- -

Catalytic Reductive N-Alkylations Using CO2 and Carboxylic Acid Derivatives: Recent Progress and Developments

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Catalytic Reductive N-Alkylations Using CO2 and Carboxylic Acid Derivatives: Recent Progress and Developments

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cabrero Antonino, Jose Ramón es_ES
dc.contributor.author Adam-Ortiz, Rosa es_ES
dc.contributor.author Beller, Matthias es_ES
dc.date.accessioned 2020-10-29T04:31:42Z
dc.date.available 2020-10-29T04:31:42Z
dc.date.issued 2019-09-09 es_ES
dc.identifier.issn 1433-7851 es_ES
dc.identifier.uri http://hdl.handle.net/10251/153458
dc.description This is the peer reviewed version of the following article: Angew. Chem. Int. Ed. 2019, 58, 12820 12838, which has been published in final form at https://doi.org/10.1002/anie.201810121. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. es_ES
dc.description.abstract [EN] N-Alkylamines are key intermediates in the synthesis of fine chemicals, dyes, and natural products, and hence are highly valuable building blocks in organic chemistry. Consequently, the development of greener and more efficient procedures for their production continues to attract the interest of both academic and industrial chemists. Reductive procedures such as reductive amination or N-alkylation through hydrogen autotransfer by employing carbonyl compounds or alcohols as alkylating agents have prevailed for the synthesis of amines. In the last few years, carboxylic/carbonic acid derivatives and CO2 have been introduced as alternative and convenient alkylating sources. The safety, easy accessibility, and high stability of these reagents makes the development of new reductive transformations with them as N-alkylating agents a useful alternative to existing procedures. In this Review, we summarize reported examples of one-pot reductive N-alkylation methods that use carboxylic/carbonic acid derivatives or CO2 as alkylating agents. es_ES
dc.description.sponsorship This work was supported by the state of MecklenburgVorpommern and the BMBF. J.R.C.-A. thanks the Ministerio de Ciencia, Innovacion y Universidades for a Juan de la Cierva contract. R.A. thanks UPV for a postdoctoral contract. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Angewandte Chemie International Edition es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Carbon dioxide es_ES
dc.subject Carboxylic es_ES
dc.subject Carbonic acid derivatives es_ES
dc.subject Heterocycles es_ES
dc.subject N-alkylation es_ES
dc.subject Reductive transformations es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Catalytic Reductive N-Alkylations Using CO2 and Carboxylic Acid Derivatives: Recent Progress and Developments es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/anie.201810121 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Cabrero Antonino, JR.; Adam-Ortiz, R.; Beller, M. (2019). Catalytic Reductive N-Alkylations Using CO2 and Carboxylic Acid Derivatives: Recent Progress and Developments. Angewandte Chemie International Edition. 58(37):12820-12838. https://doi.org/10.1002/anie.201810121 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/anie.201810121 es_ES
dc.description.upvformatpinicio 12820 es_ES
dc.description.upvformatpfin 12838 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 58 es_ES
dc.description.issue 37 es_ES
dc.identifier.pmid 30306704 es_ES
dc.relation.pasarela S\405874 es_ES
dc.contributor.funder Bundesministerium für Bildung und Forschung, Alemania es_ES
dc.description.references Adams, J. M., & Cory, S. (1975). Modified nucleosides and bizarre 5′-termini in mouse myeloma mRNA. Nature, 255(5503), 28-33. doi:10.1038/255028a0 es_ES
dc.description.references Kleemann, A., Engel, J., Kutscher, B., & Reichert, D. (Eds.). (2009). Pharmaceutical Substances. doi:10.1055/b-003-108611 es_ES
dc.description.references Dominissini, D., Moshitch-Moshkovitz, S., Schwartz, S., Salmon-Divon, M., Ungar, L., Osenberg, S., … Rechavi, G. (2012). Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature, 485(7397), 201-206. doi:10.1038/nature11112 es_ES
dc.description.references Chatterjee, J., Rechenmacher, F., & Kessler, H. (2012). N-Methylation of Peptides and Proteins: An Important Element for Modulating Biological Functions. Angewandte Chemie International Edition, 52(1), 254-269. doi:10.1002/anie.201205674 es_ES
dc.description.references Chatterjee, J., Rechenmacher, F., & Kessler, H. (2012). N-Methylierung von Peptiden und Proteinen: ein wichtiges Element für die Regulation biologischer Funktionen. Angewandte Chemie, 125(1), 268-283. doi:10.1002/ange.201205674 es_ES
dc.description.references Froidevaux, V., Negrell, C., Caillol, S., Pascault, J.-P., & Boutevin, B. (2016). Biobased Amines: From Synthesis to Polymers; Present and Future. Chemical Reviews, 116(22), 14181-14224. doi:10.1021/acs.chemrev.6b00486 es_ES
dc.description.references Salvatore, R. N., Yoon, C. H., & Jung, K. W. (2001). Synthesis of secondary amines. Tetrahedron, 57(37), 7785-7811. doi:10.1016/s0040-4020(01)00722-0 es_ES
dc.description.references Lamoureux, G., & Agüero, C. (2009). A comparison of several modern alkylating agents. Arkivoc, 2009(1), 251-264. doi:10.3998/ark.5550190.0010.108 es_ES
dc.description.references Luo, H., Wu, G., Zhang, Y., & Wang, J. (2015). Silver(I)-CatalyzedN-Trifluoroethylation of Anilines andO-Trifluoroethylation of Amides with 2,2,2-Trifluorodiazoethane. Angewandte Chemie International Edition, 54(48), 14503-14507. doi:10.1002/anie.201507219 es_ES
dc.description.references Luo, H., Wu, G., Zhang, Y., & Wang, J. (2015). Silver(I)-CatalyzedN-Trifluoroethylation of Anilines andO-Trifluoroethylation of Amides with 2,2,2-Trifluorodiazoethane. Angewandte Chemie, 127(48), 14711-14715. doi:10.1002/ange.201507219 es_ES
dc.description.references Selva, M., Trotta, F., & Tundo, P. (1992). Esters and orthoesters as alkylating agents at high temperature. Applications to continuous-flow processes. Journal of the Chemical Society, Perkin Transactions 2, (4), 519. doi:10.1039/p29920000519 es_ES
dc.description.references Padmanabhan, S., Reddy, N. L., & Durant, G. J. (1997). A Convenient One Pot Procedure for N-Methylation of Aromatic Amines Using Trimethyl Orthoformate. Synthetic Communications, 27(4), 691-699. doi:10.1080/00397919708003343 es_ES
dc.description.references Rivetti, F., Romano, U., & Delledonne, D. (1996). Dimethylcarbonate and Its Production Technology. Green Chemistry, 70-80. doi:10.1021/bk-1996-0626.ch006 es_ES
dc.description.references Ono, Y. (1997). Catalysis in the production and reactions of dimethyl carbonate, an environmentally benign building block. Applied Catalysis A: General, 155(2), 133-166. doi:10.1016/s0926-860x(96)00402-4 es_ES
dc.description.references Pacheco, M. A., & Marshall, C. L. (1997). Review of Dimethyl Carbonate (DMC) Manufacture and Its Characteristics as a Fuel Additive. Energy & Fuels, 11(1), 2-29. doi:10.1021/ef9600974 es_ES
dc.description.references Delledonne, D., Rivetti, F., & Romano, U. (2001). Developments in the production and application of dimethylcarbonate. Applied Catalysis A: General, 221(1-2), 241-251. doi:10.1016/s0926-860x(01)00796-7 es_ES
dc.description.references Tundo, P., & Selva, M. (2002). The Chemistry of Dimethyl Carbonate. Accounts of Chemical Research, 35(9), 706-716. doi:10.1021/ar010076f es_ES
dc.description.references Selva, M., Tundo, P., & Perosa, A. (2003). Reaction of Functionalized Anilines with Dimethyl Carbonate over NaY Faujasite. 3. Chemoselectivity toward Mono-N-methylation. The Journal of Organic Chemistry, 68(19), 7374-7378. doi:10.1021/jo034548a es_ES
dc.description.references Tundo, P., Rossi, L., & Loris, A. (2005). Dimethyl Carbonate as an Ambident Electrophile. The Journal of Organic Chemistry, 70(6), 2219-2224. doi:10.1021/jo048532b es_ES
dc.description.references Selva, M., Perosa, A., Tundo, P., & Brunelli, D. (2006). SelectiveN,N-Dimethylation of Primary Aromatic Amines with Methyl Alkyl Carbonates in the Presence of Phosphonium Salts. The Journal of Organic Chemistry, 71(15), 5770-5773. doi:10.1021/jo060674d es_ES
dc.description.references Selva, M. (2007). Green approaches to highly selective processes: Reactions of dimethyl carbonate over both zeolites and base catalysts. Pure and Applied Chemistry, 79(11), 1855-1867. doi:10.1351/pac200779111855 es_ES
dc.description.references Selva, M., & Perosa, A. (2008). Green chemistry metrics: a comparative evaluation of dimethyl carbonate, methyl iodide, dimethyl sulfate and methanol as methylating agents. Green Chemistry, 10(4), 457. doi:10.1039/b713985c es_ES
dc.description.references Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Metal organic frameworks as heterogeneous catalysts for the selective N-methylation of aromatic primary amines with dimethyl carbonate. Applied Catalysis A: General, 378(1), 19-25. doi:10.1016/j.apcata.2010.01.042 es_ES
dc.description.references Kawai, K., Li, Y.-S., Song, M.-F., & Kasai, H. (2010). DNA methylation by dimethyl sulfoxide and methionine sulfoxide triggered by hydroxyl radical and implications for epigenetic modifications. Bioorganic & Medicinal Chemistry Letters, 20(1), 260-265. doi:10.1016/j.bmcl.2009.10.124 es_ES
dc.description.references Jiang, X., Wang, C., Wei, Y., Xue, D., Liu, Z., & Xiao, J. (2013). A General Method for N-Methylation of Amines and Nitro Compounds with Dimethylsulfoxide. Chemistry - A European Journal, 20(1), 58-63. doi:10.1002/chem.201303802 es_ES
dc.description.references Atkinson, B. N., & Williams, J. M. J. (2014). Dimethylsulfoxide as an N-Methylation Reagent for Amines and Aromatic Nitro Compounds. ChemCatChem, 6(7), 1860-1862. doi:10.1002/cctc.201400015 es_ES
dc.description.references Eschweiler, W. (1905). Ersatz von an Stickstoff gebundenen Wasserstoffatomen durch die Methylgruppe mit Hülfe von Formaldehyd. Berichte der deutschen chemischen Gesellschaft, 38(1), 880-882. doi:10.1002/cber.190503801154 es_ES
dc.description.references Clarke, H. T., Gillespie, H. B., & Weisshaus, S. Z. (1933). The Action of Formaldehyde on Amines and Amino Acids1. Journal of the American Chemical Society, 55(11), 4571-4587. doi:10.1021/ja01338a041 es_ES
dc.description.references Kim, S., Oh, C. H., Ko, J. S., Ahn, K. H., & Kim, Y. J. (1985). Zinc-modified cyanoborohydride as a selective reducing agent. The Journal of Organic Chemistry, 50(11), 1927-1932. doi:10.1021/jo00211a028 es_ES
dc.description.references Fache, F., Jacquot, L., & Lemaire, M. (1994). Extension of the eschweiler-clarke procedure to the N-alkylation of amides. Tetrahedron Letters, 35(20), 3313-3314. doi:10.1016/s0040-4039(00)76894-8 es_ES
dc.description.references Gomez, S., Peters, J. A., & Maschmeyer, T. (2002). The Reductive Amination of Aldehydes and Ketones and the Hydrogenation of Nitriles: Mechanistic Aspects and Selectivity Control. Advanced Synthesis & Catalysis, 344(10), 1037-1057. doi:10.1002/1615-4169(200212)344:10<1037::aid-adsc1037>3.0.co;2-3 es_ES
dc.description.references Steinhuebel, D., Sun, Y., Matsumura, K., Sayo, N., & Saito, T. (2009). Direct Asymmetric Reductive Amination. Journal of the American Chemical Society, 131(32), 11316-11317. doi:10.1021/ja905143m es_ES
dc.description.references Wakchaure, V. N., Zhou, J., Hoffmann, S., & List, B. (2010). Catalytic Asymmetric Reductive Amination of α-Branched Ketones. Angewandte Chemie International Edition, 49(27), 4612-4614. doi:10.1002/anie.201001715 es_ES
dc.description.references Wakchaure, V. N., Zhou, J., Hoffmann, S., & List, B. (2010). Catalytic Asymmetric Reductive Amination of α-Branched Ketones. Angewandte Chemie, 122(27), 4716-4718. doi:10.1002/ange.201001715 es_ES
dc.description.references Chusov, D., & List, B. (2014). Reductive Amination without an External Hydrogen Source. Angewandte Chemie International Edition, n/a-n/a. doi:10.1002/anie.201400059 es_ES
dc.description.references Chusov, D., & List, B. (2014). Reduktive Aminierung ohne externe Wasserstoffquelle. Angewandte Chemie, 126(20), 5299-5302. doi:10.1002/ange.201400059 es_ES
dc.description.references Raoufmoghaddam, S. (2014). Recent advances in catalytic C–N bond formation: a comparison of cascade hydroaminomethylation and reductive amination reactions with the corresponding hydroamidomethylation and reductive amidation reactions. Organic & Biomolecular Chemistry, 12(37), 7179. doi:10.1039/c4ob00620h es_ES
dc.description.references Jagadeesh, R. V., Murugesan, K., Alshammari, A. S., Neumann, H., Pohl, M.-M., Radnik, J., & Beller, M. (2017). MOF-derived cobalt nanoparticles catalyze a general synthesis of amines. Science, 358(6361), 326-332. doi:10.1126/science.aan6245 es_ES
dc.description.references Hamada, H., Yamamoto, M., Kuwahara, Y., Matsuzaki, T., & Wakabayashi, K. (1985). The Co-amination of Phenol and Cyclohexanol with Palladium-on-carbon Catalyst in the Liquid Phase. An Application of a Hydrogen-transfer Reaction. Bulletin of the Chemical Society of Japan, 58(5), 1551-1555. doi:10.1246/bcsj.58.1551 es_ES
dc.description.references Chen, Z., Zeng, H., Gong, H., Wang, H., & Li, C.-J. (2015). Palladium-catalyzed reductive coupling of phenols with anilines and amines: efficient conversion of phenolic lignin model monomers and analogues to cyclohexylamines. Chemical Science, 6(7), 4174-4178. doi:10.1039/c5sc00941c es_ES
dc.description.references Cui, X., Junge, K., & Beller, M. (2016). Palladium-Catalyzed Synthesis of Alkylated Amines from Aryl Ethers or Phenols. ACS Catalysis, 6(11), 7834-7838. doi:10.1021/acscatal.6b01687 es_ES
dc.description.references Yan, L., Liu, X.-X., & Fu, Y. (2016). N-Alkylation of amines with phenols over highly active heterogeneous palladium hydride catalysts. RSC Advances, 6(111), 109702-109705. doi:10.1039/c6ra22383d es_ES
dc.description.references Zimmermann, B., Herwig, J., & Beller, M. (1999). The First Efficient Hydroaminomethylation with Ammonia: With Dual Metal Catalysts and Two-Phase Catalysis to Primary Amines. Angewandte Chemie International Edition, 38(16), 2372-2375. doi:10.1002/(sici)1521-3773(19990816)38:16<2372::aid-anie2372>3.0.co;2-h es_ES
dc.description.references Zimmermann, B., Herwig, J., & Beller, M. (1999). Erste effiziente Hydroaminomethylierung mit Ammoniak: mit dualen Metallkatalysatoren und Zweiphasenkatalyse zu primären Aminen. Angewandte Chemie, 111(16), 2515-2518. doi:10.1002/(sici)1521-3757(19990816)111:16<2515::aid-ange2515>3.0.co;2-a es_ES
dc.description.references Hartwig, J. F. (2002). CHEMICAL SYNTHESIS: Raising the Bar for the. Science, 297(5587), 1653-1654. doi:10.1126/science.1076371 es_ES
dc.description.references Ahmed, M., Seayad, A. M., Jackstell, R., & Beller, M. (2003). Amines Made Easily:  A Highly Selective Hydroaminomethylation of Olefins. Journal of the American Chemical Society, 125(34), 10311-10318. doi:10.1021/ja030143w es_ES
dc.description.references Ahmed, M., Buch, C., Routaboul, L., Jackstell, R., Klein, H., Spannenberg, A., & Beller, M. (2007). Hydroaminomethylation with Novel Rhodium–Carbene complexes: An Efficient Catalytic Approach to Pharmaceuticals. Chemistry - A European Journal, 13(5), 1594-1601. doi:10.1002/chem.200601155 es_ES
dc.description.references Crozet, D., Urrutigoïty, M., & Kalck, P. (2011). Recent Advances in Amine Synthesis by Catalytic Hydroaminomethylation of Alkenes. ChemCatChem, 3(7), 1102-1118. doi:10.1002/cctc.201000411 es_ES
dc.description.references Gülak, S., Wu, L., Liu, Q., Franke, R., Jackstell, R., & Beller, M. (2014). Phosphine‐ and Hydrogen‐Free: Highly Regioselective Ruthenium‐Catalyzed Hydroaminomethylation of Olefins. Angewandte Chemie International Edition, 53(28), 7320-7323. doi:10.1002/anie.201402368 es_ES
dc.description.references Gülak, S., Wu, L., Liu, Q., Franke, R., Jackstell, R., & Beller, M. (2014). Phosphine‐ and Hydrogen‐Free: Highly Regioselective Ruthenium‐Catalyzed Hydroaminomethylation of Olefins. Angewandte Chemie, 126(28), 7448-7451. doi:10.1002/ange.201402368 es_ES
dc.description.references Chen, C., Dong, X.-Q., & Zhang, X. (2016). Recent progress in rhodium-catalyzed hydroaminomethylation. Organic Chemistry Frontiers, 3(10), 1359-1370. doi:10.1039/c6qo00233a es_ES
dc.description.references Fleischer, I., Gehrtz, P., Hirschbeck, V., & Ciszek, B. (2016). Carbonylations of Alkenes in the Total Synthesis of Natural Compounds. Synthesis, 48(11), 1573-1596. doi:10.1055/s-0035-1560431 es_ES
dc.description.references Kobayashi, S., & Ishitani, H. (1999). Catalytic Enantioselective Addition to Imines. Chemical Reviews, 99(5), 1069-1094. doi:10.1021/cr980414z es_ES
dc.description.references Lipshutz, B. H., & Shimizu, H. (2004). Copper(I)-Catalyzed Asymmetric Hydrosilylations of Imines at Ambient Temperatures. Angewandte Chemie International Edition, 43(17), 2228-2230. doi:10.1002/anie.200353294 es_ES
dc.description.references Lipshutz, B. H., & Shimizu, H. (2004). Copper(I)-Catalyzed Asymmetric Hydrosilylations of Imines at Ambient Temperatures. Angewandte Chemie, 116(17), 2278-2280. doi:10.1002/ange.200353294 es_ES
dc.description.references Nolin, K. A., Ahn, R. W., & Toste, F. D. (2005). Enantioselective Reduction of Imines Catalyzed by a Rhenium(V)−Oxo Complex. Journal of the American Chemical Society, 127(36), 12462-12463. doi:10.1021/ja050831a es_ES
dc.description.references Mršić, N., Minnaard, A. J., Feringa, B. L., & Vries, J. G. de. (2009). Iridium/Monodentate Phosphoramidite Catalyzed Asymmetric Hydrogenation ofN-Aryl Imines. Journal of the American Chemical Society, 131(24), 8358-8359. doi:10.1021/ja901961y es_ES
dc.description.references Nugent, T. C., & El-Shazly, M. (2010). Chiral Amine Synthesis - Recent Developments and Trends for Enamide Reduction, Reductive Amination, and Imine Reduction. Advanced Synthesis & Catalysis, 352(5), 753-819. doi:10.1002/adsc.200900719 es_ES
dc.description.references Xie, J.-H., Zhu, S.-F., & Zhou, Q.-L. (2011). Transition Metal-Catalyzed Enantioselective Hydrogenation of Enamines and Imines. Chemical Reviews, 111(3), 1713-1760. doi:10.1021/cr100218m es_ES
dc.description.references Zhou, S., Fleischer, S., Junge, K., & Beller, M. (2011). Cooperative Transition-Metal and Chiral Brønsted Acid Catalysis: Enantioselective Hydrogenation of Imines To Form Amines. Angewandte Chemie International Edition, 50(22), 5120-5124. doi:10.1002/anie.201100878 es_ES
dc.description.references Zhou, S., Fleischer, S., Junge, K., & Beller, M. (2011). Cooperative Transition-Metal and Chiral Brønsted Acid Catalysis: Enantioselective Hydrogenation of Imines To Form Amines. Angewandte Chemie, 123(22), 5226-5230. doi:10.1002/ange.201100878 es_ES
dc.description.references Bartoszewicz, A., Ahlsten, N., & Martín-Matute, B. (2013). Enantioselective Synthesis of Alcohols and Amines by Iridium-Catalyzed Hydrogenation, Transfer Hydrogenation, and Related Processes. Chemistry - A European Journal, 19(23), 7274-7302. doi:10.1002/chem.201202836 es_ES
dc.description.references Etayo, P., & Vidal-Ferran, A. (2013). Rhodium-catalysed asymmetric hydrogenation as a valuable synthetic tool for the preparation of chiral drugs. Chem. Soc. Rev., 42(2), 728-754. doi:10.1039/c2cs35410a es_ES
dc.description.references Lagaditis, P. O., Sues, P. E., Sonnenberg, J. F., Wan, K. Y., Lough, A. J., & Morris, R. H. (2014). Iron(II) Complexes Containing Unsymmetrical P–N–P′ Pincer Ligands for the Catalytic Asymmetric Hydrogenation of Ketones and Imines. Journal of the American Chemical Society, 136(4), 1367-1380. doi:10.1021/ja4082233 es_ES
dc.description.references Rossi, S., Benaglia, M., Massolo, E., & Raimondi, L. (2014). Organocatalytic strategies for enantioselective metal-free reductions. Catalysis Science & Technology, 4(9), 2708. doi:10.1039/c4cy00033a es_ES
dc.description.references Hopmann, K. H., & Bayer, A. (2014). Enantioselective imine hydrogenation with iridium-catalysts: Reactions, mechanisms and stereocontrol. Coordination Chemistry Reviews, 268, 59-82. doi:10.1016/j.ccr.2014.01.023 es_ES
dc.description.references Ghislieri, D., & Turner, N. J. (2013). Biocatalytic Approaches to the Synthesis of Enantiomerically Pure Chiral Amines. Topics in Catalysis, 57(5), 284-300. doi:10.1007/s11244-013-0184-1 es_ES
dc.description.references Schrittwieser, J. H., Velikogne, S., & Kroutil, W. (2015). Biocatalytic Imine Reduction and Reductive Amination of Ketones. Advanced Synthesis & Catalysis, 357(8), 1655-1685. doi:10.1002/adsc.201500213 es_ES
dc.description.references Zhu, C., Saito, K., Yamanaka, M., & Akiyama, T. (2015). Benzothiazoline: Versatile Hydrogen Donor for Organocatalytic Transfer Hydrogenation. Accounts of Chemical Research, 48(2), 388-398. doi:10.1021/ar500414x es_ES
dc.description.references Oku, T., & Ikariya, T. (2002). Enhanced Product Selectivity in Continuous N-Methylation of Amino Alcohols over Solid Acid–Base Catalysts with Supercritical Methanol. Angewandte Chemie International Edition, 41(18), 3476-3479. doi:10.1002/1521-3773(20020916)41:18<3476::aid-anie3476>3.0.co;2-5 es_ES
dc.description.references Oku, T., Arita, Y., Tsuneki, H., & Ikariya, T. (2004). Continuous Chemoselective Methylation of Functionalized Amines and Diols with Supercritical Methanol over Solid Acid and Acid−Base Bifunctional Catalysts. Journal of the American Chemical Society, 126(23), 7368-7377. doi:10.1021/ja048557s es_ES
dc.description.references Hollmann, D., Bähn, S., Tillack, A., & Beller, M. (2007). A General Ruthenium-Catalyzed Synthesis of Aromatic Amines. Angewandte Chemie International Edition, 46(43), 8291-8294. doi:10.1002/anie.200703119 es_ES
dc.description.references Hollmann, D., Bähn, S., Tillack, A., & Beller, M. (2007). Eine allgemeine rutheniumkatalysierte Synthese von aromatischen Aminen. Angewandte Chemie, 119(43), 8440-8444. doi:10.1002/ange.200703119 es_ES
dc.description.references Hollmann, D., Bähn, S., Tillack, A., & Beller, M. (2008). N-Dealkylation of aliphatic amines and selective synthesis of monoalkylated aryl amines. Chemical Communications, (27), 3199. doi:10.1039/b803114b es_ES
dc.description.references Saidi, O., Blacker, A. J., Farah, M. M., Marsden, S. P., & Williams, J. M. J. (2009). Selective Amine Cross-Coupling Using Iridium-Catalyzed «Borrowing Hydrogen» Methodology. Angewandte Chemie International Edition, 48(40), 7375-7378. doi:10.1002/anie.200904028 es_ES
dc.description.references Saidi, O., Blacker, A. J., Farah, M. M., Marsden, S. P., & Williams, J. M. J. (2009). Selective Amine Cross-Coupling Using Iridium-Catalyzed «Borrowing Hydrogen» Methodology. Angewandte Chemie, 121(40), 7511-7514. doi:10.1002/ange.200904028 es_ES
dc.description.references Guillena, G., Ramón, D. J., & Yus, M. (2009). Hydrogen Autotransfer in theN-Alkylation of Amines and Related Compounds using Alcohols and Amines as Electrophiles. Chemical Reviews, 110(3), 1611-1641. doi:10.1021/cr9002159 es_ES
dc.description.references Zhao, Y., Foo, S. W., & Saito, S. (2011). Iron/Amino Acid Catalyzed Direct N-Alkylation of Amines with Alcohols. Angewandte Chemie International Edition, 50(13), 3006-3009. doi:10.1002/anie.201006660 es_ES
dc.description.references Zhao, Y., Foo, S. W., & Saito, S. (2011). Iron/Amino Acid Catalyzed Direct N-Alkylation of Amines with Alcohols. Angewandte Chemie, 123(13), 3062-3065. doi:10.1002/ange.201006660 es_ES
dc.description.references Bähn, S., Imm, S., Neubert, L., Zhang, M., Neumann, H., & Beller, M. (2011). The Catalytic Amination of Alcohols. ChemCatChem, 3(12), 1853-1864. doi:10.1002/cctc.201100255 es_ES
dc.description.references Abarca, B., Adam, R., & Ballesteros, R. (2012). An efficient one pot transfer hydrogenation and N-alkylation of quinolines with alcohols mediated by Pd/C/Zn. Organic & Biomolecular Chemistry, 10(9), 1826. doi:10.1039/c1ob05888f es_ES
dc.description.references Yang, Q., Wang, Q., & Yu, Z. (2015). Substitution of alcohols by N-nucleophiles via transition metal-catalyzed dehydrogenation. Chemical Society Reviews, 44(8), 2305-2329. doi:10.1039/c4cs00496e es_ES
dc.description.references Yin, Z., Zeng, H., Wu, J., Zheng, S., & Zhang, G. (2016). Cobalt-Catalyzed Synthesis of Aromatic, Aliphatic, and Cyclic Secondary Amines via a «Hydrogen-Borrowing» Strategy. ACS Catalysis, 6(10), 6546-6550. doi:10.1021/acscatal.6b02218 es_ES
dc.description.references Arachchige, P. T. K., Lee, H., & Yi, C. S. (2018). Synthesis of Symmetric and Unsymmetric Secondary Amines from the Ligand-Promoted Ruthenium-Catalyzed Deaminative Coupling Reaction of Primary Amines. The Journal of Organic Chemistry, 83(9), 4932-4947. doi:10.1021/acs.joc.8b00649 es_ES
dc.description.references Müller, T. E., & Beller, M. (1998). Metal-Initiated Amination of Alkenes and Alkynes†. Chemical Reviews, 98(2), 675-704. doi:10.1021/cr960433d es_ES
dc.description.references Beller, M., Seayad, J., Tillack, A., & Jiao, H. (2004). Catalytic Markovnikov and anti-Markovnikov Functionalization of Alkenes and Alkynes: Recent Developments and Trends. Angewandte Chemie International Edition, 43(26), 3368-3398. doi:10.1002/anie.200300616 es_ES
dc.description.references Beller, M., Seayad, J., Tillack, A., & Jiao, H. (2004). Katalytische Markownikow- und Anti-Markownikow-Funktionalisierung von Alkenen und Alkinen. Angewandte Chemie, 116(26), 3448-3479. doi:10.1002/ange.200300616 es_ES
dc.description.references Müller, T. E., Hultzsch, K. C., Yus, M., Foubelo, F., & Tada, M. (2008). Hydroamination: Direct Addition of Amines to Alkenes and Alkynes. Chemical Reviews, 108(9), 3795-3892. doi:10.1021/cr0306788 es_ES
dc.description.references Leyva-Pérez, A., Cabrero-Antonino, J. R., Cantín, A., & Corma, A. (2010). Gold(I) Catalyzes the Intermolecular Hydroamination of Alkynes with Imines and Produces α,α′,N-Triarylbisenamines: Studies on Their Use As Intermediates in Synthesis. The Journal of Organic Chemistry, 75(22), 7769-7780. doi:10.1021/jo101674t es_ES
dc.description.references Yim, J. C.-H., & Schafer, L. L. (2014). Efficient Anti-Markovnikov-Selective Catalysts for Intermolecular Alkyne Hydroamination: Recent Advances and Synthetic Applications. European Journal of Organic Chemistry, 2014(31), 6825-6840. doi:10.1002/ejoc.201402300 es_ES
dc.description.references Gui, J., Pan, C.-M., Jin, Y., Qin, T., Lo, J. C., Lee, B. J., … Baran, P. S. (2015). Practical olefin hydroamination with nitroarenes. Science, 348(6237), 886-891. doi:10.1126/science.aab0245 es_ES
dc.description.references Huang, L., Arndt, M., Gooßen, K., Heydt, H., & Gooßen, L. J. (2015). Late Transition Metal-Catalyzed Hydroamination and Hydroamidation. Chemical Reviews, 115(7), 2596-2697. doi:10.1021/cr300389u es_ES
dc.description.references Yang, Y., Shi, S.-L., Niu, D., Liu, P., & Buchwald, S. L. (2015). Catalytic asymmetric hydroamination of unactivated internal olefins to aliphatic amines. Science, 349(6243), 62-66. doi:10.1126/science.aab3753 es_ES
dc.description.references Pirnot, M. T., Wang, Y.-M., & Buchwald, S. L. (2015). Copper Hydride Catalyzed Hydroamination of Alkenes and Alkynes. Angewandte Chemie International Edition, 55(1), 48-57. doi:10.1002/anie.201507594 es_ES
dc.description.references Pirnot, M. T., Wang, Y.-M., & Buchwald, S. L. (2015). Kupferhydrid-katalysierte Hydroaminierung von Alkenen und Alkinen. Angewandte Chemie, 128(1), 48-57. doi:10.1002/ange.201507594 es_ES
dc.description.references Hartwig, J. F. (1998). Transition Metal Catalyzed Synthesis of Arylamines and Aryl Ethers from Aryl Halides and Triflates: Scope and Mechanism. Angewandte Chemie International Edition, 37(15), 2046-2067. doi:10.1002/(sici)1521-3773(19980817)37:15<2046::aid-anie2046>3.0.co;2-l es_ES
dc.description.references Hartwig, J. F. (1998). Übergangsmetall-katalysierte Synthese von Arylaminen und Arylethern aus Arylhalogeniden und -triflaten: Anwendungen und Reaktionsmechanismus. Angewandte Chemie, 110(15), 2154-2177. doi:10.1002/(sici)1521-3757(19980803)110:15<2154::aid-ange2154>3.0.co;2-c es_ES
dc.description.references Hartwig, J. F. (2008). Evolution of a Fourth Generation Catalyst for the Amination and Thioetherification of Aryl Halides. Accounts of Chemical Research, 41(11), 1534-1544. doi:10.1021/ar800098p es_ES
dc.description.references Surry, D. S., & Buchwald, S. L. (2011). Dialkylbiaryl phosphines in Pd-catalyzed amination: a user’s guide. Chem. Sci., 2(1), 27-50. doi:10.1039/c0sc00331j es_ES
dc.description.references Brusoe, A. T., & Hartwig, J. F. (2015). Palladium-Catalyzed Arylation of Fluoroalkylamines. Journal of the American Chemical Society, 137(26), 8460-8468. doi:10.1021/jacs.5b02512 es_ES
dc.description.references Tietze, L. F. (1996). Domino Reactions in Organic Synthesis. Chemical Reviews, 96(1), 115-136. doi:10.1021/cr950027e es_ES
dc.description.references Padwa, A., & Bur, S. K. (2007). The domino way to heterocycles. Tetrahedron, 63(25), 5341-5378. doi:10.1016/j.tet.2007.03.158 es_ES
dc.description.references Padwa, A. (2009). Domino reactions of rhodium(ii) carbenoids for alkaloid synthesis. Chemical Society Reviews, 38(11), 3072. doi:10.1039/b816701j es_ES
dc.description.references Tietze, L. F., Kinzel, T., & Brazel, C. C. (2009). The Domino Multicomponent Allylation Reaction for the Stereoselective Synthesis of Homoallylic Alcohols. Accounts of Chemical Research, 42(2), 367-378. doi:10.1021/ar800170y es_ES
dc.description.references Sakakura, T., Choi, J.-C., & Yasuda, H. (2007). Transformation of Carbon Dioxide. Chemical Reviews, 107(6), 2365-2387. doi:10.1021/cr068357u es_ES
dc.description.references Mikkelsen, M., Jørgensen, M., & Krebs, F. C. (2010). The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ. Sci., 3(1), 43-81. doi:10.1039/b912904a es_ES
dc.description.references Peters, M., Köhler, B., Kuckshinrichs, W., Leitner, W., Markewitz, P., & Müller, T. E. (2011). Chemical Technologies for Exploiting and Recycling Carbon Dioxide into the Value Chain. ChemSusChem, 4(9), 1216-1240. doi:10.1002/cssc.201000447 es_ES
dc.description.references Markewitz, P., Kuckshinrichs, W., Leitner, W., Linssen, J., Zapp, P., Bongartz, R., … Müller, T. E. (2012). Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energy & Environmental Science, 5(6), 7281. doi:10.1039/c2ee03403d es_ES
dc.description.references Aresta, M., Dibenedetto, A., & Angelini, A. (2013). Catalysis for the Valorization of Exhaust Carbon: from CO2to Chemicals, Materials, and Fuels. Technological Use of CO2. Chemical Reviews, 114(3), 1709-1742. doi:10.1021/cr4002758 es_ES
dc.description.references Lanzafame, P., Centi, G., & Perathoner, S. (2014). Catalysis for biomass and CO2use through solar energy: opening new scenarios for a sustainable and low-carbon chemical production. Chem. Soc. Rev., 43(22), 7562-7580. doi:10.1039/c3cs60396b es_ES
dc.description.references Maeda, C., Miyazaki, Y., & Ema, T. (2014). Recent progress in catalytic conversions of carbon dioxide. Catalysis Science & Technology, 4(6), 1482. doi:10.1039/c3cy00993a es_ES
dc.description.references Jessop, P. G., Ikariya, T., & Noyori, R. (1994). Homogeneous catalytic hydrogenation of supercritical carbon dioxide. Nature, 368(6468), 231-233. doi:10.1038/368231a0 es_ES
dc.description.references Leitner, W. (1995). Carbon Dioxide as a Raw Material: The Synthesis of Formic Acid and Its Derivatives from CO2. Angewandte Chemie International Edition in English, 34(20), 2207-2221. doi:10.1002/anie.199522071 es_ES
dc.description.references Leitner, W. (1995). Kohlendioxid als Rohstoff am Beispiel der Synthese von Ameisensäure und ihren Derivaten. Angewandte Chemie, 107(20), 2391-2405. doi:10.1002/ange.19951072005 es_ES
dc.description.references Jessop, P. G., Hsiao, Y., Ikariya, T., & Noyori, R. (1996). Homogeneous Catalysis in Supercritical Fluids:  Hydrogenation of Supercritical Carbon Dioxide to Formic Acid, Alkyl Formates, and Formamides. Journal of the American Chemical Society, 118(2), 344-355. doi:10.1021/ja953097b es_ES
dc.description.references Jessop, P. G., Joó, F., & Tai, C.-C. (2004). Recent advances in the homogeneous hydrogenation of carbon dioxide. Coordination Chemistry Reviews, 248(21-24), 2425-2442. doi:10.1016/j.ccr.2004.05.019 es_ES
dc.description.references Federsel, C., Jackstell, R., & Beller, M. (2010). State-of-the-Art Catalysts for Hydrogenation of Carbon Dioxide. Angewandte Chemie International Edition, 49(36), 6254-6257. doi:10.1002/anie.201000533 es_ES
dc.description.references Federsel, C., Jackstell, R., & Beller, M. (2010). Moderne Katalysatoren zur Hydrierung von Kohlendioxid. Angewandte Chemie, 122(36), 6392-6395. doi:10.1002/ange.201000533 es_ES
dc.description.references Wang, W., Wang, S., Ma, X., & Gong, J. (2011). Recent advances in catalytic hydrogenation of carbon dioxide. Chemical Society Reviews, 40(7), 3703. doi:10.1039/c1cs15008a es_ES
dc.description.references Hull, J. F., Himeda, Y., Wang, W.-H., Hashiguchi, B., Periana, R., Szalda, D. J., … Fujita, E. (2012). Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures. Nature Chemistry, 4(5), 383-388. doi:10.1038/nchem.1295 es_ES
dc.description.references Wesselbaum, S., vom Stein, T., Klankermayer, J., & Leitner, W. (2012). Hydrogenation of Carbon Dioxide to Methanol by Using a Homogeneous Ruthenium-Phosphine Catalyst. Angewandte Chemie International Edition, 51(30), 7499-7502. doi:10.1002/anie.201202320 es_ES
dc.description.references Wesselbaum, S., vom Stein, T., Klankermayer, J., & Leitner, W. (2012). Hydrogenation of Carbon Dioxide to Methanol by Using a Homogeneous Ruthenium-Phosphine Catalyst. Angewandte Chemie, 124(30), 7617-7620. doi:10.1002/ange.201202320 es_ES
dc.description.references Fernández-Alvarez, F. J., Aitani, A. M., & Oro, L. A. (2014). Homogeneous catalytic reduction of CO2 with hydrosilanes. Catal. Sci. Technol., 4(3), 611-624. doi:10.1039/c3cy00948c es_ES
dc.description.references Moret, S., Dyson, P. J., & Laurenczy, G. (2014). Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media. Nature Communications, 5(1). doi:10.1038/ncomms5017 es_ES
dc.description.references Von Wolff, N., Lefèvre, G., Berthet, J.-C., Thuéry, P., & Cantat, T. (2016). Implications of CO2Activation by Frustrated Lewis Pairs in the Catalytic Hydroboration of CO2: A View Using N/Si+Frustrated Lewis Pairs. ACS Catalysis, 6(7), 4526-4535. doi:10.1021/acscatal.6b00421 es_ES
dc.description.references Álvarez, A., Bansode, A., Urakawa, A., Bavykina, A. V., Wezendonk, T. A., Makkee, M., … Kapteijn, F. (2017). Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO2 Hydrogenation Processes. Chemical Reviews, 117(14), 9804-9838. doi:10.1021/acs.chemrev.6b00816 es_ES
dc.description.references Schneidewind, J., Adam, R., Baumann, W., Jackstell, R., & Beller, M. (2017). Low-Temperature Hydrogenation of Carbon Dioxide to Methanol with a Homogeneous Cobalt Catalyst. Angewandte Chemie International Edition, 56(7), 1890-1893. doi:10.1002/anie.201609077 es_ES
dc.description.references Schneidewind, J., Adam, R., Baumann, W., Jackstell, R., & Beller, M. (2017). Low-Temperature Hydrogenation of Carbon Dioxide to Methanol with a Homogeneous Cobalt Catalyst. Angewandte Chemie, 129(7), 1916-1919. doi:10.1002/ange.201609077 es_ES
dc.description.references Sordakis, K., Tang, C., Vogt, L. K., Junge, H., Dyson, P. J., Beller, M., & Laurenczy, G. (2017). Homogeneous Catalysis for Sustainable Hydrogen Storage in Formic Acid and Alcohols. Chemical Reviews, 118(2), 372-433. doi:10.1021/acs.chemrev.7b00182 es_ES
dc.description.references Braunstein, P., Matt, D., & Nobel, D. (1988). Reactions of carbon dioxide with carbon-carbon bond formation catalyzed by transition-metal complexes. Chemical Reviews, 88(5), 747-764. doi:10.1021/cr00087a003 es_ES
dc.description.references Aresta, M., & Dibenedetto, A. (2007). Utilisation of CO2 as a chemical feedstock: opportunities and challenges. Dalton Transactions, (28), 2975. doi:10.1039/b700658f es_ES
dc.description.references Boogaerts, I. I. F., & Nolan, S. P. (2010). Carboxylation of C−H Bonds UsingN-Heterocyclic Carbene Gold(I) Complexes. Journal of the American Chemical Society, 132(26), 8858-8859. doi:10.1021/ja103429q es_ES
dc.description.references Huang, K., Sun, C.-L., & Shi, Z.-J. (2011). Transition-metal-catalyzed C–C bond formation through the fixation of carbon dioxide. Chemical Society Reviews, 40(5), 2435. doi:10.1039/c0cs00129e es_ES
dc.description.references Liu, Q., Wu, L., Jackstell, R., & Beller, M. (2015). Using carbon dioxide as a building block in organic synthesis. Nature Communications, 6(1). doi:10.1038/ncomms6933 es_ES
dc.description.references Juliá-Hernández, F., Moragas, T., Cornella, J., & Martin, R. (2017). Remote carboxylation of halogenated aliphatic hydrocarbons with carbon dioxide. Nature, 545(7652), 84-88. doi:10.1038/nature22316 es_ES
dc.description.references Tlili, A., Frogneux, X., Blondiaux, E., & Cantat, T. (2014). Creating Added Value with a Waste: Methylation of Amines with CO2and H2. Angewandte Chemie International Edition, 53(10), 2543-2545. doi:10.1002/anie.201310337 es_ES
dc.description.references Tlili, A., Frogneux, X., Blondiaux, E., & Cantat, T. (2014). Wertschöpfung aus einem Abfallstoff: Methylierung von Aminen mit CO2und H2. Angewandte Chemie, 126(10), 2577-2579. doi:10.1002/ange.201310337 es_ES
dc.description.references Klankermayer, J., & Leitner, W. (2015). Love at second sight for CO2 and H2 in organic synthesis. Science, 350(6261), 629-630. doi:10.1126/science.aac7997 es_ES
dc.description.references Yan, G., Borah, A. J., Wang, L., & Yang, M. (2015). Recent Advances in Transition Metal-Catalyzed Methylation Reactions. Advanced Synthesis & Catalysis, 357(7), 1333-1350. doi:10.1002/adsc.201400984 es_ES
dc.description.references Tlili, A., Blondiaux, E., Frogneux, X., & Cantat, T. (2015). Reductive functionalization of CO2 with amines: an entry to formamide, formamidine and methylamine derivatives. Green Chemistry, 17(1), 157-168. doi:10.1039/c4gc01614a es_ES
dc.description.references Klankermayer, J., Wesselbaum, S., Beydoun, K., & Leitner, W. (2016). Selective Catalytic Synthesis Using the Combination of Carbon Dioxide and Hydrogen: Catalytic Chess at the Interface of Energy and Chemistry. Angewandte Chemie International Edition, 55(26), 7296-7343. doi:10.1002/anie.201507458 es_ES
dc.description.references Klankermayer, J., Wesselbaum, S., Beydoun, K., & Leitner, W. (2016). Selektive katalytische Synthesen mit Kohlendioxid und Wasserstoff: Katalyse-Schach an der Nahtstelle zwischen Energie und Chemie. Angewandte Chemie, 128(26), 7416-7467. doi:10.1002/ange.201507458 es_ES
dc.description.references Li, Y., Cui, X., Dong, K., Junge, K., & Beller, M. (2017). Utilization of CO2as a C1 Building Block for Catalytic Methylation Reactions. ACS Catalysis, 7(2), 1077-1086. doi:10.1021/acscatal.6b02715 es_ES
dc.description.references Schäffner, B., Schäffner, F., Verevkin, S. P., & Börner, A. (2010). Organic Carbonates as Solvents in Synthesis and Catalysis. Chemical Reviews, 110(8), 4554-4581. doi:10.1021/cr900393d es_ES
dc.description.references Balaraman, E., Gunanathan, C., Zhang, J., Shimon, L. J. W., & Milstein, D. (2011). Efficient hydrogenation of organic carbonates, carbamates and formates indicates alternative routes to methanol based on CO2 and CO. Nature Chemistry, 3(8), 609-614. doi:10.1038/nchem.1089 es_ES
dc.description.references Dub, P. A., & Ikariya, T. (2012). Catalytic Reductive Transformations of Carboxylic and Carbonic Acid Derivatives Using Molecular Hydrogen. ACS Catalysis, 2(8), 1718-1741. doi:10.1021/cs300341g es_ES
dc.description.references Ikariya, T., & Kayaki, Y. (2014). Hydrogenation of carboxylic acid derivatives with bifunctional ruthenium catalysts. Pure and Applied Chemistry, 86(6), 933-943. doi:10.1515/pac-2014-0103 es_ES
dc.description.references Smith, A. M., & Whyman, R. (2014). Review of Methods for the Catalytic Hydrogenation of Carboxamides. Chemical Reviews, 114(10), 5477-5510. doi:10.1021/cr400609m es_ES
dc.description.references Werkmeister, S., Junge, K., & Beller, M. (2014). Catalytic Hydrogenation of Carboxylic Acid Esters, Amides, and Nitriles with Homogeneous Catalysts. Organic Process Research & Development, 18(2), 289-302. doi:10.1021/op4003278 es_ES
dc.description.references Just-Baringo, X., & Procter, D. J. (2015). Sm(II)-Mediated Electron Transfer to Carboxylic Acid Derivatives: Development of Complexity-Generating Cascades. Accounts of Chemical Research, 48(5), 1263-1275. doi:10.1021/acs.accounts.5b00083 es_ES
dc.description.references Pritchard, J., Filonenko, G. A., van Putten, R., Hensen, E. J. M., & Pidko, E. A. (2015). Heterogeneous and homogeneous catalysis for the hydrogenation of carboxylic acid derivatives: history, advances and future directions. Chemical Society Reviews, 44(11), 3808-3833. doi:10.1039/c5cs00038f es_ES
dc.description.references Mérel, D. S., Do, M. L. T., Gaillard, S., Dupau, P., & Renaud, J.-L. (2015). Iron-catalyzed reduction of carboxylic and carbonic acid derivatives. Coordination Chemistry Reviews, 288, 50-68. doi:10.1016/j.ccr.2015.01.008 es_ES
dc.description.references Nagashima, H. (2015). Efficient Transition Metal-Catalyzed Reactions of Carboxylic Acid Derivatives with Hydrosilanes and Hydrosiloxanes, Afforded by Catalyst Design and the Proximity Effect of Two Si–H Groups. Synlett, 26(07), 866-890. doi:10.1055/s-0034-1379989 es_ES
dc.description.references Crochet, P., & Cadierno, V. (2014). Ruthenium-Catalyzed Amide-Bond Formation. Topics in Organometallic Chemistry, 81-118. doi:10.1007/3418_2014_78 es_ES
dc.description.references De Figueiredo, R. M., Suppo, J.-S., & Campagne, J.-M. (2016). Nonclassical Routes for Amide Bond Formation. Chemical Reviews, 116(19), 12029-12122. doi:10.1021/acs.chemrev.6b00237 es_ES
dc.description.references Kreituss, I., & Bode, J. W. (2016). Catalytic Kinetic Resolution of Saturated N-Heterocycles by Enantioselective Amidation with Chiral Hydroxamic Acids. Accounts of Chemical Research, 49(12), 2807-2821. doi:10.1021/acs.accounts.6b00461 es_ES
dc.description.references Ojeda-Porras, A., & Gamba-Sánchez, D. (2016). Recent Developments in Amide Synthesis Using Nonactivated Starting Materials. The Journal of Organic Chemistry, 81(23), 11548-11555. doi:10.1021/acs.joc.6b02358 es_ES
dc.description.references Noda, H., Furutachi, M., Asada, Y., Shibasaki, M., & Kumagai, N. (2017). Unique physicochemical and catalytic properties dictated by the B3NO2 ring system. Nature Chemistry, 9(6), 571-577. doi:10.1038/nchem.2708 es_ES
dc.description.references Brown, H. C., Narasimhan, S., & Choi, Y. M. (1981). Improved Procedure for Borane-Dimethyl Sulfide Reduction of Primary Amides to Amines. Synthesis, 1981(06), 441-442. doi:10.1055/s-1981-29473 es_ES
dc.description.references W. Gribble, G. (1998). Sodium borohydride in carboxylic acid media: a phenomenal reduction system. Chemical Society Reviews, 27(6), 395. doi:10.1039/a827395z es_ES
dc.description.references Pelletier, G., Bechara, W. S., & Charette, A. B. (2010). Controlled and Chemoselective Reduction of Secondary Amides. Journal of the American Chemical Society, 132(37), 12817-12819. doi:10.1021/ja105194s es_ES
dc.description.references Coetzee, J., Dodds, D. L., Klankermayer, J., Brosinski, S., Leitner, W., Slawin, A. M. Z., & Cole-Hamilton, D. J. (2013). Homogeneous Catalytic Hydrogenation of Amides to Amines. Chemistry - A European Journal, 19(33), 11039-11050. doi:10.1002/chem.201204270 es_ES
dc.description.references Stein, M., & Breit, B. (2012). Catalytic Hydrogenation of Amides to Amines under Mild Conditions. Angewandte Chemie International Edition, 52(8), 2231-2234. doi:10.1002/anie.201207803 es_ES
dc.description.references Stein, M., & Breit, B. (2012). Catalytic Hydrogenation of Amides to Amines under Mild Conditions. Angewandte Chemie, 125(8), 2287-2290. doi:10.1002/ange.201207803 es_ES
dc.description.references Vom Stein, T., Meuresch, M., Limper, D., Schmitz, M., Hölscher, M., Coetzee, J., … Leitner, W. (2014). Highly Versatile Catalytic Hydrogenation of Carboxylic and Carbonic Acid Derivatives using a Ru-Triphos Complex: Molecular Control over Selectivity and Substrate Scope. Journal of the American Chemical Society, 136(38), 13217-13225. doi:10.1021/ja506023f es_ES
dc.description.references Cabrero-Antonino, J. R., Alberico, E., Junge, K., Junge, H., & Beller, M. (2016). Towards a general ruthenium-catalyzed hydrogenation of secondary and tertiary amides to amines. Chemical Science, 7(5), 3432-3442. doi:10.1039/c5sc04671h es_ES
dc.description.references Li, B., Sortais, J.-B., & Darcel, C. (2016). Amine synthesis via transition metal homogeneous catalysed hydrosilylation. RSC Advances, 6(62), 57603-57625. doi:10.1039/c6ra10494k es_ES
dc.description.references Mukherjee, D., Shirase, S., Mashima, K., & Okuda, J. (2016). Chemoselective Reduction of Tertiary Amides to Amines Catalyzed by Triphenylborane. Angewandte Chemie International Edition, 55(42), 13326-13329. doi:10.1002/anie.201605236 es_ES
dc.description.references Mukherjee, D., Shirase, S., Mashima, K., & Okuda, J. (2016). Triphenylboran-katalysierte chemoselektive Reduktion von tertiären Amiden zu Aminen. Angewandte Chemie, 128(42), 13520-13523. doi:10.1002/ange.201605236 es_ES
dc.description.references Volkov, A., Tinnis, F., Slagbrand, T., Trillo, P., & Adolfsson, H. (2016). Chemoselective reduction of carboxamides. Chemical Society Reviews, 45(24), 6685-6697. doi:10.1039/c6cs00244g es_ES
dc.description.references Mitsudome, T., Miyagawa, K., Maeno, Z., Mizugaki, T., Jitsukawa, K., Yamasaki, J., … Kaneda, K. (2017). Mild Hydrogenation of Amides to Amines over a Platinum-Vanadium Bimetallic Catalyst. Angewandte Chemie International Edition, 56(32), 9381-9385. doi:10.1002/anie.201704199 es_ES
dc.description.references Mitsudome, T., Miyagawa, K., Maeno, Z., Mizugaki, T., Jitsukawa, K., Yamasaki, J., … Kaneda, K. (2017). Mild Hydrogenation of Amides to Amines over a Platinum-Vanadium Bimetallic Catalyst. Angewandte Chemie, 129(32), 9509-9513. doi:10.1002/ange.201704199 es_ES
dc.description.references GRIBBLE, G. W., & HEALD, P. W. (1975). Reactions of Sodium Borohydride in Acidic Media; III. Reduction and Alkylation of Quinoline and Isoquinoline with Carboxylic Acids. Synthesis, 1975(10), 650-652. doi:10.1055/s-1975-23871 es_ES
dc.description.references Marchini, P., Liso, G., Reho, A., Liberatore, F., & Micheletti Moracci, F. (1975). Sodium borohydride-carboxylic acid systems. Useful reagents for the alkylation of amines. The Journal of Organic Chemistry, 40(23), 3453-3456. doi:10.1021/jo00911a038 es_ES
dc.description.references GRIBBLE, G. W., JASINSKI, J. M., PELLICONE, J. T., & PANETTA, J. A. (1978). Reactions of Sodium Borohydride in Acidic Media; VIII.N-Alkylation of Aliphatic Secondary Amines with Carboxylic Acids. Synthesis, 1978(10), 766-768. doi:10.1055/s-1978-24885 es_ES
dc.description.references Trapani, G., Reho, A., & Latrofa, A. (1983). Trimethylamine-Borane as Useful Reagent in theN-Acylation orN-Alkylation of Amines by Carboxylic Acids. Synthesis, 1983(12), 1013-1014. doi:10.1055/s-1983-30605 es_ES
dc.description.references Perrio-Huard, C., Aubert, C., & Lasne, M.-C. (2000). Reductive amination of carboxylic acids and [11C]magnesium halide carboxylates. Journal of the Chemical Society, Perkin Transactions 1, (3), 311-316. doi:10.1039/a908991h es_ES
dc.description.references Akita, M. (2000). Deoxygenative reduction of organometallic compounds by hydrosilanes — an organometallic approach to reaction mechanisms of catalytic CO hydrogenation. Applied Catalysis A: General, 200(1-2), 153-165. doi:10.1016/s0926-860x(00)00632-3 es_ES
dc.description.references Carpentier, J.-F., & Bette, V. (2002). Chemo- and Enantioselective Hydrosilylation of Carbonyl and Imino Groups. An Emphasis on Non-Traditional Catalyst Systems. Current Organic Chemistry, 6(10), 913-936. doi:10.2174/1385272023373851 es_ES
dc.description.references KUBAS, G. J. (2004). HETEROLYTIC SPLITTING OF HH, SiH, AND OTHER σ BONDS ON ELECTROPHILIC METAL CENTERS. Advances in Inorganic Chemistry, 127-177. doi:10.1016/s0898-8838(04)56005-1 es_ES
dc.description.references Addis, D., Das, S., Junge, K., & Beller, M. (2011). Selective Reduction of Carboxylic Acid Derivatives by Catalytic Hydrosilylation. Angewandte Chemie International Edition, 50(27), 6004-6011. doi:10.1002/anie.201100145 es_ES
dc.description.references Addis, D., Das, S., Junge, K., & Beller, M. (2011). Selektive Reduktion von Carbonsäurederivaten durch katalytische Hydrosilylierung. Angewandte Chemie, 123(27), 6128-6135. doi:10.1002/ange.201100145 es_ES
dc.description.references Sousa, S. C. A., Cabrita, I., & Fernandes, A. C. (2012). High-valent oxo-molybdenum and oxo-rhenium complexes as efficient catalysts for X–H (X = Si, B, P and H) bond activation and for organic reductions. Chemical Society Reviews, 41(17), 5641. doi:10.1039/c2cs35155b es_ES
dc.description.references Corey, J. Y. (2016). Reactions of Hydrosilanes with Transition Metal Complexes. Chemical Reviews, 116(19), 11291-11435. doi:10.1021/acs.chemrev.5b00559 es_ES
dc.description.references Jacquet, O., Frogneux, X., Das Neves Gomes, C., & Cantat, T. (2013). CO2 as a C1-building block for the catalytic methylation of amines. Chemical Science, 4(5), 2127. doi:10.1039/c3sc22240c es_ES
dc.description.references Li, Y., Fang, X., Junge, K., & Beller, M. (2013). A General Catalytic Methylation of Amines Using Carbon Dioxide. Angewandte Chemie International Edition, 52(36), 9568-9571. doi:10.1002/anie.201301349 es_ES
dc.description.references Li, Y., Fang, X., Junge, K., & Beller, M. (2013). A General Catalytic Methylation of Amines Using Carbon Dioxide. Angewandte Chemie, 125(36), 9747-9750. doi:10.1002/ange.201301349 es_ES
dc.description.references Das, S., Bobbink, F. D., Laurenczy, G., & Dyson, P. J. (2014). Metal-Free Catalyst for the Chemoselective Methylation of Amines Using Carbon Dioxide as a Carbon Source. Angewandte Chemie International Edition, 53(47), 12876-12879. doi:10.1002/anie.201407689 es_ES
dc.description.references Das, S., Bobbink, F. D., Laurenczy, G., & Dyson, P. J. (2014). Metal-Free Catalyst for the Chemoselective Methylation of Amines Using Carbon Dioxide as a Carbon Source. Angewandte Chemie, 126(47), 13090-13093. doi:10.1002/ange.201407689 es_ES
dc.description.references Frogneux, X., Jacquet, O., & Cantat, T. (2014). Iron-catalyzed hydrosilylation of CO2: CO2 conversion to formamides and methylamines. Catal. Sci. Technol., 4(6), 1529-1533. doi:10.1039/c4cy00130c es_ES
dc.description.references González-Sebastián, L., Flores-Alamo, M., & García, J. J. (2015). Selective N-Methylation of Aliphatic Amines with CO2 and Hydrosilanes Using Nickel-Phosphine Catalysts. Organometallics, 34(4), 763-769. doi:10.1021/om501176u es_ES
dc.description.references Santoro, O., Lazreg, F., Minenkov, Y., Cavallo, L., & Cazin, C. S. J. (2015). N-heterocyclic carbene copper(i) catalysed N-methylation of amines using CO2. Dalton Transactions, 44(41), 18138-18144. doi:10.1039/c5dt03506f es_ES
dc.description.references Yang, Z., Yu, B., Zhang, H., Zhao, Y., Ji, G., Ma, Z., … Liu, Z. (2015). B(C6F5)3-catalyzed methylation of amines using CO2 as a C1 building block. Green Chemistry, 17(8), 4189-4193. doi:10.1039/c5gc01386k es_ES
dc.description.references Das, S., Bobbink, F. D., Bulut, S., Soudani, M., & Dyson, P. J. (2016). Thiazolium carbene catalysts for the fixation of CO2 onto amines. Chemical Communications, 52(12), 2497-2500. doi:10.1039/c5cc08741d es_ES
dc.description.references Fang, C., Lu, C., Liu, M., Zhu, Y., Fu, Y., & Lin, B.-L. (2016). Selective Formylation and Methylation of Amines using Carbon Dioxide and Hydrosilane Catalyzed by Alkali-Metal Carbonates. ACS Catalysis, 6(11), 7876-7881. doi:10.1021/acscatal.6b01856 es_ES
dc.description.references Nguyen, T. V. Q., Yoo, W., & Kobayashi, S. (2016). Chelating Bis(1,2,3‐triazol‐5‐ylidene) Rhodium Complexes: Versatile Catalysts for Hydrosilylation Reactions. Advanced Synthesis & Catalysis, 358(3), 452-458. doi:10.1002/adsc.201500875 es_ES
dc.description.references Liu, X.-F., Ma, R., Qiao, C., Cao, H., & He, L.-N. (2016). Fluoride-Catalyzed Methylation of Amines by Reductive Functionalization of CO2 with Hydrosilanes. Chemistry - A European Journal, 22(46), 16489-16493. doi:10.1002/chem.201603688 es_ES
dc.description.references Liu, X.-F., Qiao, C., Li, X.-Y., & He, L.-N. (2017). Carboxylate-promoted reductive functionalization of CO2 with amines and hydrosilanes under mild conditions. Green Chemistry, 19(7), 1726-1731. doi:10.1039/c7gc00484b es_ES
dc.description.references Niu, H., Lu, L., Shi, R., Chiang, C.-W., & Lei, A. (2017). Catalyst-free N-methylation of amines using CO2. Chemical Communications, 53(6), 1148-1151. doi:10.1039/c6cc09072a es_ES
dc.description.references Xie, C., Song, J., Wu, H., Zhou, B., Wu, C., & Han, B. (2017). Natural Product Glycine Betaine as an Efficient Catalyst for Transformation of CO2 with Amines to Synthesize N-Substituted Compounds. ACS Sustainable Chemistry & Engineering, 5(8), 7086-7092. doi:10.1021/acssuschemeng.7b01287 es_ES
dc.description.references Lu, Y., Gao, Z.-H., Chen, X.-Y., Guo, J., Liu, Z., Dang, Y., … Wang, Z.-X. (2017). Formylation or methylation: what determines the chemoselectivity of the reaction of amine, CO2, and hydrosilane catalyzed by 1,3,2-diazaphospholene? Chem. Sci., 8(11), 7637-7650. doi:10.1039/c7sc00824d es_ES
dc.description.references Wang, M.-Y., Wang, N., Liu, X.-F., Qiao, C., & He, L.-N. (2018). Tungstate catalysis: pressure-switched 2- and 6-electron reductive functionalization of CO2 with amines and phenylsilane. Green Chemistry, 20(7), 1564-1570. doi:10.1039/c7gc03416d es_ES
dc.description.references Hu, Y., Song, J., Xie, C., Wu, H., Wang, Z., Jiang, T., … Han, B. (2018). Renewable and Biocompatible Lecithin as an Efficient Organocatalyst for Reductive Conversion of CO2 with Amines to Formamides and Methylamines. ACS Sustainable Chemistry & Engineering, 6(9), 11228-11234. doi:10.1021/acssuschemeng.8b03245 es_ES
dc.description.references Jacquet, O., Das Neves Gomes, C., Ephritikhine, M., & Cantat, T. (2012). Complete Catalytic Deoxygenation of CO2into Formamidine Derivatives. ChemCatChem, 5(1), 117-120. doi:10.1002/cctc.201200732 es_ES
dc.description.references Frogneux, X., Blondiaux, E., Thuéry, P., & Cantat, T. (2015). Bridging Amines with CO2: Organocatalyzed Reduction of CO2 to Aminals. ACS Catalysis, 5(7), 3983-3987. doi:10.1021/acscatal.5b00734 es_ES
dc.description.references Zhu, D.-Y., Fang, L., Han, H., Wang, Y., & Xia, J.-B. (2017). Reductive CO2 Fixation via Tandem C–C and C–N Bond Formation: Synthesis of Spiro-indolepyrrolidines. Organic Letters, 19(16), 4259-4262. doi:10.1021/acs.orglett.7b01906 es_ES
dc.description.references Boddien, A., Mellmann, D., Gartner, F., Jackstell, R., Junge, H., Dyson, P. J., … Beller, M. (2011). Efficient Dehydrogenation of Formic Acid Using an Iron Catalyst. Science, 333(6050), 1733-1736. doi:10.1126/science.1206613 es_ES
dc.description.references Mellmann, D., Sponholz, P., Junge, H., & Beller, M. (2016). Formic acid as a hydrogen storage material – development of homogeneous catalysts for selective hydrogen release. Chemical Society Reviews, 45(14), 3954-3988. doi:10.1039/c5cs00618j es_ES
dc.description.references Li, Z., & Xu, Q. (2017). Metal-Nanoparticle-Catalyzed Hydrogen Generation from Formic Acid. Accounts of Chemical Research, 50(6), 1449-1458. doi:10.1021/acs.accounts.7b00132 es_ES
dc.description.references Wienhöfer, G., Sorribes, I., Boddien, A., Westerhaus, F., Junge, K., Junge, H., … Beller, M. (2011). General and Selective Iron-Catalyzed Transfer Hydrogenation of Nitroarenes without Base. Journal of the American Chemical Society, 133(32), 12875-12879. doi:10.1021/ja2061038 es_ES
dc.description.references Cabrero-Antonino, J. R., Adam, R., Junge, K., Jackstell, R., & Beller, M. (2017). Cobalt-catalysed transfer hydrogenation of quinolines and related heterocycles using formic acid under mild conditions. Catalysis Science & Technology, 7(10), 1981-1985. doi:10.1039/c7cy00437k es_ES
dc.description.references Sorribes, I., Junge, K., & Beller, M. (2014). General Catalytic Methylation of Amines with Formic Acid under Mild Reaction Conditions. Chemistry - A European Journal, 20(26), 7878-7883. doi:10.1002/chem.201402124 es_ES
dc.description.references Fu, M.-C., Shang, R., Cheng, W.-M., & Fu, Y. (2015). Boron-Catalyzed N-Alkylation of Amines using Carboxylic Acids. Angewandte Chemie International Edition, 54(31), 9042-9046. doi:10.1002/anie.201503879 es_ES
dc.description.references Fu, M.-C., Shang, R., Cheng, W.-M., & Fu, Y. (2015). Boron-Catalyzed N-Alkylation of Amines using Carboxylic Acids. Angewandte Chemie, 127(31), 9170-9174. doi:10.1002/ange.201503879 es_ES
dc.description.references Zhang, Q., Fu, M.-C., Yu, H.-Z., & Fu, Y. (2016). Mechanism of Boron-CatalyzedN-Alkylation of Amines with Carboxylic Acids. The Journal of Organic Chemistry, 81(15), 6235-6243. doi:10.1021/acs.joc.6b00778 es_ES
dc.description.references Zhu, L., Wang, L.-S., Li, B., Li, W., & Fu, B. (2016). Methylation of aromatic amines and imines using formic acid over a heterogeneous Pt/C catalyst. Catalysis Science & Technology, 6(16), 6172-6176. doi:10.1039/c6cy00674d es_ES
dc.description.references Qiao, C., Liu, X.-F., Liu, X., & He, L.-N. (2017). Copper(II)-Catalyzed Selective Reductive Methylation of Amines with Formic Acid: An Option for Indirect Utilization of CO2. Organic Letters, 19(6), 1490-1493. doi:10.1021/acs.orglett.7b00551 es_ES
dc.description.references Zheng, J., Darcel, C., & Sortais, J.-B. (2014). Methylation of secondary amines with dialkyl carbonates and hydrosilanes catalysed by iron complexes. Chem. Commun., 50(91), 14229-14232. doi:10.1039/c4cc05517a es_ES
dc.description.references Li, Y., Sorribes, I., Vicent, C., Junge, K., & Beller, M. (2015). Convenient Reductive Methylation of Amines with Carbonates at Room Temperature. Chemistry - A European Journal, 21(47), 16759-16763. doi:10.1002/chem.201502917 es_ES
dc.description.references Sorribes, I., Junge, K., & Beller, M. (2014). Direct Catalytic N-Alkylation of Amines with Carboxylic Acids. Journal of the American Chemical Society, 136(40), 14314-14319. doi:10.1021/ja5093612 es_ES
dc.description.references Andrews, K. G., Summers, D. M., Donnelly, L. J., & Denton, R. M. (2016). Catalytic reductive N-alkylation of amines using carboxylic acids. Chemical Communications, 52(9), 1855-1858. doi:10.1039/c5cc08881j es_ES
dc.description.references Minakawa, M., Okubo, M., & Kawatsura, M. (2016). Ruthenium-catalyzed direct N-alkylation of amines with carboxylic acids using methylphenylsilane as a hydride source. Tetrahedron Letters, 57(37), 4187-4190. doi:10.1016/j.tetlet.2016.08.003 es_ES
dc.description.references Andrews, K. G., Faizova, R., & Denton, R. M. (2017). A practical and catalyst-free trifluoroethylation reaction of amines using trifluoroacetic acid. Nature Communications, 8(1). doi:10.1038/ncomms15913 es_ES
dc.description.references Li, B., Sortais, J.-B., & Darcel, C. (2013). Unexpected selectivity in ruthenium-catalyzed hydrosilylation of primary amides: synthesis of secondary amines. Chemical Communications, 49(35), 3691. doi:10.1039/c3cc39149c es_ES
dc.description.references Ogiwara, Y., Shimoda, W., Ide, K., Nakajima, T., & Sakai, N. (2017). Carboxamides as N -Alkylating Reagents of Secondary Amines in Indium-Catalyzed Reductive Amination with a Hydrosilane. European Journal of Organic Chemistry, 2017(20), 2866-2870. doi:10.1002/ejoc.201601629 es_ES
dc.description.references Zhu, J., Zhang, Z., Miao, C., Liu, W., & Sun, W. (2017). Synthesis of benzimidazoles from o -phenylenediamines and DMF derivatives in the presence of PhSiH 3. Tetrahedron, 73(25), 3458-3462. doi:10.1016/j.tet.2017.05.018 es_ES
dc.description.references Pan, Y., Chen, C., Xu, X., Zhao, H., Han, J., Li, H., … Xiao, J. (2018). Metal-free tandem cyclization/hydrosilylation to construct tetrahydroquinoxalines. Green Chemistry, 20(2), 403-411. doi:10.1039/c7gc03095a es_ES
dc.description.references Pedrajas, E., Sorribes, I., Guillamón, E., Junge, K., Beller, M., & Llusar, R. (2017). Efficient and Selective N -Methylation of Nitroarenes under Mild Reaction Conditions. Chemistry - A European Journal, 23(53), 13205-13212. doi:10.1002/chem.201702783 es_ES
dc.description.references Nishikata, T., & Nagashima, H. (2012). N Alkylation of Tosylamides Using Esters as Primary and Tertiary Alkyl Sources: Mediated by Hydrosilanes Activated by a Ruthenium Catalyst. Angewandte Chemie International Edition, 51(22), 5363-5366. doi:10.1002/anie.201201426 es_ES
dc.description.references Nishikata, T., & Nagashima, H. (2012). N Alkylation of Tosylamides Using Esters as Primary and Tertiary Alkyl Sources: Mediated by Hydrosilanes Activated by a Ruthenium Catalyst. Angewandte Chemie, 124(22), 5459-5462. doi:10.1002/ange.201201426 es_ES
dc.description.references Courtemanche, M.-A., Légaré, M.-A., Maron, L., & Fontaine, F.-G. (2013). A Highly Active Phosphine–Borane Organocatalyst for the Reduction of CO2 to Methanol Using Hydroboranes. Journal of the American Chemical Society, 135(25), 9326-9329. doi:10.1021/ja404585p es_ES
dc.description.references Das Neves Gomes, C., Blondiaux, E., Thuéry, P., & Cantat, T. (2014). Metal-Free Reduction of CO2with Hydroboranes: Two Efficient Pathways at Play for the Reduction of CO2to Methanol. Chemistry - A European Journal, 20(23), 7098-7106. doi:10.1002/chem.201400349 es_ES
dc.description.references Bontemps, S. (2016). Boron-mediated activation of carbon dioxide. Coordination Chemistry Reviews, 308, 117-130. doi:10.1016/j.ccr.2015.06.003 es_ES
dc.description.references Park, S., & Chang, S. (2017). Catalytic Dearomatization of N-Heteroarenes with Silicon and Boron Compounds. Angewandte Chemie International Edition, 56(27), 7720-7738. doi:10.1002/anie.201612140 es_ES
dc.description.references Park, S., & Chang, S. (2017). Katalytische Desaromatisierung von N-Heteroarenen mit Silicium- und Borverbindungen. Angewandte Chemie, 129(27), 7828-7847. doi:10.1002/ange.201612140 es_ES
dc.description.references Blondiaux, E., Pouessel, J., & Cantat, T. (2014). Carbon Dioxide Reduction to Methylamines under Metal-Free Conditions. Angewandte Chemie International Edition, 53(45), 12186-12190. doi:10.1002/anie.201407357 es_ES
dc.description.references Blondiaux, E., Pouessel, J., & Cantat, T. (2014). Carbon Dioxide Reduction to Methylamines under Metal-Free Conditions. Angewandte Chemie, 126(45), 12382-12386. doi:10.1002/ange.201407357 es_ES
dc.description.references Chen, W.-C., Shen, J.-S., Jurca, T., Peng, C.-J., Lin, Y.-H., Wang, Y.-P., … Ong, T.-G. (2015). Expanding the Ligand Framework Diversity of Carbodicarbenes and Direct Detection of Boron Activation in the Methylation of Amines with CO2. Angewandte Chemie International Edition, 54(50), 15207-15212. doi:10.1002/anie.201507921 es_ES
dc.description.references Chen, W.-C., Shen, J.-S., Jurca, T., Peng, C.-J., Lin, Y.-H., Wang, Y.-P., … Ong, T.-G. (2015). Expanding the Ligand Framework Diversity of Carbodicarbenes and Direct Detection of Boron Activation in the Methylation of Amines with CO2. Angewandte Chemie, 127(50), 15422-15427. doi:10.1002/ange.201507921 es_ES
dc.description.references Jin, G., Werncke, C. G., Escudié, Y., Sabo-Etienne, S., & Bontemps, S. (2015). Iron-Catalyzed Reduction of CO2 into Methylene: Formation of C–N, C–O, and C–C Bonds. Journal of the American Chemical Society, 137(30), 9563-9566. doi:10.1021/jacs.5b06077 es_ES
dc.description.references Blaser, H. U., Spindler, F., & Studer, M. (2001). Enantioselective catalysis in fine chemicals production. Applied Catalysis A: General, 221(1-2), 119-143. doi:10.1016/s0926-860x(01)00801-8 es_ES
dc.description.references Kubas, G. J. (2007). Fundamentals of H2Binding and Reactivity on Transition Metals Underlying Hydrogenase Function and H2Production and Storage. Chemical Reviews, 107(10), 4152-4205. doi:10.1021/cr050197j es_ES
dc.description.references Tollefson, J. (2010). Hydrogen vehicles: Fuel of the future? Nature, 464(7293), 1262-1264. doi:10.1038/4641262a es_ES
dc.description.references Gredig, S. V., Koeppel, R. A., & Baiker, A. (1995). Synthesis of methylamines from carbon dioxide and ammonia. Journal of the Chemical Society, Chemical Communications, (1), 73. doi:10.1039/c39950000073 es_ES
dc.description.references Gredig, S. V., Koeppel, R., & Baiker, A. (1996). Comparative study of synthesis of methylamines from carbon oxides and ammonia over Cu/A12O3. Catalysis Today, 29(1-4), 339-342. doi:10.1016/0920-5861(95)00301-0 es_ES
dc.description.references Gredig, S. V., Koeppel, R., & Baiker, A. (1997). Synthesis of methylamines from CO2, H2 and NH3. Catalytic behaviour of various metal-alumina catalysts. Applied Catalysis A: General, 162(1-2), 249-260. doi:10.1016/s0926-860x(97)00107-5 es_ES
dc.description.references Gredig, S. V., Maurer, R., Koeppel, R., & Baiker, A. (1997). Copper-catalyzed synthesis of methylamines from CO2, H2 and NH3. Influence of support. Journal of Molecular Catalysis A: Chemical, 127(1-3), 133-142. doi:10.1016/s1381-1169(97)00117-9 es_ES
dc.description.references Auer, S. (1999). Synthesis of methylamines from CO2, H2 and NH3 over Cu–Mg–Al mixed oxides. Journal of Molecular Catalysis A: Chemical, 141(1-3), 193-203. doi:10.1016/s1381-1169(98)00263-5 es_ES
dc.description.references Beydoun, K., Thenert, K., Streng, E. S., Brosinski, S., Leitner, W., & Klankermayer, J. (2015). Selective Synthesis of Trimethylamine by Catalytic N -Methylation of Ammonia and Ammonium Chloride by utilizing Carbon Dioxide and Molecular Hydrogen. ChemCatChem, 8(1), 135-138. doi:10.1002/cctc.201501116 es_ES
dc.description.references Toyao, T., Siddiki, S. M. A. H., Ishihara, K., Kon, K., Onodera, W., & Shimizu, K. (2017). Heterogeneous Platinum Catalysts for Direct Synthesis of Trimethylamine by N-Methylation of Ammonia and Its Surrogates with CO2/H2. Chemistry Letters, 46(1), 68-70. doi:10.1246/cl.160875 es_ES
dc.description.references Beydoun, K., vom Stein, T., Klankermayer, J., & Leitner, W. (2013). Ruthenium-Catalyzed Direct Methylation of Primary and Secondary Aromatic Amines Using Carbon Dioxide and Molecular Hydrogen. Angewandte Chemie International Edition, 52(36), 9554-9557. doi:10.1002/anie.201304656 es_ES
dc.description.references Beydoun, K., vom Stein, T., Klankermayer, J., & Leitner, W. (2013). Ruthenium-Catalyzed Direct Methylation of Primary and Secondary Aromatic Amines Using Carbon Dioxide and Molecular Hydrogen. Angewandte Chemie, 125(36), 9733-9736. doi:10.1002/ange.201304656 es_ES
dc.description.references Li, Y., Sorribes, I., Yan, T., Junge, K., & Beller, M. (2013). Selective Methylation of Amines with Carbon Dioxide and H2. Angewandte Chemie International Edition, 52(46), 12156-12160. doi:10.1002/anie.201306850 es_ES
dc.description.references Li, Y., Sorribes, I., Yan, T., Junge, K., & Beller, M. (2013). Selective Methylation of Amines with Carbon Dioxide and H2. Angewandte Chemie, 125(46), 12378-12382. doi:10.1002/ange.201306850 es_ES
dc.description.references Cui, X., Dai, X., Zhang, Y., Deng, Y., & Shi, F. (2014). Methylation of amines, nitrobenzenes and aromatic nitriles with carbon dioxide and molecular hydrogen. Chem. Sci., 5(2), 649-655. doi:10.1039/c3sc52676c es_ES
dc.description.references Cui, X., Zhang, Y., Deng, Y., & Shi, F. (2014). N-Methylation of amine and nitro compounds with CO2/H2catalyzed by Pd/CuZrOxunder mild reaction conditions. Chem. Commun., 50(88), 13521-13524. doi:10.1039/c4cc05119j es_ES
dc.description.references Kon, K., Siddiki, S. M. A. H., Onodera, W., & Shimizu, K. (2014). Sustainable Heterogeneous Platinum Catalyst for Direct Methylation of Secondary Amines by Carbon Dioxide and Hydrogen. Chemistry - A European Journal, 20(21), 6264-6267. doi:10.1002/chem.201400332 es_ES
dc.description.references Tang, G., Bao, H.-L., Jin, C., Zhong, X.-H., & Du, X.-L. (2015). Direct methylation of N-methylaniline with CO2/H2 catalyzed by gold nanoparticles supported on alumina. RSC Advances, 5(121), 99678-99687. doi:10.1039/c5ra20991a es_ES
dc.description.references Du, X.-L., Tang, G., Bao, H.-L., Jiang, Z., Zhong, X.-H., Su, D. S., & Wang, J.-Q. (2015). Direct Methylation of Amines with Carbon Dioxide and Molecular Hydrogen using Supported Gold Catalysts. ChemSusChem, 8(20), 3489-3496. doi:10.1002/cssc.201500486 es_ES
dc.description.references Su, X., Lin, W., Cheng, H., Zhang, C., Li, Y., Liu, T., … Zhao, F. (2016). PdGa/TiO2 an efficient heterogeneous catalyst for direct methylation of N-methylaniline with CO2/H2. RSC Advances, 6(105), 103650-103656. doi:10.1039/c6ra22089d es_ES
dc.description.references Toyao, T., Siddiki, S. M. A. H., Morita, Y., Kamachi, T., Touchy, A. S., Onodera, W., … Shimizu, K. (2017). Rhenium‐Loaded TiO 2  : A Highly Versatile and Chemoselective Catalyst for the Hydrogenation of Carboxylic Acid Derivatives and the N‐Methylation of Amines Using H 2 and CO 2. Chemistry – A European Journal, 23(59), 14848-14859. doi:10.1002/chem.201702801 es_ES
dc.description.references Yu, B., Zhang, H., Zhao, Y., Chen, S., Xu, J., Huang, C., & Liu, Z. (2013). Cyclization of o-phenylenediamines by CO2in the presence of H2for the synthesis of benzimidazoles. Green Chem., 15(1), 95-99. doi:10.1039/c2gc36517k es_ES
dc.description.references Savourey, S., Lefèvre, G., Berthet, J.-C., & Cantat, T. (2014). Catalytic methylation of aromatic amines with formic acid as the unique carbon and hydrogen source. Chem. Commun., 50(90), 14033-14036. doi:10.1039/c4cc05908e es_ES
dc.description.references Cabrero-Antonino, J. R., Adam, R., Junge, K., & Beller, M. (2016). A general protocol for the reductive N-methylation of amines using dimethyl carbonate and molecular hydrogen: mechanistic insights and kinetic studies. Catalysis Science & Technology, 6(22), 7956-7966. doi:10.1039/c6cy01401a es_ES
dc.description.references Cabrero-Antonino, J. R., Adam, R., Wärnå, J., Murzin, D. Y., & Beller, M. (2018). Reductive N-methylation of amines using dimethyl carbonate and molecular hydrogen: Mechanistic insights through kinetic modelling. Chemical Engineering Journal, 351, 1129-1136. doi:10.1016/j.cej.2018.06.174 es_ES
dc.description.references Núñez Magro, A. A., Eastham, G. R., & Cole-Hamilton, D. J. (2007). The synthesis of amines by the homogeneous hydrogenation of secondary and primary amides. Chemical Communications, (30), 3154. doi:10.1039/b706635j es_ES
dc.description.references Additions and corrections published in 2012. (2012). Chemical Communications, 48(100), 12249. doi:10.1039/c2cc90426h es_ES
dc.description.references Sorribes, I., Cabrero-Antonino, J. R., Vicent, C., Junge, K., & Beller, M. (2015). Catalytic N-Alkylation of Amines Using Carboxylic Acids and Molecular Hydrogen. Journal of the American Chemical Society, 137(42), 13580-13587. doi:10.1021/jacs.5b07994 es_ES
dc.description.references Adam, R., Cabrero-Antonino, J. R., Junge, K., Jackstell, R., & Beller, M. (2016). Esters, Including Triglycerides, and Hydrogen as Feedstocks for the Ruthenium-Catalyzed Direct N-Alkylation of Amines. Angewandte Chemie International Edition, 55(37), 11049-11053. doi:10.1002/anie.201603681 es_ES
dc.description.references Adam, R., Cabrero-Antonino, J. R., Junge, K., Jackstell, R., & Beller, M. (2016). Esters, Including Triglycerides, and Hydrogen as Feedstocks for the Ruthenium-Catalyzed Direct N-Alkylation of Amines. Angewandte Chemie, 128(37), 11215-11219. doi:10.1002/ange.201603681 es_ES
dc.description.references Corma, A., Iborra, S., & Velty, A. (2007). Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews, 107(6), 2411-2502. doi:10.1021/cr050989d es_ES
dc.description.references Meier, M. A. R., Metzger, J. O., & Schubert, U. S. (2007). Plant oil renewable resources as green alternatives in polymer science. Chemical Society Reviews, 36(11), 1788. doi:10.1039/b703294c es_ES
dc.description.references Biermann, U., Bornscheuer, U., Meier, M. A. R., Metzger, J. O., & Schäfer, H. J. (2011). Oils and Fats as Renewable Raw Materials in Chemistry. Angewandte Chemie International Edition, 50(17), 3854-3871. doi:10.1002/anie.201002767 es_ES
dc.description.references Biermann, U., Bornscheuer, U., Meier, M. A. R., Metzger, J. O., & Schäfer, H. J. (2011). Fette und Öle als nachwachsende Rohstoffe in der Chemie. Angewandte Chemie, 123(17), 3938-3956. doi:10.1002/ange.201002767 es_ES
dc.description.references Besson, M., Gallezot, P., & Pinel, C. (2013). Conversion of Biomass into Chemicals over Metal Catalysts. Chemical Reviews, 114(3), 1827-1870. doi:10.1021/cr4002269 es_ES
dc.description.references Deuss, P. J., Barta, K., & de Vries, J. G. (2014). Homogeneous catalysis for the conversion of biomass and biomass-derived platform chemicals. Catal. Sci. Technol., 4(5), 1174-1196. doi:10.1039/c3cy01058a es_ES
dc.description.references Liu, W., Sahoo, B., Spannenberg, A., Junge, K., & Beller, M. (2018). Tailored Cobalt‐Catalysts for Reductive Alkylation of Anilines with Carboxylic Acids under Mild Conditions. Angewandte Chemie International Edition, 57(36), 11673-11677. doi:10.1002/anie.201806132 es_ES
dc.description.references Liu, W., Sahoo, B., Spannenberg, A., Junge, K., & Beller, M. (2018). Tailored Cobalt-Catalysts for Reductive Alkylation of Anilines with Carboxylic Acids under Mild Conditions. Angewandte Chemie, 130(36), 11847-11851. doi:10.1002/ange.201806132 es_ES
dc.description.references Shi, Y., Kamer, P. C. J., Cole-Hamilton, D. J., Harvie, M., Baxter, E. F., Lim, K. J. C., & Pogorzelec, P. (2017). A new route to N-aromatic heterocycles from the hydrogenation of diesters in the presence of anilines. Chemical Science, 8(10), 6911-6917. doi:10.1039/c7sc01718a es_ES
dc.description.references Shi, Y., Kamer, P. C. J., & Cole-Hamilton, D. J. (2017). A new route to α,ω-diamines from hydrogenation of dicarboxylic acids and their derivatives in the presence of amines. Green Chemistry, 19(22), 5460-5466. doi:10.1039/c7gc02838e es_ES
dc.description.references Beydoun, K., Ghattas, G., Thenert, K., Klankermayer, J., & Leitner, W. (2014). Ruthenium-Catalyzed Reductive Methylation of Imines Using Carbon Dioxide and Molecular Hydrogen. Angewandte Chemie International Edition, 53(41), 11010-11014. doi:10.1002/anie.201403711 es_ES
dc.description.references Beydoun, K., Ghattas, G., Thenert, K., Klankermayer, J., & Leitner, W. (2014). Ruthenium-Catalyzed Reductive Methylation of Imines Using Carbon Dioxide and Molecular Hydrogen. Angewandte Chemie, 126(41), 11190-11194. doi:10.1002/ange.201403711 es_ES
dc.description.references He, Z., Liu, H., Qian, Q., Lu, L., Guo, W., Zhang, L., & Han, B. (2017). N-methylation of quinolines with CO2 and H2 catalyzed by Ru-triphos complexes. Science China Chemistry, 60(7), 927-933. doi:10.1007/s11426-017-9024-8 es_ES
dc.description.references Yu, L., Zhang, Q., Li, S.-S., Huang, J., Liu, Y.-M., He, H.-Y., & Cao, Y. (2015). Gold-Catalyzed Reductive Transformation of Nitro Compounds Using Formic Acid: Mild, Efficient, and Versatile. ChemSusChem, 8(18), 3029-3035. doi:10.1002/cssc.201500869 es_ES
dc.description.references Fleming, F. F., & Fleming, F. F. (1999). Nitrile-containing natural products. Natural Product Reports, 16(5), 597-606. doi:10.1039/a804370a es_ES
dc.description.references Martin, A., & Lücke, B. (2000). Ammoxidation and oxidation of substituted methyl aromatics on vanadium-containing catalysts. Catalysis Today, 57(1-2), 61-70. doi:10.1016/s0920-5861(99)00309-0 es_ES
dc.description.references Movassaghi, M., & Hill, M. D. (2007). Synthesis of pyrimidines by direct condensation of amides and nitriles. Nature Protocols, 2(8), 2018-2023. doi:10.1038/nprot.2007.280 es_ES
dc.description.references Martin, A., & Kalevaru, V. N. (2010). Heterogeneously Catalyzed Ammoxidation: A Valuable Tool for One-Step Synthesis of Nitriles. ChemCatChem, 2(12), 1504-1522. doi:10.1002/cctc.201000173 es_ES
dc.description.references Fleming, F. F., Yao, L., Ravikumar, P. C., Funk, L., & Shook, B. C. (2010). Nitrile-Containing Pharmaceuticals: Efficacious Roles of the Nitrile Pharmacophore. Journal of Medicinal Chemistry, 53(22), 7902-7917. doi:10.1021/jm100762r es_ES
dc.description.references Anbarasan, P., Schareina, T., & Beller, M. (2011). Recent developments and perspectives in palladium-catalyzed cyanation of aryl halides: synthesis of benzonitriles. Chemical Society Reviews, 40(10), 5049. doi:10.1039/c1cs15004a es_ES
dc.description.references Ikawa, T., Fujita, Y., Mizusaki, T., Betsuin, S., Takamatsu, H., Maegawa, T., … Sajiki, H. (2012). Selective N-alkylation of amines using nitriles under hydrogenation conditions: facile synthesis of secondary and tertiary amines. Org. Biomol. Chem., 10(2), 293-304. doi:10.1039/c1ob06303k es_ES
dc.description.references Shao, Z., Fu, S., Wei, M., Zhou, S., & Liu, Q. (2016). Mild and Selective Cobalt-Catalyzed Chemodivergent Transfer Hydrogenation of Nitriles. Angewandte Chemie International Edition, 55(47), 14653-14657. doi:10.1002/anie.201608345 es_ES
dc.description.references Shao, Z., Fu, S., Wei, M., Zhou, S., & Liu, Q. (2016). Mild and Selective Cobalt-Catalyzed Chemodivergent Transfer Hydrogenation of Nitriles. Angewandte Chemie, 128(47), 14873-14877. doi:10.1002/ange.201608345 es_ES
dc.description.references Zerecero-Silva, P., Jimenez-Solar, I., Crestani, M. G., Arévalo, A., Barrios-Francisco, R., & García, J. J. (2009). Catalytic hydrogenation of aromatic nitriles and dinitriles with nickel compounds. Applied Catalysis A: General, 363(1-2), 230-234. doi:10.1016/j.apcata.2009.05.027 es_ES
dc.description.references Srimani, D., Feller, M., Ben-David, Y., & Milstein, D. (2012). Catalytic coupling of nitriles with amines to selectively form imines under mild hydrogen pressure. Chemical Communications, 48(97), 11853. doi:10.1039/c2cc36639h es_ES
dc.description.references Chakraborty, S., & Berke, H. (2014). Homogeneous Hydrogenation of Nitriles Catalyzed by Molybdenum and Tungsten Amides. ACS Catalysis, 4(7), 2191-2194. doi:10.1021/cs5004646 es_ES
dc.description.references Choi, J.-H., & Prechtl, M. H. G. (2015). Tuneable Hydrogenation of Nitriles into Imines or Amines with a Ruthenium Pincer Complex under Mild Conditions. ChemCatChem, 7(6), 1023-1028. doi:10.1002/cctc.201403047 es_ES
dc.description.references Chakraborty, S., Leitus, G., & Milstein, D. (2017). Iron-Catalyzed Mild and Selective Hydrogenative Cross-Coupling of Nitriles and Amines To Form Secondary Aldimines. Angewandte Chemie International Edition, 56(8), 2074-2078. doi:10.1002/anie.201608537 es_ES
dc.description.references Chakraborty, S., Leitus, G., & Milstein, D. (2017). Iron-Catalyzed Mild and Selective Hydrogenative Cross-Coupling of Nitriles and Amines To Form Secondary Aldimines. Angewandte Chemie, 129(8), 2106-2110. doi:10.1002/ange.201608537 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem