki, H., & Ikariya, T. (2004). Continuous Chemoselective Methylation of Functionalized Amines and Diols with Supercritical Methanol over Solid Acid and Acid−Base Bifunctional Catalysts. Journal of the American Chemical Society, 126(23), 7368-7377. doi:10.1021/ja048557s
Hollmann, D., Bähn, S., Tillack, A., & Beller, M. (2007). A General Ruthenium-Catalyzed Synthesis of Aromatic Amines. Angewandte Chemie International Edition, 46(43), 8291-8294. doi:10.1002/anie.200703119
Hollmann, D., Bähn, S., Tillack, A., & Beller, M. (2007). Eine allgemeine rutheniumkatalysierte Synthese von aromatischen Aminen. Angewandte Chemie, 119(43), 8440-8444. doi:10.1002/ange.200703119
Hollmann, D., Bähn, S., Tillack, A., & Beller, M. (2008). N-Dealkylation of aliphatic amines and selective synthesis of monoalkylated aryl amines. Chemical Communications, (27), 3199. doi:10.1039/b803114b
Saidi, O., Blacker, A. J., Farah, M. M., Marsden, S. P., & Williams, J. M. J. (2009). Selective Amine Cross-Coupling Using Iridium-Catalyzed «Borrowing Hydrogen» Methodology. Angewandte Chemie International Edition, 48(40), 7375-7378. doi:10.1002/anie.200904028
Saidi, O., Blacker, A. J., Farah, M. M., Marsden, S. P., & Williams, J. M. J. (2009). Selective Amine Cross-Coupling Using Iridium-Catalyzed «Borrowing Hydrogen» Methodology. Angewandte Chemie, 121(40), 7511-7514. doi:10.1002/ange.200904028
Guillena, G., Ramón, D. J., & Yus, M. (2009). Hydrogen Autotransfer in theN-Alkylation of Amines and Related Compounds using Alcohols and Amines as Electrophiles. Chemical Reviews, 110(3), 1611-1641. doi:10.1021/cr9002159
Zhao, Y., Foo, S. W., & Saito, S. (2011). Iron/Amino Acid Catalyzed Direct N-Alkylation of Amines with Alcohols. Angewandte Chemie International Edition, 50(13), 3006-3009. doi:10.1002/anie.201006660
Zhao, Y., Foo, S. W., & Saito, S. (2011). Iron/Amino Acid Catalyzed Direct N-Alkylation of Amines with Alcohols. Angewandte Chemie, 123(13), 3062-3065. doi:10.1002/ange.201006660
Bähn, S., Imm, S., Neubert, L., Zhang, M., Neumann, H., & Beller, M. (2011). The Catalytic Amination of Alcohols. ChemCatChem, 3(12), 1853-1864. doi:10.1002/cctc.201100255
Abarca, B., Adam, R., & Ballesteros, R. (2012). An efficient one pot transfer hydrogenation and N-alkylation of quinolines with alcohols mediated by Pd/C/Zn. Organic & Biomolecular Chemistry, 10(9), 1826. doi:10.1039/c1ob05888f
Yang, Q., Wang, Q., & Yu, Z. (2015). Substitution of alcohols by N-nucleophiles via transition metal-catalyzed dehydrogenation. Chemical Society Reviews, 44(8), 2305-2329. doi:10.1039/c4cs00496e
Yin, Z., Zeng, H., Wu, J., Zheng, S., & Zhang, G. (2016). Cobalt-Catalyzed Synthesis of Aromatic, Aliphatic, and Cyclic Secondary Amines via a «Hydrogen-Borrowing» Strategy. ACS Catalysis, 6(10), 6546-6550. doi:10.1021/acscatal.6b02218
Arachchige, P. T. K., Lee, H., & Yi, C. S. (2018). Synthesis of Symmetric and Unsymmetric Secondary Amines from the Ligand-Promoted Ruthenium-Catalyzed Deaminative Coupling Reaction of Primary Amines. The Journal of Organic Chemistry, 83(9), 4932-4947. doi:10.1021/acs.joc.8b00649
Müller, T. E., & Beller, M. (1998). Metal-Initiated Amination of Alkenes and Alkynes†. Chemical Reviews, 98(2), 675-704. doi:10.1021/cr960433d
Beller, M., Seayad, J., Tillack, A., & Jiao, H. (2004). Catalytic Markovnikov and anti-Markovnikov Functionalization of Alkenes and Alkynes: Recent Developments and Trends. Angewandte Chemie International Edition, 43(26), 3368-3398. doi:10.1002/anie.200300616
Beller, M., Seayad, J., Tillack, A., & Jiao, H. (2004). Katalytische Markownikow- und Anti-Markownikow-Funktionalisierung von Alkenen und Alkinen. Angewandte Chemie, 116(26), 3448-3479. doi:10.1002/ange.200300616
Müller, T. E., Hultzsch, K. C., Yus, M., Foubelo, F., & Tada, M. (2008). Hydroamination: Direct Addition of Amines to Alkenes and Alkynes. Chemical Reviews, 108(9), 3795-3892. doi:10.1021/cr0306788
Leyva-Pérez, A., Cabrero-Antonino, J. R., Cantín, A., & Corma, A. (2010). Gold(I) Catalyzes the Intermolecular Hydroamination of Alkynes with Imines and Produces α,α′,N-Triarylbisenamines: Studies on Their Use As Intermediates in Synthesis. The Journal of Organic Chemistry, 75(22), 7769-7780. doi:10.1021/jo101674t
Yim, J. C.-H., & Schafer, L. L. (2014). Efficient Anti-Markovnikov-Selective Catalysts for Intermolecular Alkyne Hydroamination: Recent Advances and Synthetic Applications. European Journal of Organic Chemistry, 2014(31), 6825-6840. doi:10.1002/ejoc.201402300
Gui, J., Pan, C.-M., Jin, Y., Qin, T., Lo, J. C., Lee, B. J., … Baran, P. S. (2015). Practical olefin hydroamination with nitroarenes. Science, 348(6237), 886-891. doi:10.1126/science.aab0245
Huang, L., Arndt, M., Gooßen, K., Heydt, H., & Gooßen, L. J. (2015). Late Transition Metal-Catalyzed Hydroamination and Hydroamidation. Chemical Reviews, 115(7), 2596-2697. doi:10.1021/cr300389u
Yang, Y., Shi, S.-L., Niu, D., Liu, P., & Buchwald, S. L. (2015). Catalytic asymmetric hydroamination of unactivated internal olefins to aliphatic amines. Science, 349(6243), 62-66. doi:10.1126/science.aab3753
Pirnot, M. T., Wang, Y.-M., & Buchwald, S. L. (2015). Copper Hydride Catalyzed Hydroamination of Alkenes and Alkynes. Angewandte Chemie International Edition, 55(1), 48-57. doi:10.1002/anie.201507594
Pirnot, M. T., Wang, Y.-M., & Buchwald, S. L. (2015). Kupferhydrid-katalysierte Hydroaminierung von Alkenen und Alkinen. Angewandte Chemie, 128(1), 48-57. doi:10.1002/ange.201507594
Hartwig, J. F. (1998). Transition Metal Catalyzed Synthesis of Arylamines and Aryl Ethers from Aryl Halides and Triflates: Scope and Mechanism. Angewandte Chemie International Edition, 37(15), 2046-2067. doi:10.1002/(sici)1521-3773(19980817)37:15<2046::aid-anie2046>3.0.co;2-l
Hartwig, J. F. (1998). Übergangsmetall-katalysierte Synthese von Arylaminen und Arylethern aus Arylhalogeniden und -triflaten: Anwendungen und Reaktionsmechanismus. Angewandte Chemie, 110(15), 2154-2177. doi:10.1002/(sici)1521-3757(19980803)110:15<2154::aid-ange2154>3.0.co;2-c
Hartwig, J. F. (2008). Evolution of a Fourth Generation Catalyst for the Amination and Thioetherification of Aryl Halides. Accounts of Chemical Research, 41(11), 1534-1544. doi:10.1021/ar800098p
Surry, D. S., & Buchwald, S. L. (2011). Dialkylbiaryl phosphines in Pd-catalyzed amination: a user’s guide. Chem. Sci., 2(1), 27-50. doi:10.1039/c0sc00331j
Brusoe, A. T., & Hartwig, J. F. (2015). Palladium-Catalyzed Arylation of Fluoroalkylamines. Journal of the American Chemical Society, 137(26), 8460-8468. doi:10.1021/jacs.5b02512
Tietze, L. F. (1996). Domino Reactions in Organic Synthesis. Chemical Reviews, 96(1), 115-136. doi:10.1021/cr950027e
Padwa, A., & Bur, S. K. (2007). The domino way to heterocycles. Tetrahedron, 63(25), 5341-5378. doi:10.1016/j.tet.2007.03.158
Padwa, A. (2009). Domino reactions of rhodium(ii) carbenoids for alkaloid synthesis. Chemical Society Reviews, 38(11), 3072. doi:10.1039/b816701j
Tietze, L. F., Kinzel, T., & Brazel, C. C. (2009). The Domino Multicomponent Allylation Reaction for the Stereoselective Synthesis of Homoallylic Alcohols. Accounts of Chemical Research, 42(2), 367-378. doi:10.1021/ar800170y
Sakakura, T., Choi, J.-C., & Yasuda, H. (2007). Transformation of Carbon Dioxide. Chemical Reviews, 107(6), 2365-2387. doi:10.1021/cr068357u
Mikkelsen, M., Jørgensen, M., & Krebs, F. C. (2010). The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ. Sci., 3(1), 43-81. doi:10.1039/b912904a
Peters, M., Köhler, B., Kuckshinrichs, W., Leitner, W., Markewitz, P., & Müller, T. E. (2011). Chemical Technologies for Exploiting and Recycling Carbon Dioxide into the Value Chain. ChemSusChem, 4(9), 1216-1240. doi:10.1002/cssc.201000447
Markewitz, P., Kuckshinrichs, W., Leitner, W., Linssen, J., Zapp, P., Bongartz, R., … Müller, T. E. (2012). Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energy & Environmental Science, 5(6), 7281. doi:10.1039/c2ee03403d
Aresta, M., Dibenedetto, A., & Angelini, A. (2013). Catalysis for the Valorization of Exhaust Carbon: from CO2to Chemicals, Materials, and Fuels. Technological Use of CO2. Chemical Reviews, 114(3), 1709-1742. doi:10.1021/cr4002758
Lanzafame, P., Centi, G., & Perathoner, S. (2014). Catalysis for biomass and CO2use through solar energy: opening new scenarios for a sustainable and low-carbon chemical production. Chem. Soc. Rev., 43(22), 7562-7580. doi:10.1039/c3cs60396b
Maeda, C., Miyazaki, Y., & Ema, T. (2014). Recent progress in catalytic conversions of carbon dioxide. Catalysis Science & Technology, 4(6), 1482. doi:10.1039/c3cy00993a
Jessop, P. G., Ikariya, T., & Noyori, R. (1994). Homogeneous catalytic hydrogenation of supercritical carbon dioxide. Nature, 368(6468), 231-233. doi:10.1038/368231a0
Leitner, W. (1995). Carbon Dioxide as a Raw Material: The Synthesis of Formic Acid and Its Derivatives from CO2. Angewandte Chemie International Edition in English, 34(20), 2207-2221. doi:10.1002/anie.199522071
Leitner, W. (1995). Kohlendioxid als Rohstoff am Beispiel der Synthese von Ameisensäure und ihren Derivaten. Angewandte Chemie, 107(20), 2391-2405. doi:10.1002/ange.19951072005
Jessop, P. G., Hsiao, Y., Ikariya, T., & Noyori, R. (1996). Homogeneous Catalysis in Supercritical Fluids: Hydrogenation of Supercritical Carbon Dioxide to Formic Acid, Alkyl Formates, and Formamides. Journal of the American Chemical Society, 118(2), 344-355. doi:10.1021/ja953097b
Jessop, P. G., Joó, F., & Tai, C.-C. (2004). Recent advances in the homogeneous hydrogenation of carbon dioxide. Coordination Chemistry Reviews, 248(21-24), 2425-2442. doi:10.1016/j.ccr.2004.05.019
Federsel, C., Jackstell, R., & Beller, M. (2010). State-of-the-Art Catalysts for Hydrogenation of Carbon Dioxide. Angewandte Chemie International Edition, 49(36), 6254-6257. doi:10.1002/anie.201000533
Federsel, C., Jackstell, R., & Beller, M. (2010). Moderne Katalysatoren zur Hydrierung von Kohlendioxid. Angewandte Chemie, 122(36), 6392-6395. doi:10.1002/ange.201000533
Wang, W., Wang, S., Ma, X., & Gong, J. (2011). Recent advances in catalytic hydrogenation of carbon dioxide. Chemical Society Reviews, 40(7), 3703. doi:10.1039/c1cs15008a
Hull, J. F., Himeda, Y., Wang, W.-H., Hashiguchi, B., Periana, R., Szalda, D. J., … Fujita, E. (2012). Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures. Nature Chemistry, 4(5), 383-388. doi:10.1038/nchem.1295
Wesselbaum, S., vom Stein, T., Klankermayer, J., & Leitner, W. (2012). Hydrogenation of Carbon Dioxide to Methanol by Using a Homogeneous Ruthenium-Phosphine Catalyst. Angewandte Chemie International Edition, 51(30), 7499-7502. doi:10.1002/anie.201202320
Wesselbaum, S., vom Stein, T., Klankermayer, J., & Leitner, W. (2012). Hydrogenation of Carbon Dioxide to Methanol by Using a Homogeneous Ruthenium-Phosphine Catalyst. Angewandte Chemie, 124(30), 7617-7620. doi:10.1002/ange.201202320
Fernández-Alvarez, F. J., Aitani, A. M., & Oro, L. A. (2014). Homogeneous catalytic reduction of CO2 with hydrosilanes. Catal. Sci. Technol., 4(3), 611-624. doi:10.1039/c3cy00948c
Moret, S., Dyson, P. J., & Laurenczy, G. (2014). Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media. Nature Communications, 5(1). doi:10.1038/ncomms5017
Von Wolff, N., Lefèvre, G., Berthet, J.-C., Thuéry, P., & Cantat, T. (2016). Implications of CO2Activation by Frustrated Lewis Pairs in the Catalytic Hydroboration of CO2: A View Using N/Si+Frustrated Lewis Pairs. ACS Catalysis, 6(7), 4526-4535. doi:10.1021/acscatal.6b00421
Álvarez, A., Bansode, A., Urakawa, A., Bavykina, A. V., Wezendonk, T. A., Makkee, M., … Kapteijn, F. (2017). Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO2 Hydrogenation Processes. Chemical Reviews, 117(14), 9804-9838. doi:10.1021/acs.chemrev.6b00816
Schneidewind, J., Adam, R., Baumann, W., Jackstell, R., & Beller, M. (2017). Low-Temperature Hydrogenation of Carbon Dioxide to Methanol with a Homogeneous Cobalt Catalyst. Angewandte Chemie International Edition, 56(7), 1890-1893. doi:10.1002/anie.201609077
Schneidewind, J., Adam, R., Baumann, W., Jackstell, R., & Beller, M. (2017). Low-Temperature Hydrogenation of Carbon Dioxide to Methanol with a Homogeneous Cobalt Catalyst. Angewandte Chemie, 129(7), 1916-1919. doi:10.1002/ange.201609077
Sordakis, K., Tang, C., Vogt, L. K., Junge, H., Dyson, P. J., Beller, M., & Laurenczy, G. (2017). Homogeneous Catalysis for Sustainable Hydrogen Storage in Formic Acid and Alcohols. Chemical Reviews, 118(2), 372-433. doi:10.1021/acs.chemrev.7b00182
Braunstein, P., Matt, D., & Nobel, D. (1988). Reactions of carbon dioxide with carbon-carbon bond formation catalyzed by transition-metal complexes. Chemical Reviews, 88(5), 747-764. doi:10.1021/cr00087a003
Aresta, M., & Dibenedetto, A. (2007). Utilisation of CO2 as a chemical feedstock: opportunities and challenges. Dalton Transactions, (28), 2975. doi:10.1039/b700658f
Boogaerts, I. I. F., & Nolan, S. P. (2010). Carboxylation of C−H Bonds UsingN-Heterocyclic Carbene Gold(I) Complexes. Journal of the American Chemical Society, 132(26), 8858-8859. doi:10.1021/ja103429q
Huang, K., Sun, C.-L., & Shi, Z.-J. (2011). Transition-metal-catalyzed C–C bond formation through the fixation of carbon dioxide. Chemical Society Reviews, 40(5), 2435. doi:10.1039/c0cs00129e
Liu, Q., Wu, L., Jackstell, R., & Beller, M. (2015). Using carbon dioxide as a building block in organic synthesis. Nature Communications, 6(1). doi:10.1038/ncomms6933
Juliá-Hernández, F., Moragas, T., Cornella, J., & Martin, R. (2017). Remote carboxylation of halogenated aliphatic hydrocarbons with carbon dioxide. Nature, 545(7652), 84-88. doi:10.1038/nature22316
Tlili, A., Frogneux, X., Blondiaux, E., & Cantat, T. (2014). Creating Added Value with a Waste: Methylation of Amines with CO2and H2. Angewandte Chemie International Edition, 53(10), 2543-2545. doi:10.1002/anie.201310337
Tlili, A., Frogneux, X., Blondiaux, E., & Cantat, T. (2014). Wertschöpfung aus einem Abfallstoff: Methylierung von Aminen mit CO2und H2. Angewandte Chemie, 126(10), 2577-2579. doi:10.1002/ange.201310337
Klankermayer, J., & Leitner, W. (2015). Love at second sight for CO2 and H2 in organic synthesis. Science, 350(6261), 629-630. doi:10.1126/science.aac7997
Yan, G., Borah, A. J., Wang, L., & Yang, M. (2015). Recent Advances in Transition Metal-Catalyzed Methylation Reactions. Advanced Synthesis & Catalysis, 357(7), 1333-1350. doi:10.1002/adsc.201400984
Tlili, A., Blondiaux, E., Frogneux, X., & Cantat, T. (2015). Reductive functionalization of CO2 with amines: an entry to formamide, formamidine and methylamine derivatives. Green Chemistry, 17(1), 157-168. doi:10.1039/c4gc01614a
Klankermayer, J., Wesselbaum, S., Beydoun, K., & Leitner, W. (2016). Selective Catalytic Synthesis Using the Combination of Carbon Dioxide and Hydrogen: Catalytic Chess at the Interface of Energy and Chemistry. Angewandte Chemie International Edition, 55(26), 7296-7343. doi:10.1002/anie.201507458
Klankermayer, J., Wesselbaum, S., Beydoun, K., & Leitner, W. (2016). Selektive katalytische Synthesen mit Kohlendioxid und Wasserstoff: Katalyse-Schach an der Nahtstelle zwischen Energie und Chemie. Angewandte Chemie, 128(26), 7416-7467. doi:10.1002/ange.201507458
Li, Y., Cui, X., Dong, K., Junge, K., & Beller, M. (2017). Utilization of CO2as a C1 Building Block for Catalytic Methylation Reactions. ACS Catalysis, 7(2), 1077-1086. doi:10.1021/acscatal.6b02715
Schäffner, B., Schäffner, F., Verevkin, S. P., & Börner, A. (2010). Organic Carbonates as Solvents in Synthesis and Catalysis. Chemical Reviews, 110(8), 4554-4581. doi:10.1021/cr900393d
Balaraman, E., Gunanathan, C., Zhang, J., Shimon, L. J. W., & Milstein, D. (2011). Efficient hydrogenation of organic carbonates, carbamates and formates indicates alternative routes to methanol based on CO2 and CO. Nature Chemistry, 3(8), 609-614. doi:10.1038/nchem.1089
Dub, P. A., & Ikariya, T. (2012). Catalytic Reductive Transformations of Carboxylic and Carbonic Acid Derivatives Using Molecular Hydrogen. ACS Catalysis, 2(8), 1718-1741. doi:10.1021/cs300341g
Ikariya, T., & Kayaki, Y. (2014). Hydrogenation of carboxylic acid derivatives with bifunctional ruthenium catalysts. Pure and Applied Chemistry, 86(6), 933-943. doi:10.1515/pac-2014-0103
Smith, A. M., & Whyman, R. (2014). Review of Methods for the Catalytic Hydrogenation of Carboxamides. Chemical Reviews, 114(10), 5477-5510. doi:10.1021/cr400609m
Werkmeister, S., Junge, K., & Beller, M. (2014). Catalytic Hydrogenation of Carboxylic Acid Esters, Amides, and Nitriles with Homogeneous Catalysts. Organic Process Research & Development, 18(2), 289-302. doi:10.1021/op4003278
Just-Baringo, X., & Procter, D. J. (2015). Sm(II)-Mediated Electron Transfer to Carboxylic Acid Derivatives: Development of Complexity-Generating Cascades. Accounts of Chemical Research, 48(5), 1263-1275. doi:10.1021/acs.accounts.5b00083
Pritchard, J., Filonenko, G. A., van Putten, R., Hensen, E. J. M., & Pidko, E. A. (2015). Heterogeneous and homogeneous catalysis for the hydrogenation of carboxylic acid derivatives: history, advances and future directions. Chemical Society Reviews, 44(11), 3808-3833. doi:10.1039/c5cs00038f
Mérel, D. S., Do, M. L. T., Gaillard, S., Dupau, P., & Renaud, J.-L. (2015). Iron-catalyzed reduction of carboxylic and carbonic acid derivatives. Coordination Chemistry Reviews, 288, 50-68. doi:10.1016/j.ccr.2015.01.008
Nagashima, H. (2015). Efficient Transition Metal-Catalyzed Reactions of Carboxylic Acid Derivatives with Hydrosilanes and Hydrosiloxanes, Afforded by Catalyst Design and the Proximity Effect of Two Si–H Groups. Synlett, 26(07), 866-890. doi:10.1055/s-0034-1379989
Crochet, P., & Cadierno, V. (2014). Ruthenium-Catalyzed Amide-Bond Formation. Topics in Organometallic Chemistry, 81-118. doi:10.1007/3418_2014_78
De Figueiredo, R. M., Suppo, J.-S., & Campagne, J.-M. (2016). Nonclassical Routes for Amide Bond Formation. Chemical Reviews, 116(19), 12029-12122. doi:10.1021/acs.chemrev.6b00237
Kreituss, I., & Bode, J. W. (2016). Catalytic Kinetic Resolution of Saturated N-Heterocycles by Enantioselective Amidation with Chiral Hydroxamic Acids. Accounts of Chemical Research, 49(12), 2807-2821. doi:10.1021/acs.accounts.6b00461
Ojeda-Porras, A., & Gamba-Sánchez, D. (2016). Recent Developments in Amide Synthesis Using Nonactivated Starting Materials. The Journal of Organic Chemistry, 81(23), 11548-11555. doi:10.1021/acs.joc.6b02358
Noda, H., Furutachi, M., Asada, Y., Shibasaki, M., & Kumagai, N. (2017). Unique physicochemical and catalytic properties dictated by the B3NO2 ring system. Nature Chemistry, 9(6), 571-577. doi:10.1038/nchem.2708
Brown, H. C., Narasimhan, S., & Choi, Y. M. (1981). Improved Procedure for Borane-Dimethyl Sulfide Reduction of Primary Amides to Amines. Synthesis, 1981(06), 441-442. doi:10.1055/s-1981-29473
W. Gribble, G. (1998). Sodium borohydride in carboxylic acid media: a phenomenal reduction system. Chemical Society Reviews, 27(6), 395. doi:10.1039/a827395z
Pelletier, G., Bechara, W. S., & Charette, A. B. (2010). Controlled and Chemoselective Reduction of Secondary Amides. Journal of the American Chemical Society, 132(37), 12817-12819. doi:10.1021/ja105194s
Coetzee, J., Dodds, D. L., Klankermayer, J., Brosinski, S., Leitner, W., Slawin, A. M. Z., & Cole-Hamilton, D. J. (2013). Homogeneous Catalytic Hydrogenation of Amides to Amines. Chemistry - A European Journal, 19(33), 11039-11050. doi:10.1002/chem.201204270
Stein, M., & Breit, B. (2012). Catalytic Hydrogenation of Amides to Amines under Mild Conditions. Angewandte Chemie International Edition, 52(8), 2231-2234. doi:10.1002/anie.201207803
Stein, M., & Breit, B. (2012). Catalytic Hydrogenation of Amides to Amines under Mild Conditions. Angewandte Chemie, 125(8), 2287-2290. doi:10.1002/ange.201207803
Vom Stein, T., Meuresch, M., Limper, D., Schmitz, M., Hölscher, M., Coetzee, J., … Leitner, W. (2014). Highly Versatile Catalytic Hydrogenation of Carboxylic and Carbonic Acid Derivatives using a Ru-Triphos Complex: Molecular Control over Selectivity and Substrate Scope. Journal of the American Chemical Society, 136(38), 13217-13225. doi:10.1021/ja506023f
Cabrero-Antonino, J. R., Alberico, E., Junge, K., Junge, H., & Beller, M. (2016). Towards a general ruthenium-catalyzed hydrogenation of secondary and tertiary amides to amines. Chemical Science, 7(5), 3432-3442. doi:10.1039/c5sc04671h
Li, B., Sortais, J.-B., & Darcel, C. (2016). Amine synthesis via transition metal homogeneous catalysed hydrosilylation. RSC Advances, 6(62), 57603-57625. doi:10.1039/c6ra10494k
Mukherjee, D., Shirase, S., Mashima, K., & Okuda, J. (2016). Chemoselective Reduction of Tertiary Amides to Amines Catalyzed by Triphenylborane. Angewandte Chemie International Edition, 55(42), 13326-13329. doi:10.1002/anie.201605236
Mukherjee, D., Shirase, S., Mashima, K., & Okuda, J. (2016). Triphenylboran-katalysierte chemoselektive Reduktion von tertiären Amiden zu Aminen. Angewandte Chemie, 128(42), 13520-13523. doi:10.1002/ange.201605236
Volkov, A., Tinnis, F., Slagbrand, T., Trillo, P., & Adolfsson, H. (2016). Chemoselective reduction of carboxamides. Chemical Society Reviews, 45(24), 6685-6697. doi:10.1039/c6cs00244g
Mitsudome, T., Miyagawa, K., Maeno, Z., Mizugaki, T., Jitsukawa, K., Yamasaki, J., … Kaneda, K. (2017). Mild Hydrogenation of Amides to Amines over a Platinum-Vanadium Bimetallic Catalyst. Angewandte Chemie International Edition, 56(32), 9381-9385. doi:10.1002/anie.201704199
Mitsudome, T., Miyagawa, K., Maeno, Z., Mizugaki, T., Jitsukawa, K., Yamasaki, J., … Kaneda, K. (2017). Mild Hydrogenation of Amides to Amines over a Platinum-Vanadium Bimetallic Catalyst. Angewandte Chemie, 129(32), 9509-9513. doi:10.1002/ange.201704199
GRIBBLE, G. W., & HEALD, P. W. (1975). Reactions of Sodium Borohydride in Acidic Media; III. Reduction and Alkylation of Quinoline and Isoquinoline with Carboxylic Acids. Synthesis, 1975(10), 650-652. doi:10.1055/s-1975-23871
Marchini, P., Liso, G., Reho, A., Liberatore, F., & Micheletti Moracci, F. (1975). Sodium borohydride-carboxylic acid systems. Useful reagents for the alkylation of amines. The Journal of Organic Chemistry, 40(23), 3453-3456. doi:10.1021/jo00911a038
GRIBBLE, G. W., JASINSKI, J. M., PELLICONE, J. T., & PANETTA, J. A. (1978). Reactions of Sodium Borohydride in Acidic Media; VIII.N-Alkylation of Aliphatic Secondary Amines with Carboxylic Acids. Synthesis, 1978(10), 766-768. doi:10.1055/s-1978-24885
Trapani, G., Reho, A., & Latrofa, A. (1983). Trimethylamine-Borane as Useful Reagent in theN-Acylation orN-Alkylation of Amines by Carboxylic Acids. Synthesis, 1983(12), 1013-1014. doi:10.1055/s-1983-30605
Perrio-Huard, C., Aubert, C., & Lasne, M.-C. (2000). Reductive amination of carboxylic acids and [11C]magnesium halide carboxylates. Journal of the Chemical Society, Perkin Transactions 1, (3), 311-316. doi:10.1039/a908991h
Akita, M. (2000). Deoxygenative reduction of organometallic compounds by hydrosilanes — an organometallic approach to reaction mechanisms of catalytic CO hydrogenation. Applied Catalysis A: General, 200(1-2), 153-165. doi:10.1016/s0926-860x(00)00632-3
Carpentier, J.-F., & Bette, V. (2002). Chemo- and Enantioselective Hydrosilylation of Carbonyl and Imino Groups. An Emphasis on Non-Traditional Catalyst Systems. Current Organic Chemistry, 6(10), 913-936. doi:10.2174/1385272023373851
KUBAS, G. J. (2004). HETEROLYTIC SPLITTING OF HH, SiH, AND OTHER σ BONDS ON ELECTROPHILIC METAL CENTERS. Advances in Inorganic Chemistry, 127-177. doi:10.1016/s0898-8838(04)56005-1
Addis, D., Das, S., Junge, K., & Beller, M. (2011). Selective Reduction of Carboxylic Acid Derivatives by Catalytic Hydrosilylation. Angewandte Chemie International Edition, 50(27), 6004-6011. doi:10.1002/anie.201100145
Addis, D., Das, S., Junge, K., & Beller, M. (2011). Selektive Reduktion von Carbonsäurederivaten durch katalytische Hydrosilylierung. Angewandte Chemie, 123(27), 6128-6135. doi:10.1002/ange.201100145
Sousa, S. C. A., Cabrita, I., & Fernandes, A. C. (2012). High-valent oxo-molybdenum and oxo-rhenium complexes as efficient catalysts for X–H (X = Si, B, P and H) bond activation and for organic reductions. Chemical Society Reviews, 41(17), 5641. doi:10.1039/c2cs35155b
Corey, J. Y. (2016). Reactions of Hydrosilanes with Transition Metal Complexes. Chemical Reviews, 116(19), 11291-11435. doi:10.1021/acs.chemrev.5b00559
Jacquet, O., Frogneux, X., Das Neves Gomes, C., & Cantat, T. (2013). CO2 as a C1-building block for the catalytic methylation of amines. Chemical Science, 4(5), 2127. doi:10.1039/c3sc22240c
Li, Y., Fang, X., Junge, K., & Beller, M. (2013). A General Catalytic Methylation of Amines Using Carbon Dioxide. Angewandte Chemie International Edition, 52(36), 9568-9571. doi:10.1002/anie.201301349
Li, Y., Fang, X., Junge, K., & Beller, M. (2013). A General Catalytic Methylation of Amines Using Carbon Dioxide. Angewandte Chemie, 125(36), 9747-9750. doi:10.1002/ange.201301349
Das, S., Bobbink, F. D., Laurenczy, G., & Dyson, P. J. (2014). Metal-Free Catalyst for the Chemoselective Methylation of Amines Using Carbon Dioxide as a Carbon Source. Angewandte Chemie International Edition, 53(47), 12876-12879. doi:10.1002/anie.201407689
Das, S., Bobbink, F. D., Laurenczy, G., & Dyson, P. J. (2014). Metal-Free Catalyst for the Chemoselective Methylation of Amines Using Carbon Dioxide as a Carbon Source. Angewandte Chemie, 126(47), 13090-13093. doi:10.1002/ange.201407689
Frogneux, X., Jacquet, O., & Cantat, T. (2014). Iron-catalyzed hydrosilylation of CO2: CO2 conversion to formamides and methylamines. Catal. Sci. Technol., 4(6), 1529-1533. doi:10.1039/c4cy00130c
González-Sebastián, L., Flores-Alamo, M., & García, J. J. (2015). Selective N-Methylation of Aliphatic Amines with CO2 and Hydrosilanes Using Nickel-Phosphine Catalysts. Organometallics, 34(4), 763-769. doi:10.1021/om501176u
Santoro, O., Lazreg, F., Minenkov, Y., Cavallo, L., & Cazin, C. S. J. (2015). N-heterocyclic carbene copper(i) catalysed N-methylation of amines using CO2. Dalton Transactions, 44(41), 18138-18144. doi:10.1039/c5dt03506f
Yang, Z., Yu, B., Zhang, H., Zhao, Y., Ji, G., Ma, Z., … Liu, Z. (2015). B(C6F5)3-catalyzed methylation of amines using CO2 as a C1 building block. Green Chemistry, 17(8), 4189-4193. doi:10.1039/c5gc01386k
Das, S., Bobbink, F. D., Bulut, S., Soudani, M., & Dyson, P. J. (2016). Thiazolium carbene catalysts for the fixation of CO2 onto amines. Chemical Communications, 52(12), 2497-2500. doi:10.1039/c5cc08741d
Fang, C., Lu, C., Liu, M., Zhu, Y., Fu, Y., & Lin, B.-L. (2016). Selective Formylation and Methylation of Amines using Carbon Dioxide and Hydrosilane Catalyzed by Alkali-Metal Carbonates. ACS Catalysis, 6(11), 7876-7881. doi:10.1021/acscatal.6b01856
Nguyen, T. V. Q., Yoo, W., & Kobayashi, S. (2016). Chelating Bis(1,2,3‐triazol‐5‐ylidene) Rhodium Complexes: Versatile Catalysts for Hydrosilylation Reactions. Advanced Synthesis & Catalysis, 358(3), 452-458. doi:10.1002/adsc.201500875
Liu, X.-F., Ma, R., Qiao, C., Cao, H., & He, L.-N. (2016). Fluoride-Catalyzed Methylation of Amines by Reductive Functionalization of CO2
with Hydrosilanes. Chemistry - A European Journal, 22(46), 16489-16493. doi:10.1002/chem.201603688
Liu, X.-F., Qiao, C., Li, X.-Y., & He, L.-N. (2017). Carboxylate-promoted reductive functionalization of CO2 with amines and hydrosilanes under mild conditions. Green Chemistry, 19(7), 1726-1731. doi:10.1039/c7gc00484b
Niu, H., Lu, L., Shi, R., Chiang, C.-W., & Lei, A. (2017). Catalyst-free N-methylation of amines using CO2. Chemical Communications, 53(6), 1148-1151. doi:10.1039/c6cc09072a
Xie, C., Song, J., Wu, H., Zhou, B., Wu, C., & Han, B. (2017). Natural Product Glycine Betaine as an Efficient Catalyst for Transformation of CO2 with Amines to Synthesize N-Substituted Compounds. ACS Sustainable Chemistry & Engineering, 5(8), 7086-7092. doi:10.1021/acssuschemeng.7b01287
Lu, Y., Gao, Z.-H., Chen, X.-Y., Guo, J., Liu, Z., Dang, Y., … Wang, Z.-X. (2017). Formylation or methylation: what determines the chemoselectivity of the reaction of amine, CO2, and hydrosilane catalyzed by 1,3,2-diazaphospholene? Chem. Sci., 8(11), 7637-7650. doi:10.1039/c7sc00824d
Wang, M.-Y., Wang, N., Liu, X.-F., Qiao, C., & He, L.-N. (2018). Tungstate catalysis: pressure-switched 2- and 6-electron reductive functionalization of CO2 with amines and phenylsilane. Green Chemistry, 20(7), 1564-1570. doi:10.1039/c7gc03416d
Hu, Y., Song, J., Xie, C., Wu, H., Wang, Z., Jiang, T., … Han, B. (2018). Renewable and Biocompatible Lecithin as an Efficient Organocatalyst for Reductive Conversion of CO2 with Amines to Formamides and Methylamines. ACS Sustainable Chemistry & Engineering, 6(9), 11228-11234. doi:10.1021/acssuschemeng.8b03245
Jacquet, O., Das Neves Gomes, C., Ephritikhine, M., & Cantat, T. (2012). Complete Catalytic Deoxygenation of CO2into Formamidine Derivatives. ChemCatChem, 5(1), 117-120. doi:10.1002/cctc.201200732
Frogneux, X., Blondiaux, E., Thuéry, P., & Cantat, T. (2015). Bridging Amines with CO2: Organocatalyzed Reduction of CO2 to Aminals. ACS Catalysis, 5(7), 3983-3987. doi:10.1021/acscatal.5b00734
Zhu, D.-Y., Fang, L., Han, H., Wang, Y., & Xia, J.-B. (2017). Reductive CO2 Fixation via Tandem C–C and C–N Bond Formation: Synthesis of Spiro-indolepyrrolidines. Organic Letters, 19(16), 4259-4262. doi:10.1021/acs.orglett.7b01906
Boddien, A., Mellmann, D., Gartner, F., Jackstell, R., Junge, H., Dyson, P. J., … Beller, M. (2011). Efficient Dehydrogenation of Formic Acid Using an Iron Catalyst. Science, 333(6050), 1733-1736. doi:10.1126/science.1206613
Mellmann, D., Sponholz, P., Junge, H., & Beller, M. (2016). Formic acid as a hydrogen storage material – development of homogeneous catalysts for selective hydrogen release. Chemical Society Reviews, 45(14), 3954-3988. doi:10.1039/c5cs00618j
Li, Z., & Xu, Q. (2017). Metal-Nanoparticle-Catalyzed Hydrogen Generation from Formic Acid. Accounts of Chemical Research, 50(6), 1449-1458. doi:10.1021/acs.accounts.7b00132
Wienhöfer, G., Sorribes, I., Boddien, A., Westerhaus, F., Junge, K., Junge, H., … Beller, M. (2011). General and Selective Iron-Catalyzed Transfer Hydrogenation of Nitroarenes without Base. Journal of the American Chemical Society, 133(32), 12875-12879. doi:10.1021/ja2061038
Cabrero-Antonino, J. R., Adam, R., Junge, K., Jackstell, R., & Beller, M. (2017). Cobalt-catalysed transfer hydrogenation of quinolines and related heterocycles using formic acid under mild conditions. Catalysis Science & Technology, 7(10), 1981-1985. doi:10.1039/c7cy00437k
Sorribes, I., Junge, K., & Beller, M. (2014). General Catalytic Methylation of Amines with Formic Acid under Mild Reaction Conditions. Chemistry - A European Journal, 20(26), 7878-7883. doi:10.1002/chem.201402124
Fu, M.-C., Shang, R., Cheng, W.-M., & Fu, Y. (2015). Boron-Catalyzed N-Alkylation of Amines using Carboxylic Acids. Angewandte Chemie International Edition, 54(31), 9042-9046. doi:10.1002/anie.201503879
Fu, M.-C., Shang, R., Cheng, W.-M., & Fu, Y. (2015). Boron-Catalyzed N-Alkylation of Amines using Carboxylic Acids. Angewandte Chemie, 127(31), 9170-9174. doi:10.1002/ange.201503879
Zhang, Q., Fu, M.-C., Yu, H.-Z., & Fu, Y. (2016). Mechanism of Boron-CatalyzedN-Alkylation of Amines with Carboxylic Acids. The Journal of Organic Chemistry, 81(15), 6235-6243. doi:10.1021/acs.joc.6b00778
Zhu, L., Wang, L.-S., Li, B., Li, W., & Fu, B. (2016). Methylation of aromatic amines and imines using formic acid over a heterogeneous Pt/C catalyst. Catalysis Science & Technology, 6(16), 6172-6176. doi:10.1039/c6cy00674d
Qiao, C., Liu, X.-F., Liu, X., & He, L.-N. (2017). Copper(II)-Catalyzed Selective Reductive Methylation of Amines with Formic Acid: An Option for Indirect Utilization of CO2. Organic Letters, 19(6), 1490-1493. doi:10.1021/acs.orglett.7b00551
Zheng, J., Darcel, C., & Sortais, J.-B. (2014). Methylation of secondary amines with dialkyl carbonates and hydrosilanes catalysed by iron complexes. Chem. Commun., 50(91), 14229-14232. doi:10.1039/c4cc05517a
Li, Y., Sorribes, I., Vicent, C., Junge, K., & Beller, M. (2015). Convenient Reductive Methylation of Amines with Carbonates at Room Temperature. Chemistry - A European Journal, 21(47), 16759-16763. doi:10.1002/chem.201502917
Sorribes, I., Junge, K., & Beller, M. (2014). Direct Catalytic N-Alkylation of Amines with Carboxylic Acids. Journal of the American Chemical Society, 136(40), 14314-14319. doi:10.1021/ja5093612
Andrews, K. G., Summers, D. M., Donnelly, L. J., & Denton, R. M. (2016). Catalytic reductive N-alkylation of amines using carboxylic acids. Chemical Communications, 52(9), 1855-1858. doi:10.1039/c5cc08881j
Minakawa, M., Okubo, M., & Kawatsura, M. (2016). Ruthenium-catalyzed direct N-alkylation of amines with carboxylic acids using methylphenylsilane as a hydride source. Tetrahedron Letters, 57(37), 4187-4190. doi:10.1016/j.tetlet.2016.08.003
Andrews, K. G., Faizova, R., & Denton, R. M. (2017). A practical and catalyst-free trifluoroethylation reaction of amines using trifluoroacetic acid. Nature Communications, 8(1). doi:10.1038/ncomms15913
Li, B., Sortais, J.-B., & Darcel, C. (2013). Unexpected selectivity in ruthenium-catalyzed hydrosilylation of primary amides: synthesis of secondary amines. Chemical Communications, 49(35), 3691. doi:10.1039/c3cc39149c
Ogiwara, Y., Shimoda, W., Ide, K., Nakajima, T., & Sakai, N. (2017). Carboxamides as N
-Alkylating Reagents of Secondary Amines in Indium-Catalyzed Reductive Amination with a Hydrosilane. European Journal of Organic Chemistry, 2017(20), 2866-2870. doi:10.1002/ejoc.201601629
Zhu, J., Zhang, Z., Miao, C., Liu, W., & Sun, W. (2017). Synthesis of benzimidazoles from o -phenylenediamines and DMF derivatives in the presence of PhSiH 3. Tetrahedron, 73(25), 3458-3462. doi:10.1016/j.tet.2017.05.018
Pan, Y., Chen, C., Xu, X., Zhao, H., Han, J., Li, H., … Xiao, J. (2018). Metal-free tandem cyclization/hydrosilylation to construct tetrahydroquinoxalines. Green Chemistry, 20(2), 403-411. doi:10.1039/c7gc03095a
Pedrajas, E., Sorribes, I., Guillamón, E., Junge, K., Beller, M., & Llusar, R. (2017). Efficient and Selective N
-Methylation of Nitroarenes under Mild Reaction Conditions. Chemistry - A European Journal, 23(53), 13205-13212. doi:10.1002/chem.201702783
Nishikata, T., & Nagashima, H. (2012). N Alkylation of Tosylamides Using Esters as Primary and Tertiary Alkyl Sources: Mediated by Hydrosilanes Activated by a Ruthenium Catalyst. Angewandte Chemie International Edition, 51(22), 5363-5366. doi:10.1002/anie.201201426
Nishikata, T., & Nagashima, H. (2012). N Alkylation of Tosylamides Using Esters as Primary and Tertiary Alkyl Sources: Mediated by Hydrosilanes Activated by a Ruthenium Catalyst. Angewandte Chemie, 124(22), 5459-5462. doi:10.1002/ange.201201426
Courtemanche, M.-A., Légaré, M.-A., Maron, L., & Fontaine, F.-G. (2013). A Highly Active Phosphine–Borane Organocatalyst for the Reduction of CO2 to Methanol Using Hydroboranes. Journal of the American Chemical Society, 135(25), 9326-9329. doi:10.1021/ja404585p
Das Neves Gomes, C., Blondiaux, E., Thuéry, P., & Cantat, T. (2014). Metal-Free Reduction of CO2with Hydroboranes: Two Efficient Pathways at Play for the Reduction of CO2to Methanol. Chemistry - A European Journal, 20(23), 7098-7106. doi:10.1002/chem.201400349
Bontemps, S. (2016). Boron-mediated activation of carbon dioxide. Coordination Chemistry Reviews, 308, 117-130. doi:10.1016/j.ccr.2015.06.003
Park, S., & Chang, S. (2017). Catalytic Dearomatization of N-Heteroarenes with Silicon and Boron Compounds. Angewandte Chemie International Edition, 56(27), 7720-7738. doi:10.1002/anie.201612140
Park, S., & Chang, S. (2017). Katalytische Desaromatisierung von N-Heteroarenen mit Silicium- und Borverbindungen. Angewandte Chemie, 129(27), 7828-7847. doi:10.1002/ange.201612140
Blondiaux, E., Pouessel, J., & Cantat, T. (2014). Carbon Dioxide Reduction to Methylamines under Metal-Free Conditions. Angewandte Chemie International Edition, 53(45), 12186-12190. doi:10.1002/anie.201407357
Blondiaux, E., Pouessel, J., & Cantat, T. (2014). Carbon Dioxide Reduction to Methylamines under Metal-Free Conditions. Angewandte Chemie, 126(45), 12382-12386. doi:10.1002/ange.201407357
Chen, W.-C., Shen, J.-S., Jurca, T., Peng, C.-J., Lin, Y.-H., Wang, Y.-P., … Ong, T.-G. (2015). Expanding the Ligand Framework Diversity of Carbodicarbenes and Direct Detection of Boron Activation in the Methylation of Amines with CO2. Angewandte Chemie International Edition, 54(50), 15207-15212. doi:10.1002/anie.201507921
Chen, W.-C., Shen, J.-S., Jurca, T., Peng, C.-J., Lin, Y.-H., Wang, Y.-P., … Ong, T.-G. (2015). Expanding the Ligand Framework Diversity of Carbodicarbenes and Direct Detection of Boron Activation in the Methylation of Amines with CO2. Angewandte Chemie, 127(50), 15422-15427. doi:10.1002/ange.201507921
Jin, G., Werncke, C. G., Escudié, Y., Sabo-Etienne, S., & Bontemps, S. (2015). Iron-Catalyzed Reduction of CO2 into Methylene: Formation of C–N, C–O, and C–C Bonds. Journal of the American Chemical Society, 137(30), 9563-9566. doi:10.1021/jacs.5b06077
Blaser, H. U., Spindler, F., & Studer, M. (2001). Enantioselective catalysis in fine chemicals production. Applied Catalysis A: General, 221(1-2), 119-143. doi:10.1016/s0926-860x(01)00801-8
Kubas, G. J. (2007). Fundamentals of H2Binding and Reactivity on Transition Metals Underlying Hydrogenase Function and H2Production and Storage. Chemical Reviews, 107(10), 4152-4205. doi:10.1021/cr050197j
Tollefson, J. (2010). Hydrogen vehicles: Fuel of the future? Nature, 464(7293), 1262-1264. doi:10.1038/4641262a
Gredig, S. V., Koeppel, R. A., & Baiker, A. (1995). Synthesis of methylamines from carbon dioxide and ammonia. Journal of the Chemical Society, Chemical Communications, (1), 73. doi:10.1039/c39950000073
Gredig, S. V., Koeppel, R., & Baiker, A. (1996). Comparative study of synthesis of methylamines from carbon oxides and ammonia over Cu/A12O3. Catalysis Today, 29(1-4), 339-342. doi:10.1016/0920-5861(95)00301-0
Gredig, S. V., Koeppel, R., & Baiker, A. (1997). Synthesis of methylamines from CO2, H2 and NH3. Catalytic behaviour of various metal-alumina catalysts. Applied Catalysis A: General, 162(1-2), 249-260. doi:10.1016/s0926-860x(97)00107-5
Gredig, S. V., Maurer, R., Koeppel, R., & Baiker, A. (1997). Copper-catalyzed synthesis of methylamines from CO2, H2 and NH3. Influence of support. Journal of Molecular Catalysis A: Chemical, 127(1-3), 133-142. doi:10.1016/s1381-1169(97)00117-9
Auer, S. (1999). Synthesis of methylamines from CO2, H2 and NH3 over Cu–Mg–Al mixed oxides. Journal of Molecular Catalysis A: Chemical, 141(1-3), 193-203. doi:10.1016/s1381-1169(98)00263-5
Beydoun, K., Thenert, K., Streng, E. S., Brosinski, S., Leitner, W., & Klankermayer, J. (2015). Selective Synthesis of Trimethylamine by Catalytic N
-Methylation of Ammonia and Ammonium Chloride by utilizing Carbon Dioxide and Molecular Hydrogen. ChemCatChem, 8(1), 135-138. doi:10.1002/cctc.201501116
Toyao, T., Siddiki, S. M. A. H., Ishihara, K., Kon, K., Onodera, W., & Shimizu, K. (2017). Heterogeneous Platinum Catalysts for Direct Synthesis of Trimethylamine by N-Methylation of Ammonia and Its Surrogates with CO2/H2. Chemistry Letters, 46(1), 68-70. doi:10.1246/cl.160875
Beydoun, K., vom Stein, T., Klankermayer, J., & Leitner, W. (2013). Ruthenium-Catalyzed Direct Methylation of Primary and Secondary Aromatic Amines Using Carbon Dioxide and Molecular Hydrogen. Angewandte Chemie International Edition, 52(36), 9554-9557. doi:10.1002/anie.201304656
Beydoun, K., vom Stein, T., Klankermayer, J., & Leitner, W. (2013). Ruthenium-Catalyzed Direct Methylation of Primary and Secondary Aromatic Amines Using Carbon Dioxide and Molecular Hydrogen. Angewandte Chemie, 125(36), 9733-9736. doi:10.1002/ange.201304656
Li, Y., Sorribes, I., Yan, T., Junge, K., & Beller, M. (2013). Selective Methylation of Amines with Carbon Dioxide and H2. Angewandte Chemie International Edition, 52(46), 12156-12160. doi:10.1002/anie.201306850
Li, Y., Sorribes, I., Yan, T., Junge, K., & Beller, M. (2013). Selective Methylation of Amines with Carbon Dioxide and H2. Angewandte Chemie, 125(46), 12378-12382. doi:10.1002/ange.201306850
Cui, X., Dai, X., Zhang, Y., Deng, Y., & Shi, F. (2014). Methylation of amines, nitrobenzenes and aromatic nitriles with carbon dioxide and molecular hydrogen. Chem. Sci., 5(2), 649-655. doi:10.1039/c3sc52676c
Cui, X., Zhang, Y., Deng, Y., & Shi, F. (2014). N-Methylation of amine and nitro compounds with CO2/H2catalyzed by Pd/CuZrOxunder mild reaction conditions. Chem. Commun., 50(88), 13521-13524. doi:10.1039/c4cc05119j
Kon, K., Siddiki, S. M. A. H., Onodera, W., & Shimizu, K. (2014). Sustainable Heterogeneous Platinum Catalyst for Direct Methylation of Secondary Amines by Carbon Dioxide and Hydrogen. Chemistry - A European Journal, 20(21), 6264-6267. doi:10.1002/chem.201400332
Tang, G., Bao, H.-L., Jin, C., Zhong, X.-H., & Du, X.-L. (2015). Direct methylation of N-methylaniline with CO2/H2 catalyzed by gold nanoparticles supported on alumina. RSC Advances, 5(121), 99678-99687. doi:10.1039/c5ra20991a
Du, X.-L., Tang, G., Bao, H.-L., Jiang, Z., Zhong, X.-H., Su, D. S., & Wang, J.-Q. (2015). Direct Methylation of Amines with Carbon Dioxide and Molecular Hydrogen using Supported Gold Catalysts. ChemSusChem, 8(20), 3489-3496. doi:10.1002/cssc.201500486
Su, X., Lin, W., Cheng, H., Zhang, C., Li, Y., Liu, T., … Zhao, F. (2016). PdGa/TiO2 an efficient heterogeneous catalyst for direct methylation of N-methylaniline with CO2/H2. RSC Advances, 6(105), 103650-103656. doi:10.1039/c6ra22089d
Toyao, T., Siddiki, S. M. A. H., Morita, Y., Kamachi, T., Touchy, A. S., Onodera, W., … Shimizu, K. (2017). Rhenium‐Loaded TiO
2
: A Highly Versatile and Chemoselective Catalyst for the Hydrogenation of Carboxylic Acid Derivatives and the N‐Methylation of Amines Using H
2
and CO
2. Chemistry – A European Journal, 23(59), 14848-14859. doi:10.1002/chem.201702801
Yu, B., Zhang, H., Zhao, Y., Chen, S., Xu, J., Huang, C., & Liu, Z. (2013). Cyclization of o-phenylenediamines by CO2in the presence of H2for the synthesis of benzimidazoles. Green Chem., 15(1), 95-99. doi:10.1039/c2gc36517k
Savourey, S., Lefèvre, G., Berthet, J.-C., & Cantat, T. (2014). Catalytic methylation of aromatic amines with formic acid as the unique carbon and hydrogen source. Chem. Commun., 50(90), 14033-14036. doi:10.1039/c4cc05908e
Cabrero-Antonino, J. R., Adam, R., Junge, K., & Beller, M. (2016). A general protocol for the reductive N-methylation of amines using dimethyl carbonate and molecular hydrogen: mechanistic insights and kinetic studies. Catalysis Science & Technology, 6(22), 7956-7966. doi:10.1039/c6cy01401a
Cabrero-Antonino, J. R., Adam, R., Wärnå, J., Murzin, D. Y., & Beller, M. (2018). Reductive N-methylation of amines using dimethyl carbonate and molecular hydrogen: Mechanistic insights through kinetic modelling. Chemical Engineering Journal, 351, 1129-1136. doi:10.1016/j.cej.2018.06.174
Núñez Magro, A. A., Eastham, G. R., & Cole-Hamilton, D. J. (2007). The synthesis of amines by the homogeneous hydrogenation of secondary and primary amides. Chemical Communications, (30), 3154. doi:10.1039/b706635j
Additions and corrections published in 2012. (2012). Chemical Communications, 48(100), 12249. doi:10.1039/c2cc90426h
Sorribes, I., Cabrero-Antonino, J. R., Vicent, C., Junge, K., & Beller, M. (2015). Catalytic N-Alkylation of Amines Using Carboxylic Acids and Molecular Hydrogen. Journal of the American Chemical Society, 137(42), 13580-13587. doi:10.1021/jacs.5b07994
Adam, R., Cabrero-Antonino, J. R., Junge, K., Jackstell, R., & Beller, M. (2016). Esters, Including Triglycerides, and Hydrogen as Feedstocks for the Ruthenium-Catalyzed Direct N-Alkylation of Amines. Angewandte Chemie International Edition, 55(37), 11049-11053. doi:10.1002/anie.201603681
Adam, R., Cabrero-Antonino, J. R., Junge, K., Jackstell, R., & Beller, M. (2016). Esters, Including Triglycerides, and Hydrogen as Feedstocks for the Ruthenium-Catalyzed Direct N-Alkylation of Amines. Angewandte Chemie, 128(37), 11215-11219. doi:10.1002/ange.201603681
Corma, A., Iborra, S., & Velty, A. (2007). Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews, 107(6), 2411-2502. doi:10.1021/cr050989d
Meier, M. A. R., Metzger, J. O., & Schubert, U. S. (2007). Plant oil renewable resources as green alternatives in polymer science. Chemical Society Reviews, 36(11), 1788. doi:10.1039/b703294c
Biermann, U., Bornscheuer, U., Meier, M. A. R., Metzger, J. O., & Schäfer, H. J. (2011). Oils and Fats as Renewable Raw Materials in Chemistry. Angewandte Chemie International Edition, 50(17), 3854-3871. doi:10.1002/anie.201002767
Biermann, U., Bornscheuer, U., Meier, M. A. R., Metzger, J. O., & Schäfer, H. J. (2011). Fette und Öle als nachwachsende Rohstoffe in der Chemie. Angewandte Chemie, 123(17), 3938-3956. doi:10.1002/ange.201002767
Besson, M., Gallezot, P., & Pinel, C. (2013). Conversion of Biomass into Chemicals over Metal Catalysts. Chemical Reviews, 114(3), 1827-1870. doi:10.1021/cr4002269
Deuss, P. J., Barta, K., & de Vries, J. G. (2014). Homogeneous catalysis for the conversion of biomass and biomass-derived platform chemicals. Catal. Sci. Technol., 4(5), 1174-1196. doi:10.1039/c3cy01058a
Liu, W., Sahoo, B., Spannenberg, A., Junge, K., & Beller, M. (2018). Tailored Cobalt‐Catalysts for Reductive Alkylation of Anilines with Carboxylic Acids under Mild Conditions. Angewandte Chemie International Edition, 57(36), 11673-11677. doi:10.1002/anie.201806132
Liu, W., Sahoo, B., Spannenberg, A., Junge, K., & Beller, M. (2018). Tailored Cobalt-Catalysts for Reductive Alkylation of Anilines with Carboxylic Acids under Mild Conditions. Angewandte Chemie, 130(36), 11847-11851. doi:10.1002/ange.201806132
Shi, Y., Kamer, P. C. J., Cole-Hamilton, D. J., Harvie, M., Baxter, E. F., Lim, K. J. C., & Pogorzelec, P. (2017). A new route to N-aromatic heterocycles from the hydrogenation of diesters in the presence of anilines. Chemical Science, 8(10), 6911-6917. doi:10.1039/c7sc01718a
Shi, Y., Kamer, P. C. J., & Cole-Hamilton, D. J. (2017). A new route to α,ω-diamines from hydrogenation of dicarboxylic acids and their derivatives in the presence of amines. Green Chemistry, 19(22), 5460-5466. doi:10.1039/c7gc02838e
Beydoun, K., Ghattas, G., Thenert, K., Klankermayer, J., & Leitner, W. (2014). Ruthenium-Catalyzed Reductive Methylation of Imines Using Carbon Dioxide and Molecular Hydrogen. Angewandte Chemie International Edition, 53(41), 11010-11014. doi:10.1002/anie.201403711
Beydoun, K., Ghattas, G., Thenert, K., Klankermayer, J., & Leitner, W. (2014). Ruthenium-Catalyzed Reductive Methylation of Imines Using Carbon Dioxide and Molecular Hydrogen. Angewandte Chemie, 126(41), 11190-11194. doi:10.1002/ange.201403711
He, Z., Liu, H., Qian, Q., Lu, L., Guo, W., Zhang, L., & Han, B. (2017). N-methylation of quinolines with CO2 and H2 catalyzed by Ru-triphos complexes. Science China Chemistry, 60(7), 927-933. doi:10.1007/s11426-017-9024-8
Yu, L., Zhang, Q., Li, S.-S., Huang, J., Liu, Y.-M., He, H.-Y., & Cao, Y. (2015). Gold-Catalyzed Reductive Transformation of Nitro Compounds Using Formic Acid: Mild, Efficient, and Versatile. ChemSusChem, 8(18), 3029-3035. doi:10.1002/cssc.201500869
Fleming, F. F., & Fleming, F. F. (1999). Nitrile-containing natural products. Natural Product Reports, 16(5), 597-606. doi:10.1039/a804370a
Martin, A., & Lücke, B. (2000). Ammoxidation and oxidation of substituted methyl aromatics on vanadium-containing catalysts. Catalysis Today, 57(1-2), 61-70. doi:10.1016/s0920-5861(99)00309-0
Movassaghi, M., & Hill, M. D. (2007). Synthesis of pyrimidines by direct condensation of amides and nitriles. Nature Protocols, 2(8), 2018-2023. doi:10.1038/nprot.2007.280
Martin, A., & Kalevaru, V. N. (2010). Heterogeneously Catalyzed Ammoxidation: A Valuable Tool for One-Step Synthesis of Nitriles. ChemCatChem, 2(12), 1504-1522. doi:10.1002/cctc.201000173
Fleming, F. F., Yao, L., Ravikumar, P. C., Funk, L., & Shook, B. C. (2010). Nitrile-Containing Pharmaceuticals: Efficacious Roles of the Nitrile Pharmacophore. Journal of Medicinal Chemistry, 53(22), 7902-7917. doi:10.1021/jm100762r
Anbarasan, P., Schareina, T., & Beller, M. (2011). Recent developments and perspectives in palladium-catalyzed cyanation of aryl halides: synthesis of benzonitriles. Chemical Society Reviews, 40(10), 5049. doi:10.1039/c1cs15004a
Ikawa, T., Fujita, Y., Mizusaki, T., Betsuin, S., Takamatsu, H., Maegawa, T., … Sajiki, H. (2012). Selective N-alkylation of amines using nitriles under hydrogenation conditions: facile synthesis of secondary and tertiary amines. Org. Biomol. Chem., 10(2), 293-304. doi:10.1039/c1ob06303k
Shao, Z., Fu, S., Wei, M., Zhou, S., & Liu, Q. (2016). Mild and Selective Cobalt-Catalyzed Chemodivergent Transfer Hydrogenation of Nitriles. Angewandte Chemie International Edition, 55(47), 14653-14657. doi:10.1002/anie.201608345
Shao, Z., Fu, S., Wei, M., Zhou, S., & Liu, Q. (2016). Mild and Selective Cobalt-Catalyzed Chemodivergent Transfer Hydrogenation of Nitriles. Angewandte Chemie, 128(47), 14873-14877. doi:10.1002/ange.201608345
Zerecero-Silva, P., Jimenez-Solar, I., Crestani, M. G., Arévalo, A., Barrios-Francisco, R., & García, J. J. (2009). Catalytic hydrogenation of aromatic nitriles and dinitriles with nickel compounds. Applied Catalysis A: General, 363(1-2), 230-234. doi:10.1016/j.apcata.2009.05.027
Srimani, D., Feller, M., Ben-David, Y., & Milstein, D. (2012). Catalytic coupling of nitriles with amines to selectively form imines under mild hydrogen pressure. Chemical Communications, 48(97), 11853. doi:10.1039/c2cc36639h
Chakraborty, S., & Berke, H. (2014). Homogeneous Hydrogenation of Nitriles Catalyzed by Molybdenum and Tungsten Amides. ACS Catalysis, 4(7), 2191-2194. doi:10.1021/cs5004646
Choi, J.-H., & Prechtl, M. H. G. (2015). Tuneable Hydrogenation of Nitriles into Imines or Amines with a Ruthenium Pincer Complex under Mild Conditions. ChemCatChem, 7(6), 1023-1028. doi:10.1002/cctc.201403047
Chakraborty, S., Leitus, G., & Milstein, D. (2017). Iron-Catalyzed Mild and Selective Hydrogenative Cross-Coupling of Nitriles and Amines To Form Secondary Aldimines. Angewandte Chemie International Edition, 56(8), 2074-2078. doi:10.1002/anie.201608537
Chakraborty, S., Leitus, G., & Milstein, D. (2017). Iron-Catalyzed Mild and Selective Hydrogenative Cross-Coupling of Nitriles and Amines To Form Secondary Aldimines. Angewandte Chemie, 129(8), 2106-2110. doi:10.1002/ange.201608537
[-]