- -

Catalytic Reductive N-Alkylations Using CO2 and Carboxylic Acid Derivatives: Recent Progress and Developments

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Catalytic Reductive N-Alkylations Using CO2 and Carboxylic Acid Derivatives: Recent Progress and Developments

Mostrar el registro completo del ítem

Cabrero Antonino, JR.; Adam-Ortiz, R.; Beller, M. (2019). Catalytic Reductive N-Alkylations Using CO2 and Carboxylic Acid Derivatives: Recent Progress and Developments. Angewandte Chemie International Edition. 58(37):12820-12838. https://doi.org/10.1002/anie.201810121

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/153458

Ficheros en el ítem

Metadatos del ítem

Título: Catalytic Reductive N-Alkylations Using CO2 and Carboxylic Acid Derivatives: Recent Progress and Developments
Autor: Cabrero Antonino, Jose Ramón Adam-Ortiz, Rosa Beller, Matthias
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] N-Alkylamines are key intermediates in the synthesis of fine chemicals, dyes, and natural products, and hence are highly valuable building blocks in organic chemistry. Consequently, the development of greener and more ...[+]
Palabras clave: Carbon dioxide , Carboxylic , Carbonic acid derivatives , Heterocycles , N-alkylation , Reductive transformations
Derechos de uso: Reserva de todos los derechos
Fuente:
Angewandte Chemie International Edition. (issn: 1433-7851 )
DOI: 10.1002/anie.201810121
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/anie.201810121
Descripción: This is the peer reviewed version of the following article: Angew. Chem. Int. Ed. 2019, 58, 12820 12838, which has been published in final form at https://doi.org/10.1002/anie.201810121. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.
Agradecimientos:
This work was supported by the state of MecklenburgVorpommern and the BMBF. J.R.C.-A. thanks the Ministerio de Ciencia, Innovacion y Universidades for a Juan de la Cierva contract. R.A. thanks UPV for a postdoctoral contract.[+]
Tipo: Artículo

References

Adams, J. M., & Cory, S. (1975). Modified nucleosides and bizarre 5′-termini in mouse myeloma mRNA. Nature, 255(5503), 28-33. doi:10.1038/255028a0

Kleemann, A., Engel, J., Kutscher, B., & Reichert, D. (Eds.). (2009). Pharmaceutical Substances. doi:10.1055/b-003-108611

Dominissini, D., Moshitch-Moshkovitz, S., Schwartz, S., Salmon-Divon, M., Ungar, L., Osenberg, S., … Rechavi, G. (2012). Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature, 485(7397), 201-206. doi:10.1038/nature11112 [+]
Adams, J. M., & Cory, S. (1975). Modified nucleosides and bizarre 5′-termini in mouse myeloma mRNA. Nature, 255(5503), 28-33. doi:10.1038/255028a0

Kleemann, A., Engel, J., Kutscher, B., & Reichert, D. (Eds.). (2009). Pharmaceutical Substances. doi:10.1055/b-003-108611

Dominissini, D., Moshitch-Moshkovitz, S., Schwartz, S., Salmon-Divon, M., Ungar, L., Osenberg, S., … Rechavi, G. (2012). Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature, 485(7397), 201-206. doi:10.1038/nature11112

Chatterjee, J., Rechenmacher, F., & Kessler, H. (2012). N-Methylation of Peptides and Proteins: An Important Element for Modulating Biological Functions. Angewandte Chemie International Edition, 52(1), 254-269. doi:10.1002/anie.201205674

Chatterjee, J., Rechenmacher, F., & Kessler, H. (2012). N-Methylierung von Peptiden und Proteinen: ein wichtiges Element für die Regulation biologischer Funktionen. Angewandte Chemie, 125(1), 268-283. doi:10.1002/ange.201205674

Froidevaux, V., Negrell, C., Caillol, S., Pascault, J.-P., & Boutevin, B. (2016). Biobased Amines: From Synthesis to Polymers; Present and Future. Chemical Reviews, 116(22), 14181-14224. doi:10.1021/acs.chemrev.6b00486

Salvatore, R. N., Yoon, C. H., & Jung, K. W. (2001). Synthesis of secondary amines. Tetrahedron, 57(37), 7785-7811. doi:10.1016/s0040-4020(01)00722-0

Lamoureux, G., & Agüero, C. (2009). A comparison of several modern alkylating agents. Arkivoc, 2009(1), 251-264. doi:10.3998/ark.5550190.0010.108

Luo, H., Wu, G., Zhang, Y., & Wang, J. (2015). Silver(I)-CatalyzedN-Trifluoroethylation of Anilines andO-Trifluoroethylation of Amides with 2,2,2-Trifluorodiazoethane. Angewandte Chemie International Edition, 54(48), 14503-14507. doi:10.1002/anie.201507219

Luo, H., Wu, G., Zhang, Y., & Wang, J. (2015). Silver(I)-CatalyzedN-Trifluoroethylation of Anilines andO-Trifluoroethylation of Amides with 2,2,2-Trifluorodiazoethane. Angewandte Chemie, 127(48), 14711-14715. doi:10.1002/ange.201507219

Selva, M., Trotta, F., & Tundo, P. (1992). Esters and orthoesters as alkylating agents at high temperature. Applications to continuous-flow processes. Journal of the Chemical Society, Perkin Transactions 2, (4), 519. doi:10.1039/p29920000519

Padmanabhan, S., Reddy, N. L., & Durant, G. J. (1997). A Convenient One Pot Procedure for N-Methylation of Aromatic Amines Using Trimethyl Orthoformate. Synthetic Communications, 27(4), 691-699. doi:10.1080/00397919708003343

Rivetti, F., Romano, U., & Delledonne, D. (1996). Dimethylcarbonate and Its Production Technology. Green Chemistry, 70-80. doi:10.1021/bk-1996-0626.ch006

Ono, Y. (1997). Catalysis in the production and reactions of dimethyl carbonate, an environmentally benign building block. Applied Catalysis A: General, 155(2), 133-166. doi:10.1016/s0926-860x(96)00402-4

Pacheco, M. A., & Marshall, C. L. (1997). Review of Dimethyl Carbonate (DMC) Manufacture and Its Characteristics as a Fuel Additive. Energy & Fuels, 11(1), 2-29. doi:10.1021/ef9600974

Delledonne, D., Rivetti, F., & Romano, U. (2001). Developments in the production and application of dimethylcarbonate. Applied Catalysis A: General, 221(1-2), 241-251. doi:10.1016/s0926-860x(01)00796-7

Tundo, P., & Selva, M. (2002). The Chemistry of Dimethyl Carbonate. Accounts of Chemical Research, 35(9), 706-716. doi:10.1021/ar010076f

Selva, M., Tundo, P., & Perosa, A. (2003). Reaction of Functionalized Anilines with Dimethyl Carbonate over NaY Faujasite. 3. Chemoselectivity toward Mono-N-methylation. The Journal of Organic Chemistry, 68(19), 7374-7378. doi:10.1021/jo034548a

Tundo, P., Rossi, L., & Loris, A. (2005). Dimethyl Carbonate as an Ambident Electrophile. The Journal of Organic Chemistry, 70(6), 2219-2224. doi:10.1021/jo048532b

Selva, M., Perosa, A., Tundo, P., & Brunelli, D. (2006). SelectiveN,N-Dimethylation of Primary Aromatic Amines with Methyl Alkyl Carbonates in the Presence of Phosphonium Salts. The Journal of Organic Chemistry, 71(15), 5770-5773. doi:10.1021/jo060674d

Selva, M. (2007). Green approaches to highly selective processes: Reactions of dimethyl carbonate over both zeolites and base catalysts. Pure and Applied Chemistry, 79(11), 1855-1867. doi:10.1351/pac200779111855

Selva, M., & Perosa, A. (2008). Green chemistry metrics: a comparative evaluation of dimethyl carbonate, methyl iodide, dimethyl sulfate and methanol as methylating agents. Green Chemistry, 10(4), 457. doi:10.1039/b713985c

Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Metal organic frameworks as heterogeneous catalysts for the selective N-methylation of aromatic primary amines with dimethyl carbonate. Applied Catalysis A: General, 378(1), 19-25. doi:10.1016/j.apcata.2010.01.042

Kawai, K., Li, Y.-S., Song, M.-F., & Kasai, H. (2010). DNA methylation by dimethyl sulfoxide and methionine sulfoxide triggered by hydroxyl radical and implications for epigenetic modifications. Bioorganic & Medicinal Chemistry Letters, 20(1), 260-265. doi:10.1016/j.bmcl.2009.10.124

Jiang, X., Wang, C., Wei, Y., Xue, D., Liu, Z., & Xiao, J. (2013). A General Method for N-Methylation of Amines and Nitro Compounds with Dimethylsulfoxide. Chemistry - A European Journal, 20(1), 58-63. doi:10.1002/chem.201303802

Atkinson, B. N., & Williams, J. M. J. (2014). Dimethylsulfoxide as an N-Methylation Reagent for Amines and Aromatic Nitro Compounds. ChemCatChem, 6(7), 1860-1862. doi:10.1002/cctc.201400015

Eschweiler, W. (1905). Ersatz von an Stickstoff gebundenen Wasserstoffatomen durch die Methylgruppe mit Hülfe von Formaldehyd. Berichte der deutschen chemischen Gesellschaft, 38(1), 880-882. doi:10.1002/cber.190503801154

Clarke, H. T., Gillespie, H. B., & Weisshaus, S. Z. (1933). The Action of Formaldehyde on Amines and Amino Acids1. Journal of the American Chemical Society, 55(11), 4571-4587. doi:10.1021/ja01338a041

Kim, S., Oh, C. H., Ko, J. S., Ahn, K. H., & Kim, Y. J. (1985). Zinc-modified cyanoborohydride as a selective reducing agent. The Journal of Organic Chemistry, 50(11), 1927-1932. doi:10.1021/jo00211a028

Fache, F., Jacquot, L., & Lemaire, M. (1994). Extension of the eschweiler-clarke procedure to the N-alkylation of amides. Tetrahedron Letters, 35(20), 3313-3314. doi:10.1016/s0040-4039(00)76894-8

Gomez, S., Peters, J. A., & Maschmeyer, T. (2002). The Reductive Amination of Aldehydes and Ketones and the Hydrogenation of Nitriles: Mechanistic Aspects and Selectivity Control. Advanced Synthesis & Catalysis, 344(10), 1037-1057. doi:10.1002/1615-4169(200212)344:10<1037::aid-adsc1037>3.0.co;2-3

Steinhuebel, D., Sun, Y., Matsumura, K., Sayo, N., & Saito, T. (2009). Direct Asymmetric Reductive Amination. Journal of the American Chemical Society, 131(32), 11316-11317. doi:10.1021/ja905143m

Wakchaure, V. N., Zhou, J., Hoffmann, S., & List, B. (2010). Catalytic Asymmetric Reductive Amination of α-Branched Ketones. Angewandte Chemie International Edition, 49(27), 4612-4614. doi:10.1002/anie.201001715

Wakchaure, V. N., Zhou, J., Hoffmann, S., & List, B. (2010). Catalytic Asymmetric Reductive Amination of α-Branched Ketones. Angewandte Chemie, 122(27), 4716-4718. doi:10.1002/ange.201001715

Chusov, D., & List, B. (2014). Reductive Amination without an External Hydrogen Source. Angewandte Chemie International Edition, n/a-n/a. doi:10.1002/anie.201400059

Chusov, D., & List, B. (2014). Reduktive Aminierung ohne externe Wasserstoffquelle. Angewandte Chemie, 126(20), 5299-5302. doi:10.1002/ange.201400059

Raoufmoghaddam, S. (2014). Recent advances in catalytic C–N bond formation: a comparison of cascade hydroaminomethylation and reductive amination reactions with the corresponding hydroamidomethylation and reductive amidation reactions. Organic & Biomolecular Chemistry, 12(37), 7179. doi:10.1039/c4ob00620h

Jagadeesh, R. V., Murugesan, K., Alshammari, A. S., Neumann, H., Pohl, M.-M., Radnik, J., & Beller, M. (2017). MOF-derived cobalt nanoparticles catalyze a general synthesis of amines. Science, 358(6361), 326-332. doi:10.1126/science.aan6245

Hamada, H., Yamamoto, M., Kuwahara, Y., Matsuzaki, T., & Wakabayashi, K. (1985). The Co-amination of Phenol and Cyclohexanol with Palladium-on-carbon Catalyst in the Liquid Phase. An Application of a Hydrogen-transfer Reaction. Bulletin of the Chemical Society of Japan, 58(5), 1551-1555. doi:10.1246/bcsj.58.1551

Chen, Z., Zeng, H., Gong, H., Wang, H., & Li, C.-J. (2015). Palladium-catalyzed reductive coupling of phenols with anilines and amines: efficient conversion of phenolic lignin model monomers and analogues to cyclohexylamines. Chemical Science, 6(7), 4174-4178. doi:10.1039/c5sc00941c

Cui, X., Junge, K., & Beller, M. (2016). Palladium-Catalyzed Synthesis of Alkylated Amines from Aryl Ethers or Phenols. ACS Catalysis, 6(11), 7834-7838. doi:10.1021/acscatal.6b01687

Yan, L., Liu, X.-X., & Fu, Y. (2016). N-Alkylation of amines with phenols over highly active heterogeneous palladium hydride catalysts. RSC Advances, 6(111), 109702-109705. doi:10.1039/c6ra22383d

Zimmermann, B., Herwig, J., & Beller, M. (1999). The First Efficient Hydroaminomethylation with Ammonia: With Dual Metal Catalysts and Two-Phase Catalysis to Primary Amines. Angewandte Chemie International Edition, 38(16), 2372-2375. doi:10.1002/(sici)1521-3773(19990816)38:16<2372::aid-anie2372>3.0.co;2-h

Zimmermann, B., Herwig, J., & Beller, M. (1999). Erste effiziente Hydroaminomethylierung mit Ammoniak: mit dualen Metallkatalysatoren und Zweiphasenkatalyse zu primären Aminen. Angewandte Chemie, 111(16), 2515-2518. doi:10.1002/(sici)1521-3757(19990816)111:16<2515::aid-ange2515>3.0.co;2-a

Hartwig, J. F. (2002). CHEMICAL SYNTHESIS: Raising the Bar for the. Science, 297(5587), 1653-1654. doi:10.1126/science.1076371

Ahmed, M., Seayad, A. M., Jackstell, R., & Beller, M. (2003). Amines Made Easily:  A Highly Selective Hydroaminomethylation of Olefins. Journal of the American Chemical Society, 125(34), 10311-10318. doi:10.1021/ja030143w

Ahmed, M., Buch, C., Routaboul, L., Jackstell, R., Klein, H., Spannenberg, A., & Beller, M. (2007). Hydroaminomethylation with Novel Rhodium–Carbene complexes: An Efficient Catalytic Approach to Pharmaceuticals. Chemistry - A European Journal, 13(5), 1594-1601. doi:10.1002/chem.200601155

Crozet, D., Urrutigoïty, M., & Kalck, P. (2011). Recent Advances in Amine Synthesis by Catalytic Hydroaminomethylation of Alkenes. ChemCatChem, 3(7), 1102-1118. doi:10.1002/cctc.201000411

Gülak, S., Wu, L., Liu, Q., Franke, R., Jackstell, R., & Beller, M. (2014). Phosphine‐ and Hydrogen‐Free: Highly Regioselective Ruthenium‐Catalyzed Hydroaminomethylation of Olefins. Angewandte Chemie International Edition, 53(28), 7320-7323. doi:10.1002/anie.201402368

Gülak, S., Wu, L., Liu, Q., Franke, R., Jackstell, R., & Beller, M. (2014). Phosphine‐ and Hydrogen‐Free: Highly Regioselective Ruthenium‐Catalyzed Hydroaminomethylation of Olefins. Angewandte Chemie, 126(28), 7448-7451. doi:10.1002/ange.201402368

Chen, C., Dong, X.-Q., & Zhang, X. (2016). Recent progress in rhodium-catalyzed hydroaminomethylation. Organic Chemistry Frontiers, 3(10), 1359-1370. doi:10.1039/c6qo00233a

Fleischer, I., Gehrtz, P., Hirschbeck, V., & Ciszek, B. (2016). Carbonylations of Alkenes in the Total Synthesis of Natural Compounds. Synthesis, 48(11), 1573-1596. doi:10.1055/s-0035-1560431

Kobayashi, S., & Ishitani, H. (1999). Catalytic Enantioselective Addition to Imines. Chemical Reviews, 99(5), 1069-1094. doi:10.1021/cr980414z

Lipshutz, B. H., & Shimizu, H. (2004). Copper(I)-Catalyzed Asymmetric Hydrosilylations of Imines at Ambient Temperatures. Angewandte Chemie International Edition, 43(17), 2228-2230. doi:10.1002/anie.200353294

Lipshutz, B. H., & Shimizu, H. (2004). Copper(I)-Catalyzed Asymmetric Hydrosilylations of Imines at Ambient Temperatures. Angewandte Chemie, 116(17), 2278-2280. doi:10.1002/ange.200353294

Nolin, K. A., Ahn, R. W., & Toste, F. D. (2005). Enantioselective Reduction of Imines Catalyzed by a Rhenium(V)−Oxo Complex. Journal of the American Chemical Society, 127(36), 12462-12463. doi:10.1021/ja050831a

Mršić, N., Minnaard, A. J., Feringa, B. L., & Vries, J. G. de. (2009). Iridium/Monodentate Phosphoramidite Catalyzed Asymmetric Hydrogenation ofN-Aryl Imines. Journal of the American Chemical Society, 131(24), 8358-8359. doi:10.1021/ja901961y

Nugent, T. C., & El-Shazly, M. (2010). Chiral Amine Synthesis - Recent Developments and Trends for Enamide Reduction, Reductive Amination, and Imine Reduction. Advanced Synthesis & Catalysis, 352(5), 753-819. doi:10.1002/adsc.200900719

Xie, J.-H., Zhu, S.-F., & Zhou, Q.-L. (2011). Transition Metal-Catalyzed Enantioselective Hydrogenation of Enamines and Imines. Chemical Reviews, 111(3), 1713-1760. doi:10.1021/cr100218m

Zhou, S., Fleischer, S., Junge, K., & Beller, M. (2011). Cooperative Transition-Metal and Chiral Brønsted Acid Catalysis: Enantioselective Hydrogenation of Imines To Form Amines. Angewandte Chemie International Edition, 50(22), 5120-5124. doi:10.1002/anie.201100878

Zhou, S., Fleischer, S., Junge, K., & Beller, M. (2011). Cooperative Transition-Metal and Chiral Brønsted Acid Catalysis: Enantioselective Hydrogenation of Imines To Form Amines. Angewandte Chemie, 123(22), 5226-5230. doi:10.1002/ange.201100878

Bartoszewicz, A., Ahlsten, N., & Martín-Matute, B. (2013). Enantioselective Synthesis of Alcohols and Amines by Iridium-Catalyzed Hydrogenation, Transfer Hydrogenation, and Related Processes. Chemistry - A European Journal, 19(23), 7274-7302. doi:10.1002/chem.201202836

Etayo, P., & Vidal-Ferran, A. (2013). Rhodium-catalysed asymmetric hydrogenation as a valuable synthetic tool for the preparation of chiral drugs. Chem. Soc. Rev., 42(2), 728-754. doi:10.1039/c2cs35410a

Lagaditis, P. O., Sues, P. E., Sonnenberg, J. F., Wan, K. Y., Lough, A. J., & Morris, R. H. (2014). Iron(II) Complexes Containing Unsymmetrical P–N–P′ Pincer Ligands for the Catalytic Asymmetric Hydrogenation of Ketones and Imines. Journal of the American Chemical Society, 136(4), 1367-1380. doi:10.1021/ja4082233

Rossi, S., Benaglia, M., Massolo, E., & Raimondi, L. (2014). Organocatalytic strategies for enantioselective metal-free reductions. Catalysis Science & Technology, 4(9), 2708. doi:10.1039/c4cy00033a

Hopmann, K. H., & Bayer, A. (2014). Enantioselective imine hydrogenation with iridium-catalysts: Reactions, mechanisms and stereocontrol. Coordination Chemistry Reviews, 268, 59-82. doi:10.1016/j.ccr.2014.01.023

Ghislieri, D., & Turner, N. J. (2013). Biocatalytic Approaches to the Synthesis of Enantiomerically Pure Chiral Amines. Topics in Catalysis, 57(5), 284-300. doi:10.1007/s11244-013-0184-1

Schrittwieser, J. H., Velikogne, S., & Kroutil, W. (2015). Biocatalytic Imine Reduction and Reductive Amination of Ketones. Advanced Synthesis & Catalysis, 357(8), 1655-1685. doi:10.1002/adsc.201500213

Zhu, C., Saito, K., Yamanaka, M., & Akiyama, T. (2015). Benzothiazoline: Versatile Hydrogen Donor for Organocatalytic Transfer Hydrogenation. Accounts of Chemical Research, 48(2), 388-398. doi:10.1021/ar500414x

Oku, T., & Ikariya, T. (2002). Enhanced Product Selectivity in Continuous N-Methylation of Amino Alcohols over Solid Acid–Base Catalysts with Supercritical Methanol. Angewandte Chemie International Edition, 41(18), 3476-3479. doi:10.1002/1521-3773(20020916)41:18<3476::aid-anie3476>3.0.co;2-5

Oku, T., Arita, Y., Tsuneki, H., & Ikariya, T. (2004). Continuous Chemoselective Methylation of Functionalized Amines and Diols with Supercritical Methanol over Solid Acid and Acid−Base Bifunctional Catalysts. Journal of the American Chemical Society, 126(23), 7368-7377. doi:10.1021/ja048557s

Hollmann, D., Bähn, S., Tillack, A., & Beller, M. (2007). A General Ruthenium-Catalyzed Synthesis of Aromatic Amines. Angewandte Chemie International Edition, 46(43), 8291-8294. doi:10.1002/anie.200703119

Hollmann, D., Bähn, S., Tillack, A., & Beller, M. (2007). Eine allgemeine rutheniumkatalysierte Synthese von aromatischen Aminen. Angewandte Chemie, 119(43), 8440-8444. doi:10.1002/ange.200703119

Hollmann, D., Bähn, S., Tillack, A., & Beller, M. (2008). N-Dealkylation of aliphatic amines and selective synthesis of monoalkylated aryl amines. Chemical Communications, (27), 3199. doi:10.1039/b803114b

Saidi, O., Blacker, A. J., Farah, M. M., Marsden, S. P., & Williams, J. M. J. (2009). Selective Amine Cross-Coupling Using Iridium-Catalyzed «Borrowing Hydrogen» Methodology. Angewandte Chemie International Edition, 48(40), 7375-7378. doi:10.1002/anie.200904028

Saidi, O., Blacker, A. J., Farah, M. M., Marsden, S. P., & Williams, J. M. J. (2009). Selective Amine Cross-Coupling Using Iridium-Catalyzed «Borrowing Hydrogen» Methodology. Angewandte Chemie, 121(40), 7511-7514. doi:10.1002/ange.200904028

Guillena, G., Ramón, D. J., & Yus, M. (2009). Hydrogen Autotransfer in theN-Alkylation of Amines and Related Compounds using Alcohols and Amines as Electrophiles. Chemical Reviews, 110(3), 1611-1641. doi:10.1021/cr9002159

Zhao, Y., Foo, S. W., & Saito, S. (2011). Iron/Amino Acid Catalyzed Direct N-Alkylation of Amines with Alcohols. Angewandte Chemie International Edition, 50(13), 3006-3009. doi:10.1002/anie.201006660

Zhao, Y., Foo, S. W., & Saito, S. (2011). Iron/Amino Acid Catalyzed Direct N-Alkylation of Amines with Alcohols. Angewandte Chemie, 123(13), 3062-3065. doi:10.1002/ange.201006660

Bähn, S., Imm, S., Neubert, L., Zhang, M., Neumann, H., & Beller, M. (2011). The Catalytic Amination of Alcohols. ChemCatChem, 3(12), 1853-1864. doi:10.1002/cctc.201100255

Abarca, B., Adam, R., & Ballesteros, R. (2012). An efficient one pot transfer hydrogenation and N-alkylation of quinolines with alcohols mediated by Pd/C/Zn. Organic & Biomolecular Chemistry, 10(9), 1826. doi:10.1039/c1ob05888f

Yang, Q., Wang, Q., & Yu, Z. (2015). Substitution of alcohols by N-nucleophiles via transition metal-catalyzed dehydrogenation. Chemical Society Reviews, 44(8), 2305-2329. doi:10.1039/c4cs00496e

Yin, Z., Zeng, H., Wu, J., Zheng, S., & Zhang, G. (2016). Cobalt-Catalyzed Synthesis of Aromatic, Aliphatic, and Cyclic Secondary Amines via a «Hydrogen-Borrowing» Strategy. ACS Catalysis, 6(10), 6546-6550. doi:10.1021/acscatal.6b02218

Arachchige, P. T. K., Lee, H., & Yi, C. S. (2018). Synthesis of Symmetric and Unsymmetric Secondary Amines from the Ligand-Promoted Ruthenium-Catalyzed Deaminative Coupling Reaction of Primary Amines. The Journal of Organic Chemistry, 83(9), 4932-4947. doi:10.1021/acs.joc.8b00649

Müller, T. E., & Beller, M. (1998). Metal-Initiated Amination of Alkenes and Alkynes†. Chemical Reviews, 98(2), 675-704. doi:10.1021/cr960433d

Beller, M., Seayad, J., Tillack, A., & Jiao, H. (2004). Catalytic Markovnikov and anti-Markovnikov Functionalization of Alkenes and Alkynes: Recent Developments and Trends. Angewandte Chemie International Edition, 43(26), 3368-3398. doi:10.1002/anie.200300616

Beller, M., Seayad, J., Tillack, A., & Jiao, H. (2004). Katalytische Markownikow- und Anti-Markownikow-Funktionalisierung von Alkenen und Alkinen. Angewandte Chemie, 116(26), 3448-3479. doi:10.1002/ange.200300616

Müller, T. E., Hultzsch, K. C., Yus, M., Foubelo, F., & Tada, M. (2008). Hydroamination: Direct Addition of Amines to Alkenes and Alkynes. Chemical Reviews, 108(9), 3795-3892. doi:10.1021/cr0306788

Leyva-Pérez, A., Cabrero-Antonino, J. R., Cantín, A., & Corma, A. (2010). Gold(I) Catalyzes the Intermolecular Hydroamination of Alkynes with Imines and Produces α,α′,N-Triarylbisenamines: Studies on Their Use As Intermediates in Synthesis. The Journal of Organic Chemistry, 75(22), 7769-7780. doi:10.1021/jo101674t

Yim, J. C.-H., & Schafer, L. L. (2014). Efficient Anti-Markovnikov-Selective Catalysts for Intermolecular Alkyne Hydroamination: Recent Advances and Synthetic Applications. European Journal of Organic Chemistry, 2014(31), 6825-6840. doi:10.1002/ejoc.201402300

Gui, J., Pan, C.-M., Jin, Y., Qin, T., Lo, J. C., Lee, B. J., … Baran, P. S. (2015). Practical olefin hydroamination with nitroarenes. Science, 348(6237), 886-891. doi:10.1126/science.aab0245

Huang, L., Arndt, M., Gooßen, K., Heydt, H., & Gooßen, L. J. (2015). Late Transition Metal-Catalyzed Hydroamination and Hydroamidation. Chemical Reviews, 115(7), 2596-2697. doi:10.1021/cr300389u

Yang, Y., Shi, S.-L., Niu, D., Liu, P., & Buchwald, S. L. (2015). Catalytic asymmetric hydroamination of unactivated internal olefins to aliphatic amines. Science, 349(6243), 62-66. doi:10.1126/science.aab3753

Pirnot, M. T., Wang, Y.-M., & Buchwald, S. L. (2015). Copper Hydride Catalyzed Hydroamination of Alkenes and Alkynes. Angewandte Chemie International Edition, 55(1), 48-57. doi:10.1002/anie.201507594

Pirnot, M. T., Wang, Y.-M., & Buchwald, S. L. (2015). Kupferhydrid-katalysierte Hydroaminierung von Alkenen und Alkinen. Angewandte Chemie, 128(1), 48-57. doi:10.1002/ange.201507594

Hartwig, J. F. (1998). Transition Metal Catalyzed Synthesis of Arylamines and Aryl Ethers from Aryl Halides and Triflates: Scope and Mechanism. Angewandte Chemie International Edition, 37(15), 2046-2067. doi:10.1002/(sici)1521-3773(19980817)37:15<2046::aid-anie2046>3.0.co;2-l

Hartwig, J. F. (1998). Übergangsmetall-katalysierte Synthese von Arylaminen und Arylethern aus Arylhalogeniden und -triflaten: Anwendungen und Reaktionsmechanismus. Angewandte Chemie, 110(15), 2154-2177. doi:10.1002/(sici)1521-3757(19980803)110:15<2154::aid-ange2154>3.0.co;2-c

Hartwig, J. F. (2008). Evolution of a Fourth Generation Catalyst for the Amination and Thioetherification of Aryl Halides. Accounts of Chemical Research, 41(11), 1534-1544. doi:10.1021/ar800098p

Surry, D. S., & Buchwald, S. L. (2011). Dialkylbiaryl phosphines in Pd-catalyzed amination: a user’s guide. Chem. Sci., 2(1), 27-50. doi:10.1039/c0sc00331j

Brusoe, A. T., & Hartwig, J. F. (2015). Palladium-Catalyzed Arylation of Fluoroalkylamines. Journal of the American Chemical Society, 137(26), 8460-8468. doi:10.1021/jacs.5b02512

Tietze, L. F. (1996). Domino Reactions in Organic Synthesis. Chemical Reviews, 96(1), 115-136. doi:10.1021/cr950027e

Padwa, A., & Bur, S. K. (2007). The domino way to heterocycles. Tetrahedron, 63(25), 5341-5378. doi:10.1016/j.tet.2007.03.158

Padwa, A. (2009). Domino reactions of rhodium(ii) carbenoids for alkaloid synthesis. Chemical Society Reviews, 38(11), 3072. doi:10.1039/b816701j

Tietze, L. F., Kinzel, T., & Brazel, C. C. (2009). The Domino Multicomponent Allylation Reaction for the Stereoselective Synthesis of Homoallylic Alcohols. Accounts of Chemical Research, 42(2), 367-378. doi:10.1021/ar800170y

Sakakura, T., Choi, J.-C., & Yasuda, H. (2007). Transformation of Carbon Dioxide. Chemical Reviews, 107(6), 2365-2387. doi:10.1021/cr068357u

Mikkelsen, M., Jørgensen, M., & Krebs, F. C. (2010). The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ. Sci., 3(1), 43-81. doi:10.1039/b912904a

Peters, M., Köhler, B., Kuckshinrichs, W., Leitner, W., Markewitz, P., & Müller, T. E. (2011). Chemical Technologies for Exploiting and Recycling Carbon Dioxide into the Value Chain. ChemSusChem, 4(9), 1216-1240. doi:10.1002/cssc.201000447

Markewitz, P., Kuckshinrichs, W., Leitner, W., Linssen, J., Zapp, P., Bongartz, R., … Müller, T. E. (2012). Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energy & Environmental Science, 5(6), 7281. doi:10.1039/c2ee03403d

Aresta, M., Dibenedetto, A., & Angelini, A. (2013). Catalysis for the Valorization of Exhaust Carbon: from CO2to Chemicals, Materials, and Fuels. Technological Use of CO2. Chemical Reviews, 114(3), 1709-1742. doi:10.1021/cr4002758

Lanzafame, P., Centi, G., & Perathoner, S. (2014). Catalysis for biomass and CO2use through solar energy: opening new scenarios for a sustainable and low-carbon chemical production. Chem. Soc. Rev., 43(22), 7562-7580. doi:10.1039/c3cs60396b

Maeda, C., Miyazaki, Y., & Ema, T. (2014). Recent progress in catalytic conversions of carbon dioxide. Catalysis Science & Technology, 4(6), 1482. doi:10.1039/c3cy00993a

Jessop, P. G., Ikariya, T., & Noyori, R. (1994). Homogeneous catalytic hydrogenation of supercritical carbon dioxide. Nature, 368(6468), 231-233. doi:10.1038/368231a0

Leitner, W. (1995). Carbon Dioxide as a Raw Material: The Synthesis of Formic Acid and Its Derivatives from CO2. Angewandte Chemie International Edition in English, 34(20), 2207-2221. doi:10.1002/anie.199522071

Leitner, W. (1995). Kohlendioxid als Rohstoff am Beispiel der Synthese von Ameisensäure und ihren Derivaten. Angewandte Chemie, 107(20), 2391-2405. doi:10.1002/ange.19951072005

Jessop, P. G., Hsiao, Y., Ikariya, T., & Noyori, R. (1996). Homogeneous Catalysis in Supercritical Fluids:  Hydrogenation of Supercritical Carbon Dioxide to Formic Acid, Alkyl Formates, and Formamides. Journal of the American Chemical Society, 118(2), 344-355. doi:10.1021/ja953097b

Jessop, P. G., Joó, F., & Tai, C.-C. (2004). Recent advances in the homogeneous hydrogenation of carbon dioxide. Coordination Chemistry Reviews, 248(21-24), 2425-2442. doi:10.1016/j.ccr.2004.05.019

Federsel, C., Jackstell, R., & Beller, M. (2010). State-of-the-Art Catalysts for Hydrogenation of Carbon Dioxide. Angewandte Chemie International Edition, 49(36), 6254-6257. doi:10.1002/anie.201000533

Federsel, C., Jackstell, R., & Beller, M. (2010). Moderne Katalysatoren zur Hydrierung von Kohlendioxid. Angewandte Chemie, 122(36), 6392-6395. doi:10.1002/ange.201000533

Wang, W., Wang, S., Ma, X., & Gong, J. (2011). Recent advances in catalytic hydrogenation of carbon dioxide. Chemical Society Reviews, 40(7), 3703. doi:10.1039/c1cs15008a

Hull, J. F., Himeda, Y., Wang, W.-H., Hashiguchi, B., Periana, R., Szalda, D. J., … Fujita, E. (2012). Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures. Nature Chemistry, 4(5), 383-388. doi:10.1038/nchem.1295

Wesselbaum, S., vom Stein, T., Klankermayer, J., & Leitner, W. (2012). Hydrogenation of Carbon Dioxide to Methanol by Using a Homogeneous Ruthenium-Phosphine Catalyst. Angewandte Chemie International Edition, 51(30), 7499-7502. doi:10.1002/anie.201202320

Wesselbaum, S., vom Stein, T., Klankermayer, J., & Leitner, W. (2012). Hydrogenation of Carbon Dioxide to Methanol by Using a Homogeneous Ruthenium-Phosphine Catalyst. Angewandte Chemie, 124(30), 7617-7620. doi:10.1002/ange.201202320

Fernández-Alvarez, F. J., Aitani, A. M., & Oro, L. A. (2014). Homogeneous catalytic reduction of CO2 with hydrosilanes. Catal. Sci. Technol., 4(3), 611-624. doi:10.1039/c3cy00948c

Moret, S., Dyson, P. J., & Laurenczy, G. (2014). Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media. Nature Communications, 5(1). doi:10.1038/ncomms5017

Von Wolff, N., Lefèvre, G., Berthet, J.-C., Thuéry, P., & Cantat, T. (2016). Implications of CO2Activation by Frustrated Lewis Pairs in the Catalytic Hydroboration of CO2: A View Using N/Si+Frustrated Lewis Pairs. ACS Catalysis, 6(7), 4526-4535. doi:10.1021/acscatal.6b00421

Álvarez, A., Bansode, A., Urakawa, A., Bavykina, A. V., Wezendonk, T. A., Makkee, M., … Kapteijn, F. (2017). Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO2 Hydrogenation Processes. Chemical Reviews, 117(14), 9804-9838. doi:10.1021/acs.chemrev.6b00816

Schneidewind, J., Adam, R., Baumann, W., Jackstell, R., & Beller, M. (2017). Low-Temperature Hydrogenation of Carbon Dioxide to Methanol with a Homogeneous Cobalt Catalyst. Angewandte Chemie International Edition, 56(7), 1890-1893. doi:10.1002/anie.201609077

Schneidewind, J., Adam, R., Baumann, W., Jackstell, R., & Beller, M. (2017). Low-Temperature Hydrogenation of Carbon Dioxide to Methanol with a Homogeneous Cobalt Catalyst. Angewandte Chemie, 129(7), 1916-1919. doi:10.1002/ange.201609077

Sordakis, K., Tang, C., Vogt, L. K., Junge, H., Dyson, P. J., Beller, M., & Laurenczy, G. (2017). Homogeneous Catalysis for Sustainable Hydrogen Storage in Formic Acid and Alcohols. Chemical Reviews, 118(2), 372-433. doi:10.1021/acs.chemrev.7b00182

Braunstein, P., Matt, D., & Nobel, D. (1988). Reactions of carbon dioxide with carbon-carbon bond formation catalyzed by transition-metal complexes. Chemical Reviews, 88(5), 747-764. doi:10.1021/cr00087a003

Aresta, M., & Dibenedetto, A. (2007). Utilisation of CO2 as a chemical feedstock: opportunities and challenges. Dalton Transactions, (28), 2975. doi:10.1039/b700658f

Boogaerts, I. I. F., & Nolan, S. P. (2010). Carboxylation of C−H Bonds UsingN-Heterocyclic Carbene Gold(I) Complexes. Journal of the American Chemical Society, 132(26), 8858-8859. doi:10.1021/ja103429q

Huang, K., Sun, C.-L., & Shi, Z.-J. (2011). Transition-metal-catalyzed C–C bond formation through the fixation of carbon dioxide. Chemical Society Reviews, 40(5), 2435. doi:10.1039/c0cs00129e

Liu, Q., Wu, L., Jackstell, R., & Beller, M. (2015). Using carbon dioxide as a building block in organic synthesis. Nature Communications, 6(1). doi:10.1038/ncomms6933

Juliá-Hernández, F., Moragas, T., Cornella, J., & Martin, R. (2017). Remote carboxylation of halogenated aliphatic hydrocarbons with carbon dioxide. Nature, 545(7652), 84-88. doi:10.1038/nature22316

Tlili, A., Frogneux, X., Blondiaux, E., & Cantat, T. (2014). Creating Added Value with a Waste: Methylation of Amines with CO2and H2. Angewandte Chemie International Edition, 53(10), 2543-2545. doi:10.1002/anie.201310337

Tlili, A., Frogneux, X., Blondiaux, E., & Cantat, T. (2014). Wertschöpfung aus einem Abfallstoff: Methylierung von Aminen mit CO2und H2. Angewandte Chemie, 126(10), 2577-2579. doi:10.1002/ange.201310337

Klankermayer, J., & Leitner, W. (2015). Love at second sight for CO2 and H2 in organic synthesis. Science, 350(6261), 629-630. doi:10.1126/science.aac7997

Yan, G., Borah, A. J., Wang, L., & Yang, M. (2015). Recent Advances in Transition Metal-Catalyzed Methylation Reactions. Advanced Synthesis & Catalysis, 357(7), 1333-1350. doi:10.1002/adsc.201400984

Tlili, A., Blondiaux, E., Frogneux, X., & Cantat, T. (2015). Reductive functionalization of CO2 with amines: an entry to formamide, formamidine and methylamine derivatives. Green Chemistry, 17(1), 157-168. doi:10.1039/c4gc01614a

Klankermayer, J., Wesselbaum, S., Beydoun, K., & Leitner, W. (2016). Selective Catalytic Synthesis Using the Combination of Carbon Dioxide and Hydrogen: Catalytic Chess at the Interface of Energy and Chemistry. Angewandte Chemie International Edition, 55(26), 7296-7343. doi:10.1002/anie.201507458

Klankermayer, J., Wesselbaum, S., Beydoun, K., & Leitner, W. (2016). Selektive katalytische Synthesen mit Kohlendioxid und Wasserstoff: Katalyse-Schach an der Nahtstelle zwischen Energie und Chemie. Angewandte Chemie, 128(26), 7416-7467. doi:10.1002/ange.201507458

Li, Y., Cui, X., Dong, K., Junge, K., & Beller, M. (2017). Utilization of CO2as a C1 Building Block for Catalytic Methylation Reactions. ACS Catalysis, 7(2), 1077-1086. doi:10.1021/acscatal.6b02715

Schäffner, B., Schäffner, F., Verevkin, S. P., & Börner, A. (2010). Organic Carbonates as Solvents in Synthesis and Catalysis. Chemical Reviews, 110(8), 4554-4581. doi:10.1021/cr900393d

Balaraman, E., Gunanathan, C., Zhang, J., Shimon, L. J. W., & Milstein, D. (2011). Efficient hydrogenation of organic carbonates, carbamates and formates indicates alternative routes to methanol based on CO2 and CO. Nature Chemistry, 3(8), 609-614. doi:10.1038/nchem.1089

Dub, P. A., & Ikariya, T. (2012). Catalytic Reductive Transformations of Carboxylic and Carbonic Acid Derivatives Using Molecular Hydrogen. ACS Catalysis, 2(8), 1718-1741. doi:10.1021/cs300341g

Ikariya, T., & Kayaki, Y. (2014). Hydrogenation of carboxylic acid derivatives with bifunctional ruthenium catalysts. Pure and Applied Chemistry, 86(6), 933-943. doi:10.1515/pac-2014-0103

Smith, A. M., & Whyman, R. (2014). Review of Methods for the Catalytic Hydrogenation of Carboxamides. Chemical Reviews, 114(10), 5477-5510. doi:10.1021/cr400609m

Werkmeister, S., Junge, K., & Beller, M. (2014). Catalytic Hydrogenation of Carboxylic Acid Esters, Amides, and Nitriles with Homogeneous Catalysts. Organic Process Research & Development, 18(2), 289-302. doi:10.1021/op4003278

Just-Baringo, X., & Procter, D. J. (2015). Sm(II)-Mediated Electron Transfer to Carboxylic Acid Derivatives: Development of Complexity-Generating Cascades. Accounts of Chemical Research, 48(5), 1263-1275. doi:10.1021/acs.accounts.5b00083

Pritchard, J., Filonenko, G. A., van Putten, R., Hensen, E. J. M., & Pidko, E. A. (2015). Heterogeneous and homogeneous catalysis for the hydrogenation of carboxylic acid derivatives: history, advances and future directions. Chemical Society Reviews, 44(11), 3808-3833. doi:10.1039/c5cs00038f

Mérel, D. S., Do, M. L. T., Gaillard, S., Dupau, P., & Renaud, J.-L. (2015). Iron-catalyzed reduction of carboxylic and carbonic acid derivatives. Coordination Chemistry Reviews, 288, 50-68. doi:10.1016/j.ccr.2015.01.008

Nagashima, H. (2015). Efficient Transition Metal-Catalyzed Reactions of Carboxylic Acid Derivatives with Hydrosilanes and Hydrosiloxanes, Afforded by Catalyst Design and the Proximity Effect of Two Si–H Groups. Synlett, 26(07), 866-890. doi:10.1055/s-0034-1379989

Crochet, P., & Cadierno, V. (2014). Ruthenium-Catalyzed Amide-Bond Formation. Topics in Organometallic Chemistry, 81-118. doi:10.1007/3418_2014_78

De Figueiredo, R. M., Suppo, J.-S., & Campagne, J.-M. (2016). Nonclassical Routes for Amide Bond Formation. Chemical Reviews, 116(19), 12029-12122. doi:10.1021/acs.chemrev.6b00237

Kreituss, I., & Bode, J. W. (2016). Catalytic Kinetic Resolution of Saturated N-Heterocycles by Enantioselective Amidation with Chiral Hydroxamic Acids. Accounts of Chemical Research, 49(12), 2807-2821. doi:10.1021/acs.accounts.6b00461

Ojeda-Porras, A., & Gamba-Sánchez, D. (2016). Recent Developments in Amide Synthesis Using Nonactivated Starting Materials. The Journal of Organic Chemistry, 81(23), 11548-11555. doi:10.1021/acs.joc.6b02358

Noda, H., Furutachi, M., Asada, Y., Shibasaki, M., & Kumagai, N. (2017). Unique physicochemical and catalytic properties dictated by the B3NO2 ring system. Nature Chemistry, 9(6), 571-577. doi:10.1038/nchem.2708

Brown, H. C., Narasimhan, S., & Choi, Y. M. (1981). Improved Procedure for Borane-Dimethyl Sulfide Reduction of Primary Amides to Amines. Synthesis, 1981(06), 441-442. doi:10.1055/s-1981-29473

W. Gribble, G. (1998). Sodium borohydride in carboxylic acid media: a phenomenal reduction system. Chemical Society Reviews, 27(6), 395. doi:10.1039/a827395z

Pelletier, G., Bechara, W. S., & Charette, A. B. (2010). Controlled and Chemoselective Reduction of Secondary Amides. Journal of the American Chemical Society, 132(37), 12817-12819. doi:10.1021/ja105194s

Coetzee, J., Dodds, D. L., Klankermayer, J., Brosinski, S., Leitner, W., Slawin, A. M. Z., & Cole-Hamilton, D. J. (2013). Homogeneous Catalytic Hydrogenation of Amides to Amines. Chemistry - A European Journal, 19(33), 11039-11050. doi:10.1002/chem.201204270

Stein, M., & Breit, B. (2012). Catalytic Hydrogenation of Amides to Amines under Mild Conditions. Angewandte Chemie International Edition, 52(8), 2231-2234. doi:10.1002/anie.201207803

Stein, M., & Breit, B. (2012). Catalytic Hydrogenation of Amides to Amines under Mild Conditions. Angewandte Chemie, 125(8), 2287-2290. doi:10.1002/ange.201207803

Vom Stein, T., Meuresch, M., Limper, D., Schmitz, M., Hölscher, M., Coetzee, J., … Leitner, W. (2014). Highly Versatile Catalytic Hydrogenation of Carboxylic and Carbonic Acid Derivatives using a Ru-Triphos Complex: Molecular Control over Selectivity and Substrate Scope. Journal of the American Chemical Society, 136(38), 13217-13225. doi:10.1021/ja506023f

Cabrero-Antonino, J. R., Alberico, E., Junge, K., Junge, H., & Beller, M. (2016). Towards a general ruthenium-catalyzed hydrogenation of secondary and tertiary amides to amines. Chemical Science, 7(5), 3432-3442. doi:10.1039/c5sc04671h

Li, B., Sortais, J.-B., & Darcel, C. (2016). Amine synthesis via transition metal homogeneous catalysed hydrosilylation. RSC Advances, 6(62), 57603-57625. doi:10.1039/c6ra10494k

Mukherjee, D., Shirase, S., Mashima, K., & Okuda, J. (2016). Chemoselective Reduction of Tertiary Amides to Amines Catalyzed by Triphenylborane. Angewandte Chemie International Edition, 55(42), 13326-13329. doi:10.1002/anie.201605236

Mukherjee, D., Shirase, S., Mashima, K., & Okuda, J. (2016). Triphenylboran-katalysierte chemoselektive Reduktion von tertiären Amiden zu Aminen. Angewandte Chemie, 128(42), 13520-13523. doi:10.1002/ange.201605236

Volkov, A., Tinnis, F., Slagbrand, T., Trillo, P., & Adolfsson, H. (2016). Chemoselective reduction of carboxamides. Chemical Society Reviews, 45(24), 6685-6697. doi:10.1039/c6cs00244g

Mitsudome, T., Miyagawa, K., Maeno, Z., Mizugaki, T., Jitsukawa, K., Yamasaki, J., … Kaneda, K. (2017). Mild Hydrogenation of Amides to Amines over a Platinum-Vanadium Bimetallic Catalyst. Angewandte Chemie International Edition, 56(32), 9381-9385. doi:10.1002/anie.201704199

Mitsudome, T., Miyagawa, K., Maeno, Z., Mizugaki, T., Jitsukawa, K., Yamasaki, J., … Kaneda, K. (2017). Mild Hydrogenation of Amides to Amines over a Platinum-Vanadium Bimetallic Catalyst. Angewandte Chemie, 129(32), 9509-9513. doi:10.1002/ange.201704199

GRIBBLE, G. W., & HEALD, P. W. (1975). Reactions of Sodium Borohydride in Acidic Media; III. Reduction and Alkylation of Quinoline and Isoquinoline with Carboxylic Acids. Synthesis, 1975(10), 650-652. doi:10.1055/s-1975-23871

Marchini, P., Liso, G., Reho, A., Liberatore, F., & Micheletti Moracci, F. (1975). Sodium borohydride-carboxylic acid systems. Useful reagents for the alkylation of amines. The Journal of Organic Chemistry, 40(23), 3453-3456. doi:10.1021/jo00911a038

GRIBBLE, G. W., JASINSKI, J. M., PELLICONE, J. T., & PANETTA, J. A. (1978). Reactions of Sodium Borohydride in Acidic Media; VIII.N-Alkylation of Aliphatic Secondary Amines with Carboxylic Acids. Synthesis, 1978(10), 766-768. doi:10.1055/s-1978-24885

Trapani, G., Reho, A., & Latrofa, A. (1983). Trimethylamine-Borane as Useful Reagent in theN-Acylation orN-Alkylation of Amines by Carboxylic Acids. Synthesis, 1983(12), 1013-1014. doi:10.1055/s-1983-30605

Perrio-Huard, C., Aubert, C., & Lasne, M.-C. (2000). Reductive amination of carboxylic acids and [11C]magnesium halide carboxylates. Journal of the Chemical Society, Perkin Transactions 1, (3), 311-316. doi:10.1039/a908991h

Akita, M. (2000). Deoxygenative reduction of organometallic compounds by hydrosilanes — an organometallic approach to reaction mechanisms of catalytic CO hydrogenation. Applied Catalysis A: General, 200(1-2), 153-165. doi:10.1016/s0926-860x(00)00632-3

Carpentier, J.-F., & Bette, V. (2002). Chemo- and Enantioselective Hydrosilylation of Carbonyl and Imino Groups. An Emphasis on Non-Traditional Catalyst Systems. Current Organic Chemistry, 6(10), 913-936. doi:10.2174/1385272023373851

KUBAS, G. J. (2004). HETEROLYTIC SPLITTING OF HH, SiH, AND OTHER σ BONDS ON ELECTROPHILIC METAL CENTERS. Advances in Inorganic Chemistry, 127-177. doi:10.1016/s0898-8838(04)56005-1

Addis, D., Das, S., Junge, K., & Beller, M. (2011). Selective Reduction of Carboxylic Acid Derivatives by Catalytic Hydrosilylation. Angewandte Chemie International Edition, 50(27), 6004-6011. doi:10.1002/anie.201100145

Addis, D., Das, S., Junge, K., & Beller, M. (2011). Selektive Reduktion von Carbonsäurederivaten durch katalytische Hydrosilylierung. Angewandte Chemie, 123(27), 6128-6135. doi:10.1002/ange.201100145

Sousa, S. C. A., Cabrita, I., & Fernandes, A. C. (2012). High-valent oxo-molybdenum and oxo-rhenium complexes as efficient catalysts for X–H (X = Si, B, P and H) bond activation and for organic reductions. Chemical Society Reviews, 41(17), 5641. doi:10.1039/c2cs35155b

Corey, J. Y. (2016). Reactions of Hydrosilanes with Transition Metal Complexes. Chemical Reviews, 116(19), 11291-11435. doi:10.1021/acs.chemrev.5b00559

Jacquet, O., Frogneux, X., Das Neves Gomes, C., & Cantat, T. (2013). CO2 as a C1-building block for the catalytic methylation of amines. Chemical Science, 4(5), 2127. doi:10.1039/c3sc22240c

Li, Y., Fang, X., Junge, K., & Beller, M. (2013). A General Catalytic Methylation of Amines Using Carbon Dioxide. Angewandte Chemie International Edition, 52(36), 9568-9571. doi:10.1002/anie.201301349

Li, Y., Fang, X., Junge, K., & Beller, M. (2013). A General Catalytic Methylation of Amines Using Carbon Dioxide. Angewandte Chemie, 125(36), 9747-9750. doi:10.1002/ange.201301349

Das, S., Bobbink, F. D., Laurenczy, G., & Dyson, P. J. (2014). Metal-Free Catalyst for the Chemoselective Methylation of Amines Using Carbon Dioxide as a Carbon Source. Angewandte Chemie International Edition, 53(47), 12876-12879. doi:10.1002/anie.201407689

Das, S., Bobbink, F. D., Laurenczy, G., & Dyson, P. J. (2014). Metal-Free Catalyst for the Chemoselective Methylation of Amines Using Carbon Dioxide as a Carbon Source. Angewandte Chemie, 126(47), 13090-13093. doi:10.1002/ange.201407689

Frogneux, X., Jacquet, O., & Cantat, T. (2014). Iron-catalyzed hydrosilylation of CO2: CO2 conversion to formamides and methylamines. Catal. Sci. Technol., 4(6), 1529-1533. doi:10.1039/c4cy00130c

González-Sebastián, L., Flores-Alamo, M., & García, J. J. (2015). Selective N-Methylation of Aliphatic Amines with CO2 and Hydrosilanes Using Nickel-Phosphine Catalysts. Organometallics, 34(4), 763-769. doi:10.1021/om501176u

Santoro, O., Lazreg, F., Minenkov, Y., Cavallo, L., & Cazin, C. S. J. (2015). N-heterocyclic carbene copper(i) catalysed N-methylation of amines using CO2. Dalton Transactions, 44(41), 18138-18144. doi:10.1039/c5dt03506f

Yang, Z., Yu, B., Zhang, H., Zhao, Y., Ji, G., Ma, Z., … Liu, Z. (2015). B(C6F5)3-catalyzed methylation of amines using CO2 as a C1 building block. Green Chemistry, 17(8), 4189-4193. doi:10.1039/c5gc01386k

Das, S., Bobbink, F. D., Bulut, S., Soudani, M., & Dyson, P. J. (2016). Thiazolium carbene catalysts for the fixation of CO2 onto amines. Chemical Communications, 52(12), 2497-2500. doi:10.1039/c5cc08741d

Fang, C., Lu, C., Liu, M., Zhu, Y., Fu, Y., & Lin, B.-L. (2016). Selective Formylation and Methylation of Amines using Carbon Dioxide and Hydrosilane Catalyzed by Alkali-Metal Carbonates. ACS Catalysis, 6(11), 7876-7881. doi:10.1021/acscatal.6b01856

Nguyen, T. V. Q., Yoo, W., & Kobayashi, S. (2016). Chelating Bis(1,2,3‐triazol‐5‐ylidene) Rhodium Complexes: Versatile Catalysts for Hydrosilylation Reactions. Advanced Synthesis & Catalysis, 358(3), 452-458. doi:10.1002/adsc.201500875

Liu, X.-F., Ma, R., Qiao, C., Cao, H., & He, L.-N. (2016). Fluoride-Catalyzed Methylation of Amines by Reductive Functionalization of CO2 with Hydrosilanes. Chemistry - A European Journal, 22(46), 16489-16493. doi:10.1002/chem.201603688

Liu, X.-F., Qiao, C., Li, X.-Y., & He, L.-N. (2017). Carboxylate-promoted reductive functionalization of CO2 with amines and hydrosilanes under mild conditions. Green Chemistry, 19(7), 1726-1731. doi:10.1039/c7gc00484b

Niu, H., Lu, L., Shi, R., Chiang, C.-W., & Lei, A. (2017). Catalyst-free N-methylation of amines using CO2. Chemical Communications, 53(6), 1148-1151. doi:10.1039/c6cc09072a

Xie, C., Song, J., Wu, H., Zhou, B., Wu, C., & Han, B. (2017). Natural Product Glycine Betaine as an Efficient Catalyst for Transformation of CO2 with Amines to Synthesize N-Substituted Compounds. ACS Sustainable Chemistry & Engineering, 5(8), 7086-7092. doi:10.1021/acssuschemeng.7b01287

Lu, Y., Gao, Z.-H., Chen, X.-Y., Guo, J., Liu, Z., Dang, Y., … Wang, Z.-X. (2017). Formylation or methylation: what determines the chemoselectivity of the reaction of amine, CO2, and hydrosilane catalyzed by 1,3,2-diazaphospholene? Chem. Sci., 8(11), 7637-7650. doi:10.1039/c7sc00824d

Wang, M.-Y., Wang, N., Liu, X.-F., Qiao, C., & He, L.-N. (2018). Tungstate catalysis: pressure-switched 2- and 6-electron reductive functionalization of CO2 with amines and phenylsilane. Green Chemistry, 20(7), 1564-1570. doi:10.1039/c7gc03416d

Hu, Y., Song, J., Xie, C., Wu, H., Wang, Z., Jiang, T., … Han, B. (2018). Renewable and Biocompatible Lecithin as an Efficient Organocatalyst for Reductive Conversion of CO2 with Amines to Formamides and Methylamines. ACS Sustainable Chemistry & Engineering, 6(9), 11228-11234. doi:10.1021/acssuschemeng.8b03245

Jacquet, O., Das Neves Gomes, C., Ephritikhine, M., & Cantat, T. (2012). Complete Catalytic Deoxygenation of CO2into Formamidine Derivatives. ChemCatChem, 5(1), 117-120. doi:10.1002/cctc.201200732

Frogneux, X., Blondiaux, E., Thuéry, P., & Cantat, T. (2015). Bridging Amines with CO2: Organocatalyzed Reduction of CO2 to Aminals. ACS Catalysis, 5(7), 3983-3987. doi:10.1021/acscatal.5b00734

Zhu, D.-Y., Fang, L., Han, H., Wang, Y., & Xia, J.-B. (2017). Reductive CO2 Fixation via Tandem C–C and C–N Bond Formation: Synthesis of Spiro-indolepyrrolidines. Organic Letters, 19(16), 4259-4262. doi:10.1021/acs.orglett.7b01906

Boddien, A., Mellmann, D., Gartner, F., Jackstell, R., Junge, H., Dyson, P. J., … Beller, M. (2011). Efficient Dehydrogenation of Formic Acid Using an Iron Catalyst. Science, 333(6050), 1733-1736. doi:10.1126/science.1206613

Mellmann, D., Sponholz, P., Junge, H., & Beller, M. (2016). Formic acid as a hydrogen storage material – development of homogeneous catalysts for selective hydrogen release. Chemical Society Reviews, 45(14), 3954-3988. doi:10.1039/c5cs00618j

Li, Z., & Xu, Q. (2017). Metal-Nanoparticle-Catalyzed Hydrogen Generation from Formic Acid. Accounts of Chemical Research, 50(6), 1449-1458. doi:10.1021/acs.accounts.7b00132

Wienhöfer, G., Sorribes, I., Boddien, A., Westerhaus, F., Junge, K., Junge, H., … Beller, M. (2011). General and Selective Iron-Catalyzed Transfer Hydrogenation of Nitroarenes without Base. Journal of the American Chemical Society, 133(32), 12875-12879. doi:10.1021/ja2061038

Cabrero-Antonino, J. R., Adam, R., Junge, K., Jackstell, R., & Beller, M. (2017). Cobalt-catalysed transfer hydrogenation of quinolines and related heterocycles using formic acid under mild conditions. Catalysis Science & Technology, 7(10), 1981-1985. doi:10.1039/c7cy00437k

Sorribes, I., Junge, K., & Beller, M. (2014). General Catalytic Methylation of Amines with Formic Acid under Mild Reaction Conditions. Chemistry - A European Journal, 20(26), 7878-7883. doi:10.1002/chem.201402124

Fu, M.-C., Shang, R., Cheng, W.-M., & Fu, Y. (2015). Boron-Catalyzed N-Alkylation of Amines using Carboxylic Acids. Angewandte Chemie International Edition, 54(31), 9042-9046. doi:10.1002/anie.201503879

Fu, M.-C., Shang, R., Cheng, W.-M., & Fu, Y. (2015). Boron-Catalyzed N-Alkylation of Amines using Carboxylic Acids. Angewandte Chemie, 127(31), 9170-9174. doi:10.1002/ange.201503879

Zhang, Q., Fu, M.-C., Yu, H.-Z., & Fu, Y. (2016). Mechanism of Boron-CatalyzedN-Alkylation of Amines with Carboxylic Acids. The Journal of Organic Chemistry, 81(15), 6235-6243. doi:10.1021/acs.joc.6b00778

Zhu, L., Wang, L.-S., Li, B., Li, W., & Fu, B. (2016). Methylation of aromatic amines and imines using formic acid over a heterogeneous Pt/C catalyst. Catalysis Science & Technology, 6(16), 6172-6176. doi:10.1039/c6cy00674d

Qiao, C., Liu, X.-F., Liu, X., & He, L.-N. (2017). Copper(II)-Catalyzed Selective Reductive Methylation of Amines with Formic Acid: An Option for Indirect Utilization of CO2. Organic Letters, 19(6), 1490-1493. doi:10.1021/acs.orglett.7b00551

Zheng, J., Darcel, C., & Sortais, J.-B. (2014). Methylation of secondary amines with dialkyl carbonates and hydrosilanes catalysed by iron complexes. Chem. Commun., 50(91), 14229-14232. doi:10.1039/c4cc05517a

Li, Y., Sorribes, I., Vicent, C., Junge, K., & Beller, M. (2015). Convenient Reductive Methylation of Amines with Carbonates at Room Temperature. Chemistry - A European Journal, 21(47), 16759-16763. doi:10.1002/chem.201502917

Sorribes, I., Junge, K., & Beller, M. (2014). Direct Catalytic N-Alkylation of Amines with Carboxylic Acids. Journal of the American Chemical Society, 136(40), 14314-14319. doi:10.1021/ja5093612

Andrews, K. G., Summers, D. M., Donnelly, L. J., & Denton, R. M. (2016). Catalytic reductive N-alkylation of amines using carboxylic acids. Chemical Communications, 52(9), 1855-1858. doi:10.1039/c5cc08881j

Minakawa, M., Okubo, M., & Kawatsura, M. (2016). Ruthenium-catalyzed direct N-alkylation of amines with carboxylic acids using methylphenylsilane as a hydride source. Tetrahedron Letters, 57(37), 4187-4190. doi:10.1016/j.tetlet.2016.08.003

Andrews, K. G., Faizova, R., & Denton, R. M. (2017). A practical and catalyst-free trifluoroethylation reaction of amines using trifluoroacetic acid. Nature Communications, 8(1). doi:10.1038/ncomms15913

Li, B., Sortais, J.-B., & Darcel, C. (2013). Unexpected selectivity in ruthenium-catalyzed hydrosilylation of primary amides: synthesis of secondary amines. Chemical Communications, 49(35), 3691. doi:10.1039/c3cc39149c

Ogiwara, Y., Shimoda, W., Ide, K., Nakajima, T., & Sakai, N. (2017). Carboxamides as N -Alkylating Reagents of Secondary Amines in Indium-Catalyzed Reductive Amination with a Hydrosilane. European Journal of Organic Chemistry, 2017(20), 2866-2870. doi:10.1002/ejoc.201601629

Zhu, J., Zhang, Z., Miao, C., Liu, W., & Sun, W. (2017). Synthesis of benzimidazoles from o -phenylenediamines and DMF derivatives in the presence of PhSiH 3. Tetrahedron, 73(25), 3458-3462. doi:10.1016/j.tet.2017.05.018

Pan, Y., Chen, C., Xu, X., Zhao, H., Han, J., Li, H., … Xiao, J. (2018). Metal-free tandem cyclization/hydrosilylation to construct tetrahydroquinoxalines. Green Chemistry, 20(2), 403-411. doi:10.1039/c7gc03095a

Pedrajas, E., Sorribes, I., Guillamón, E., Junge, K., Beller, M., & Llusar, R. (2017). Efficient and Selective N -Methylation of Nitroarenes under Mild Reaction Conditions. Chemistry - A European Journal, 23(53), 13205-13212. doi:10.1002/chem.201702783

Nishikata, T., & Nagashima, H. (2012). N Alkylation of Tosylamides Using Esters as Primary and Tertiary Alkyl Sources: Mediated by Hydrosilanes Activated by a Ruthenium Catalyst. Angewandte Chemie International Edition, 51(22), 5363-5366. doi:10.1002/anie.201201426

Nishikata, T., & Nagashima, H. (2012). N Alkylation of Tosylamides Using Esters as Primary and Tertiary Alkyl Sources: Mediated by Hydrosilanes Activated by a Ruthenium Catalyst. Angewandte Chemie, 124(22), 5459-5462. doi:10.1002/ange.201201426

Courtemanche, M.-A., Légaré, M.-A., Maron, L., & Fontaine, F.-G. (2013). A Highly Active Phosphine–Borane Organocatalyst for the Reduction of CO2 to Methanol Using Hydroboranes. Journal of the American Chemical Society, 135(25), 9326-9329. doi:10.1021/ja404585p

Das Neves Gomes, C., Blondiaux, E., Thuéry, P., & Cantat, T. (2014). Metal-Free Reduction of CO2with Hydroboranes: Two Efficient Pathways at Play for the Reduction of CO2to Methanol. Chemistry - A European Journal, 20(23), 7098-7106. doi:10.1002/chem.201400349

Bontemps, S. (2016). Boron-mediated activation of carbon dioxide. Coordination Chemistry Reviews, 308, 117-130. doi:10.1016/j.ccr.2015.06.003

Park, S., & Chang, S. (2017). Catalytic Dearomatization of N-Heteroarenes with Silicon and Boron Compounds. Angewandte Chemie International Edition, 56(27), 7720-7738. doi:10.1002/anie.201612140

Park, S., & Chang, S. (2017). Katalytische Desaromatisierung von N-Heteroarenen mit Silicium- und Borverbindungen. Angewandte Chemie, 129(27), 7828-7847. doi:10.1002/ange.201612140

Blondiaux, E., Pouessel, J., & Cantat, T. (2014). Carbon Dioxide Reduction to Methylamines under Metal-Free Conditions. Angewandte Chemie International Edition, 53(45), 12186-12190. doi:10.1002/anie.201407357

Blondiaux, E., Pouessel, J., & Cantat, T. (2014). Carbon Dioxide Reduction to Methylamines under Metal-Free Conditions. Angewandte Chemie, 126(45), 12382-12386. doi:10.1002/ange.201407357

Chen, W.-C., Shen, J.-S., Jurca, T., Peng, C.-J., Lin, Y.-H., Wang, Y.-P., … Ong, T.-G. (2015). Expanding the Ligand Framework Diversity of Carbodicarbenes and Direct Detection of Boron Activation in the Methylation of Amines with CO2. Angewandte Chemie International Edition, 54(50), 15207-15212. doi:10.1002/anie.201507921

Chen, W.-C., Shen, J.-S., Jurca, T., Peng, C.-J., Lin, Y.-H., Wang, Y.-P., … Ong, T.-G. (2015). Expanding the Ligand Framework Diversity of Carbodicarbenes and Direct Detection of Boron Activation in the Methylation of Amines with CO2. Angewandte Chemie, 127(50), 15422-15427. doi:10.1002/ange.201507921

Jin, G., Werncke, C. G., Escudié, Y., Sabo-Etienne, S., & Bontemps, S. (2015). Iron-Catalyzed Reduction of CO2 into Methylene: Formation of C–N, C–O, and C–C Bonds. Journal of the American Chemical Society, 137(30), 9563-9566. doi:10.1021/jacs.5b06077

Blaser, H. U., Spindler, F., & Studer, M. (2001). Enantioselective catalysis in fine chemicals production. Applied Catalysis A: General, 221(1-2), 119-143. doi:10.1016/s0926-860x(01)00801-8

Kubas, G. J. (2007). Fundamentals of H2Binding and Reactivity on Transition Metals Underlying Hydrogenase Function and H2Production and Storage. Chemical Reviews, 107(10), 4152-4205. doi:10.1021/cr050197j

Tollefson, J. (2010). Hydrogen vehicles: Fuel of the future? Nature, 464(7293), 1262-1264. doi:10.1038/4641262a

Gredig, S. V., Koeppel, R. A., & Baiker, A. (1995). Synthesis of methylamines from carbon dioxide and ammonia. Journal of the Chemical Society, Chemical Communications, (1), 73. doi:10.1039/c39950000073

Gredig, S. V., Koeppel, R., & Baiker, A. (1996). Comparative study of synthesis of methylamines from carbon oxides and ammonia over Cu/A12O3. Catalysis Today, 29(1-4), 339-342. doi:10.1016/0920-5861(95)00301-0

Gredig, S. V., Koeppel, R., & Baiker, A. (1997). Synthesis of methylamines from CO2, H2 and NH3. Catalytic behaviour of various metal-alumina catalysts. Applied Catalysis A: General, 162(1-2), 249-260. doi:10.1016/s0926-860x(97)00107-5

Gredig, S. V., Maurer, R., Koeppel, R., & Baiker, A. (1997). Copper-catalyzed synthesis of methylamines from CO2, H2 and NH3. Influence of support. Journal of Molecular Catalysis A: Chemical, 127(1-3), 133-142. doi:10.1016/s1381-1169(97)00117-9

Auer, S. (1999). Synthesis of methylamines from CO2, H2 and NH3 over Cu–Mg–Al mixed oxides. Journal of Molecular Catalysis A: Chemical, 141(1-3), 193-203. doi:10.1016/s1381-1169(98)00263-5

Beydoun, K., Thenert, K., Streng, E. S., Brosinski, S., Leitner, W., & Klankermayer, J. (2015). Selective Synthesis of Trimethylamine by Catalytic N -Methylation of Ammonia and Ammonium Chloride by utilizing Carbon Dioxide and Molecular Hydrogen. ChemCatChem, 8(1), 135-138. doi:10.1002/cctc.201501116

Toyao, T., Siddiki, S. M. A. H., Ishihara, K., Kon, K., Onodera, W., & Shimizu, K. (2017). Heterogeneous Platinum Catalysts for Direct Synthesis of Trimethylamine by N-Methylation of Ammonia and Its Surrogates with CO2/H2. Chemistry Letters, 46(1), 68-70. doi:10.1246/cl.160875

Beydoun, K., vom Stein, T., Klankermayer, J., & Leitner, W. (2013). Ruthenium-Catalyzed Direct Methylation of Primary and Secondary Aromatic Amines Using Carbon Dioxide and Molecular Hydrogen. Angewandte Chemie International Edition, 52(36), 9554-9557. doi:10.1002/anie.201304656

Beydoun, K., vom Stein, T., Klankermayer, J., & Leitner, W. (2013). Ruthenium-Catalyzed Direct Methylation of Primary and Secondary Aromatic Amines Using Carbon Dioxide and Molecular Hydrogen. Angewandte Chemie, 125(36), 9733-9736. doi:10.1002/ange.201304656

Li, Y., Sorribes, I., Yan, T., Junge, K., & Beller, M. (2013). Selective Methylation of Amines with Carbon Dioxide and H2. Angewandte Chemie International Edition, 52(46), 12156-12160. doi:10.1002/anie.201306850

Li, Y., Sorribes, I., Yan, T., Junge, K., & Beller, M. (2013). Selective Methylation of Amines with Carbon Dioxide and H2. Angewandte Chemie, 125(46), 12378-12382. doi:10.1002/ange.201306850

Cui, X., Dai, X., Zhang, Y., Deng, Y., & Shi, F. (2014). Methylation of amines, nitrobenzenes and aromatic nitriles with carbon dioxide and molecular hydrogen. Chem. Sci., 5(2), 649-655. doi:10.1039/c3sc52676c

Cui, X., Zhang, Y., Deng, Y., & Shi, F. (2014). N-Methylation of amine and nitro compounds with CO2/H2catalyzed by Pd/CuZrOxunder mild reaction conditions. Chem. Commun., 50(88), 13521-13524. doi:10.1039/c4cc05119j

Kon, K., Siddiki, S. M. A. H., Onodera, W., & Shimizu, K. (2014). Sustainable Heterogeneous Platinum Catalyst for Direct Methylation of Secondary Amines by Carbon Dioxide and Hydrogen. Chemistry - A European Journal, 20(21), 6264-6267. doi:10.1002/chem.201400332

Tang, G., Bao, H.-L., Jin, C., Zhong, X.-H., & Du, X.-L. (2015). Direct methylation of N-methylaniline with CO2/H2 catalyzed by gold nanoparticles supported on alumina. RSC Advances, 5(121), 99678-99687. doi:10.1039/c5ra20991a

Du, X.-L., Tang, G., Bao, H.-L., Jiang, Z., Zhong, X.-H., Su, D. S., & Wang, J.-Q. (2015). Direct Methylation of Amines with Carbon Dioxide and Molecular Hydrogen using Supported Gold Catalysts. ChemSusChem, 8(20), 3489-3496. doi:10.1002/cssc.201500486

Su, X., Lin, W., Cheng, H., Zhang, C., Li, Y., Liu, T., … Zhao, F. (2016). PdGa/TiO2 an efficient heterogeneous catalyst for direct methylation of N-methylaniline with CO2/H2. RSC Advances, 6(105), 103650-103656. doi:10.1039/c6ra22089d

Toyao, T., Siddiki, S. M. A. H., Morita, Y., Kamachi, T., Touchy, A. S., Onodera, W., … Shimizu, K. (2017). Rhenium‐Loaded TiO 2  : A Highly Versatile and Chemoselective Catalyst for the Hydrogenation of Carboxylic Acid Derivatives and the N‐Methylation of Amines Using H 2 and CO 2. Chemistry – A European Journal, 23(59), 14848-14859. doi:10.1002/chem.201702801

Yu, B., Zhang, H., Zhao, Y., Chen, S., Xu, J., Huang, C., & Liu, Z. (2013). Cyclization of o-phenylenediamines by CO2in the presence of H2for the synthesis of benzimidazoles. Green Chem., 15(1), 95-99. doi:10.1039/c2gc36517k

Savourey, S., Lefèvre, G., Berthet, J.-C., & Cantat, T. (2014). Catalytic methylation of aromatic amines with formic acid as the unique carbon and hydrogen source. Chem. Commun., 50(90), 14033-14036. doi:10.1039/c4cc05908e

Cabrero-Antonino, J. R., Adam, R., Junge, K., & Beller, M. (2016). A general protocol for the reductive N-methylation of amines using dimethyl carbonate and molecular hydrogen: mechanistic insights and kinetic studies. Catalysis Science & Technology, 6(22), 7956-7966. doi:10.1039/c6cy01401a

Cabrero-Antonino, J. R., Adam, R., Wärnå, J., Murzin, D. Y., & Beller, M. (2018). Reductive N-methylation of amines using dimethyl carbonate and molecular hydrogen: Mechanistic insights through kinetic modelling. Chemical Engineering Journal, 351, 1129-1136. doi:10.1016/j.cej.2018.06.174

Núñez Magro, A. A., Eastham, G. R., & Cole-Hamilton, D. J. (2007). The synthesis of amines by the homogeneous hydrogenation of secondary and primary amides. Chemical Communications, (30), 3154. doi:10.1039/b706635j

Additions and corrections published in 2012. (2012). Chemical Communications, 48(100), 12249. doi:10.1039/c2cc90426h

Sorribes, I., Cabrero-Antonino, J. R., Vicent, C., Junge, K., & Beller, M. (2015). Catalytic N-Alkylation of Amines Using Carboxylic Acids and Molecular Hydrogen. Journal of the American Chemical Society, 137(42), 13580-13587. doi:10.1021/jacs.5b07994

Adam, R., Cabrero-Antonino, J. R., Junge, K., Jackstell, R., & Beller, M. (2016). Esters, Including Triglycerides, and Hydrogen as Feedstocks for the Ruthenium-Catalyzed Direct N-Alkylation of Amines. Angewandte Chemie International Edition, 55(37), 11049-11053. doi:10.1002/anie.201603681

Adam, R., Cabrero-Antonino, J. R., Junge, K., Jackstell, R., & Beller, M. (2016). Esters, Including Triglycerides, and Hydrogen as Feedstocks for the Ruthenium-Catalyzed Direct N-Alkylation of Amines. Angewandte Chemie, 128(37), 11215-11219. doi:10.1002/ange.201603681

Corma, A., Iborra, S., & Velty, A. (2007). Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews, 107(6), 2411-2502. doi:10.1021/cr050989d

Meier, M. A. R., Metzger, J. O., & Schubert, U. S. (2007). Plant oil renewable resources as green alternatives in polymer science. Chemical Society Reviews, 36(11), 1788. doi:10.1039/b703294c

Biermann, U., Bornscheuer, U., Meier, M. A. R., Metzger, J. O., & Schäfer, H. J. (2011). Oils and Fats as Renewable Raw Materials in Chemistry. Angewandte Chemie International Edition, 50(17), 3854-3871. doi:10.1002/anie.201002767

Biermann, U., Bornscheuer, U., Meier, M. A. R., Metzger, J. O., & Schäfer, H. J. (2011). Fette und Öle als nachwachsende Rohstoffe in der Chemie. Angewandte Chemie, 123(17), 3938-3956. doi:10.1002/ange.201002767

Besson, M., Gallezot, P., & Pinel, C. (2013). Conversion of Biomass into Chemicals over Metal Catalysts. Chemical Reviews, 114(3), 1827-1870. doi:10.1021/cr4002269

Deuss, P. J., Barta, K., & de Vries, J. G. (2014). Homogeneous catalysis for the conversion of biomass and biomass-derived platform chemicals. Catal. Sci. Technol., 4(5), 1174-1196. doi:10.1039/c3cy01058a

Liu, W., Sahoo, B., Spannenberg, A., Junge, K., & Beller, M. (2018). Tailored Cobalt‐Catalysts for Reductive Alkylation of Anilines with Carboxylic Acids under Mild Conditions. Angewandte Chemie International Edition, 57(36), 11673-11677. doi:10.1002/anie.201806132

Liu, W., Sahoo, B., Spannenberg, A., Junge, K., & Beller, M. (2018). Tailored Cobalt-Catalysts for Reductive Alkylation of Anilines with Carboxylic Acids under Mild Conditions. Angewandte Chemie, 130(36), 11847-11851. doi:10.1002/ange.201806132

Shi, Y., Kamer, P. C. J., Cole-Hamilton, D. J., Harvie, M., Baxter, E. F., Lim, K. J. C., & Pogorzelec, P. (2017). A new route to N-aromatic heterocycles from the hydrogenation of diesters in the presence of anilines. Chemical Science, 8(10), 6911-6917. doi:10.1039/c7sc01718a

Shi, Y., Kamer, P. C. J., & Cole-Hamilton, D. J. (2017). A new route to α,ω-diamines from hydrogenation of dicarboxylic acids and their derivatives in the presence of amines. Green Chemistry, 19(22), 5460-5466. doi:10.1039/c7gc02838e

Beydoun, K., Ghattas, G., Thenert, K., Klankermayer, J., & Leitner, W. (2014). Ruthenium-Catalyzed Reductive Methylation of Imines Using Carbon Dioxide and Molecular Hydrogen. Angewandte Chemie International Edition, 53(41), 11010-11014. doi:10.1002/anie.201403711

Beydoun, K., Ghattas, G., Thenert, K., Klankermayer, J., & Leitner, W. (2014). Ruthenium-Catalyzed Reductive Methylation of Imines Using Carbon Dioxide and Molecular Hydrogen. Angewandte Chemie, 126(41), 11190-11194. doi:10.1002/ange.201403711

He, Z., Liu, H., Qian, Q., Lu, L., Guo, W., Zhang, L., & Han, B. (2017). N-methylation of quinolines with CO2 and H2 catalyzed by Ru-triphos complexes. Science China Chemistry, 60(7), 927-933. doi:10.1007/s11426-017-9024-8

Yu, L., Zhang, Q., Li, S.-S., Huang, J., Liu, Y.-M., He, H.-Y., & Cao, Y. (2015). Gold-Catalyzed Reductive Transformation of Nitro Compounds Using Formic Acid: Mild, Efficient, and Versatile. ChemSusChem, 8(18), 3029-3035. doi:10.1002/cssc.201500869

Fleming, F. F., & Fleming, F. F. (1999). Nitrile-containing natural products. Natural Product Reports, 16(5), 597-606. doi:10.1039/a804370a

Martin, A., & Lücke, B. (2000). Ammoxidation and oxidation of substituted methyl aromatics on vanadium-containing catalysts. Catalysis Today, 57(1-2), 61-70. doi:10.1016/s0920-5861(99)00309-0

Movassaghi, M., & Hill, M. D. (2007). Synthesis of pyrimidines by direct condensation of amides and nitriles. Nature Protocols, 2(8), 2018-2023. doi:10.1038/nprot.2007.280

Martin, A., & Kalevaru, V. N. (2010). Heterogeneously Catalyzed Ammoxidation: A Valuable Tool for One-Step Synthesis of Nitriles. ChemCatChem, 2(12), 1504-1522. doi:10.1002/cctc.201000173

Fleming, F. F., Yao, L., Ravikumar, P. C., Funk, L., & Shook, B. C. (2010). Nitrile-Containing Pharmaceuticals: Efficacious Roles of the Nitrile Pharmacophore. Journal of Medicinal Chemistry, 53(22), 7902-7917. doi:10.1021/jm100762r

Anbarasan, P., Schareina, T., & Beller, M. (2011). Recent developments and perspectives in palladium-catalyzed cyanation of aryl halides: synthesis of benzonitriles. Chemical Society Reviews, 40(10), 5049. doi:10.1039/c1cs15004a

Ikawa, T., Fujita, Y., Mizusaki, T., Betsuin, S., Takamatsu, H., Maegawa, T., … Sajiki, H. (2012). Selective N-alkylation of amines using nitriles under hydrogenation conditions: facile synthesis of secondary and tertiary amines. Org. Biomol. Chem., 10(2), 293-304. doi:10.1039/c1ob06303k

Shao, Z., Fu, S., Wei, M., Zhou, S., & Liu, Q. (2016). Mild and Selective Cobalt-Catalyzed Chemodivergent Transfer Hydrogenation of Nitriles. Angewandte Chemie International Edition, 55(47), 14653-14657. doi:10.1002/anie.201608345

Shao, Z., Fu, S., Wei, M., Zhou, S., & Liu, Q. (2016). Mild and Selective Cobalt-Catalyzed Chemodivergent Transfer Hydrogenation of Nitriles. Angewandte Chemie, 128(47), 14873-14877. doi:10.1002/ange.201608345

Zerecero-Silva, P., Jimenez-Solar, I., Crestani, M. G., Arévalo, A., Barrios-Francisco, R., & García, J. J. (2009). Catalytic hydrogenation of aromatic nitriles and dinitriles with nickel compounds. Applied Catalysis A: General, 363(1-2), 230-234. doi:10.1016/j.apcata.2009.05.027

Srimani, D., Feller, M., Ben-David, Y., & Milstein, D. (2012). Catalytic coupling of nitriles with amines to selectively form imines under mild hydrogen pressure. Chemical Communications, 48(97), 11853. doi:10.1039/c2cc36639h

Chakraborty, S., & Berke, H. (2014). Homogeneous Hydrogenation of Nitriles Catalyzed by Molybdenum and Tungsten Amides. ACS Catalysis, 4(7), 2191-2194. doi:10.1021/cs5004646

Choi, J.-H., & Prechtl, M. H. G. (2015). Tuneable Hydrogenation of Nitriles into Imines or Amines with a Ruthenium Pincer Complex under Mild Conditions. ChemCatChem, 7(6), 1023-1028. doi:10.1002/cctc.201403047

Chakraborty, S., Leitus, G., & Milstein, D. (2017). Iron-Catalyzed Mild and Selective Hydrogenative Cross-Coupling of Nitriles and Amines To Form Secondary Aldimines. Angewandte Chemie International Edition, 56(8), 2074-2078. doi:10.1002/anie.201608537

Chakraborty, S., Leitus, G., & Milstein, D. (2017). Iron-Catalyzed Mild and Selective Hydrogenative Cross-Coupling of Nitriles and Amines To Form Secondary Aldimines. Angewandte Chemie, 129(8), 2106-2110. doi:10.1002/ange.201608537

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem