Mostrar el registro sencillo del ítem
dc.contributor.author | Cabrero Antonino, Jose Ramón | es_ES |
dc.contributor.author | Adam-Ortiz, Rosa | es_ES |
dc.contributor.author | Beller, Matthias | es_ES |
dc.date.accessioned | 2020-10-29T04:31:42Z | |
dc.date.available | 2020-10-29T04:31:42Z | |
dc.date.issued | 2019-09-09 | es_ES |
dc.identifier.issn | 1433-7851 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/153458 | |
dc.description | This is the peer reviewed version of the following article: Angew. Chem. Int. Ed. 2019, 58, 12820 12838, which has been published in final form at https://doi.org/10.1002/anie.201810121. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. | es_ES |
dc.description.abstract | [EN] N-Alkylamines are key intermediates in the synthesis of fine chemicals, dyes, and natural products, and hence are highly valuable building blocks in organic chemistry. Consequently, the development of greener and more efficient procedures for their production continues to attract the interest of both academic and industrial chemists. Reductive procedures such as reductive amination or N-alkylation through hydrogen autotransfer by employing carbonyl compounds or alcohols as alkylating agents have prevailed for the synthesis of amines. In the last few years, carboxylic/carbonic acid derivatives and CO2 have been introduced as alternative and convenient alkylating sources. The safety, easy accessibility, and high stability of these reagents makes the development of new reductive transformations with them as N-alkylating agents a useful alternative to existing procedures. In this Review, we summarize reported examples of one-pot reductive N-alkylation methods that use carboxylic/carbonic acid derivatives or CO2 as alkylating agents. | es_ES |
dc.description.sponsorship | This work was supported by the state of MecklenburgVorpommern and the BMBF. J.R.C.-A. thanks the Ministerio de Ciencia, Innovacion y Universidades for a Juan de la Cierva contract. R.A. thanks UPV for a postdoctoral contract. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Angewandte Chemie International Edition | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Carbon dioxide | es_ES |
dc.subject | Carboxylic | es_ES |
dc.subject | Carbonic acid derivatives | es_ES |
dc.subject | Heterocycles | es_ES |
dc.subject | N-alkylation | es_ES |
dc.subject | Reductive transformations | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Catalytic Reductive N-Alkylations Using CO2 and Carboxylic Acid Derivatives: Recent Progress and Developments | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/anie.201810121 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Cabrero Antonino, JR.; Adam-Ortiz, R.; Beller, M. (2019). Catalytic Reductive N-Alkylations Using CO2 and Carboxylic Acid Derivatives: Recent Progress and Developments. Angewandte Chemie International Edition. 58(37):12820-12838. https://doi.org/10.1002/anie.201810121 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/anie.201810121 | es_ES |
dc.description.upvformatpinicio | 12820 | es_ES |
dc.description.upvformatpfin | 12838 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 58 | es_ES |
dc.description.issue | 37 | es_ES |
dc.identifier.pmid | 30306704 | es_ES |
dc.relation.pasarela | S\405874 | es_ES |
dc.contributor.funder | Bundesministerium für Bildung und Forschung, Alemania | es_ES |
dc.description.references | Adams, J. M., & Cory, S. (1975). Modified nucleosides and bizarre 5′-termini in mouse myeloma mRNA. Nature, 255(5503), 28-33. doi:10.1038/255028a0 | es_ES |
dc.description.references | Kleemann, A., Engel, J., Kutscher, B., & Reichert, D. (Eds.). (2009). Pharmaceutical Substances. doi:10.1055/b-003-108611 | es_ES |
dc.description.references | Dominissini, D., Moshitch-Moshkovitz, S., Schwartz, S., Salmon-Divon, M., Ungar, L., Osenberg, S., … Rechavi, G. (2012). Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature, 485(7397), 201-206. doi:10.1038/nature11112 | es_ES |
dc.description.references | Chatterjee, J., Rechenmacher, F., & Kessler, H. (2012). N-Methylation of Peptides and Proteins: An Important Element for Modulating Biological Functions. Angewandte Chemie International Edition, 52(1), 254-269. doi:10.1002/anie.201205674 | es_ES |
dc.description.references | Chatterjee, J., Rechenmacher, F., & Kessler, H. (2012). N-Methylierung von Peptiden und Proteinen: ein wichtiges Element für die Regulation biologischer Funktionen. Angewandte Chemie, 125(1), 268-283. doi:10.1002/ange.201205674 | es_ES |
dc.description.references | Froidevaux, V., Negrell, C., Caillol, S., Pascault, J.-P., & Boutevin, B. (2016). Biobased Amines: From Synthesis to Polymers; Present and Future. Chemical Reviews, 116(22), 14181-14224. doi:10.1021/acs.chemrev.6b00486 | es_ES |
dc.description.references | Salvatore, R. N., Yoon, C. H., & Jung, K. W. (2001). Synthesis of secondary amines. Tetrahedron, 57(37), 7785-7811. doi:10.1016/s0040-4020(01)00722-0 | es_ES |
dc.description.references | Lamoureux, G., & Agüero, C. (2009). A comparison of several modern alkylating agents. Arkivoc, 2009(1), 251-264. doi:10.3998/ark.5550190.0010.108 | es_ES |
dc.description.references | Luo, H., Wu, G., Zhang, Y., & Wang, J. (2015). Silver(I)-CatalyzedN-Trifluoroethylation of Anilines andO-Trifluoroethylation of Amides with 2,2,2-Trifluorodiazoethane. Angewandte Chemie International Edition, 54(48), 14503-14507. doi:10.1002/anie.201507219 | es_ES |
dc.description.references | Luo, H., Wu, G., Zhang, Y., & Wang, J. (2015). Silver(I)-CatalyzedN-Trifluoroethylation of Anilines andO-Trifluoroethylation of Amides with 2,2,2-Trifluorodiazoethane. Angewandte Chemie, 127(48), 14711-14715. doi:10.1002/ange.201507219 | es_ES |
dc.description.references | Selva, M., Trotta, F., & Tundo, P. (1992). Esters and orthoesters as alkylating agents at high temperature. Applications to continuous-flow processes. Journal of the Chemical Society, Perkin Transactions 2, (4), 519. doi:10.1039/p29920000519 | es_ES |
dc.description.references | Padmanabhan, S., Reddy, N. L., & Durant, G. J. (1997). A Convenient One Pot Procedure for N-Methylation of Aromatic Amines Using Trimethyl Orthoformate. Synthetic Communications, 27(4), 691-699. doi:10.1080/00397919708003343 | es_ES |
dc.description.references | Rivetti, F., Romano, U., & Delledonne, D. (1996). Dimethylcarbonate and Its Production Technology. Green Chemistry, 70-80. doi:10.1021/bk-1996-0626.ch006 | es_ES |
dc.description.references | Ono, Y. (1997). Catalysis in the production and reactions of dimethyl carbonate, an environmentally benign building block. Applied Catalysis A: General, 155(2), 133-166. doi:10.1016/s0926-860x(96)00402-4 | es_ES |
dc.description.references | Pacheco, M. A., & Marshall, C. L. (1997). Review of Dimethyl Carbonate (DMC) Manufacture and Its Characteristics as a Fuel Additive. Energy & Fuels, 11(1), 2-29. doi:10.1021/ef9600974 | es_ES |
dc.description.references | Delledonne, D., Rivetti, F., & Romano, U. (2001). Developments in the production and application of dimethylcarbonate. Applied Catalysis A: General, 221(1-2), 241-251. doi:10.1016/s0926-860x(01)00796-7 | es_ES |
dc.description.references | Tundo, P., & Selva, M. (2002). The Chemistry of Dimethyl Carbonate. Accounts of Chemical Research, 35(9), 706-716. doi:10.1021/ar010076f | es_ES |
dc.description.references | Selva, M., Tundo, P., & Perosa, A. (2003). Reaction of Functionalized Anilines with Dimethyl Carbonate over NaY Faujasite. 3. Chemoselectivity toward Mono-N-methylation. The Journal of Organic Chemistry, 68(19), 7374-7378. doi:10.1021/jo034548a | es_ES |
dc.description.references | Tundo, P., Rossi, L., & Loris, A. (2005). Dimethyl Carbonate as an Ambident Electrophile. The Journal of Organic Chemistry, 70(6), 2219-2224. doi:10.1021/jo048532b | es_ES |
dc.description.references | Selva, M., Perosa, A., Tundo, P., & Brunelli, D. (2006). SelectiveN,N-Dimethylation of Primary Aromatic Amines with Methyl Alkyl Carbonates in the Presence of Phosphonium Salts. The Journal of Organic Chemistry, 71(15), 5770-5773. doi:10.1021/jo060674d | es_ES |
dc.description.references | Selva, M. (2007). Green approaches to highly selective processes: Reactions of dimethyl carbonate over both zeolites and base catalysts. Pure and Applied Chemistry, 79(11), 1855-1867. doi:10.1351/pac200779111855 | es_ES |
dc.description.references | Selva, M., & Perosa, A. (2008). Green chemistry metrics: a comparative evaluation of dimethyl carbonate, methyl iodide, dimethyl sulfate and methanol as methylating agents. Green Chemistry, 10(4), 457. doi:10.1039/b713985c | es_ES |
dc.description.references | Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Metal organic frameworks as heterogeneous catalysts for the selective N-methylation of aromatic primary amines with dimethyl carbonate. Applied Catalysis A: General, 378(1), 19-25. doi:10.1016/j.apcata.2010.01.042 | es_ES |
dc.description.references | Kawai, K., Li, Y.-S., Song, M.-F., & Kasai, H. (2010). DNA methylation by dimethyl sulfoxide and methionine sulfoxide triggered by hydroxyl radical and implications for epigenetic modifications. Bioorganic & Medicinal Chemistry Letters, 20(1), 260-265. doi:10.1016/j.bmcl.2009.10.124 | es_ES |
dc.description.references | Jiang, X., Wang, C., Wei, Y., Xue, D., Liu, Z., & Xiao, J. (2013). A General Method for N-Methylation of Amines and Nitro Compounds with Dimethylsulfoxide. Chemistry - A European Journal, 20(1), 58-63. doi:10.1002/chem.201303802 | es_ES |
dc.description.references | Atkinson, B. N., & Williams, J. M. J. (2014). Dimethylsulfoxide as an N-Methylation Reagent for Amines and Aromatic Nitro Compounds. ChemCatChem, 6(7), 1860-1862. doi:10.1002/cctc.201400015 | es_ES |
dc.description.references | Eschweiler, W. (1905). Ersatz von an Stickstoff gebundenen Wasserstoffatomen durch die Methylgruppe mit Hülfe von Formaldehyd. Berichte der deutschen chemischen Gesellschaft, 38(1), 880-882. doi:10.1002/cber.190503801154 | es_ES |
dc.description.references | Clarke, H. T., Gillespie, H. B., & Weisshaus, S. Z. (1933). The Action of Formaldehyde on Amines and Amino Acids1. Journal of the American Chemical Society, 55(11), 4571-4587. doi:10.1021/ja01338a041 | es_ES |
dc.description.references | Kim, S., Oh, C. H., Ko, J. S., Ahn, K. H., & Kim, Y. J. (1985). Zinc-modified cyanoborohydride as a selective reducing agent. The Journal of Organic Chemistry, 50(11), 1927-1932. doi:10.1021/jo00211a028 | es_ES |
dc.description.references | Fache, F., Jacquot, L., & Lemaire, M. (1994). Extension of the eschweiler-clarke procedure to the N-alkylation of amides. Tetrahedron Letters, 35(20), 3313-3314. doi:10.1016/s0040-4039(00)76894-8 | es_ES |
dc.description.references | Gomez, S., Peters, J. A., & Maschmeyer, T. (2002). The Reductive Amination of Aldehydes and Ketones and the Hydrogenation of Nitriles: Mechanistic Aspects and Selectivity Control. Advanced Synthesis & Catalysis, 344(10), 1037-1057. doi:10.1002/1615-4169(200212)344:10<1037::aid-adsc1037>3.0.co;2-3 | es_ES |
dc.description.references | Steinhuebel, D., Sun, Y., Matsumura, K., Sayo, N., & Saito, T. (2009). Direct Asymmetric Reductive Amination. Journal of the American Chemical Society, 131(32), 11316-11317. doi:10.1021/ja905143m | es_ES |
dc.description.references | Wakchaure, V. N., Zhou, J., Hoffmann, S., & List, B. (2010). Catalytic Asymmetric Reductive Amination of α-Branched Ketones. Angewandte Chemie International Edition, 49(27), 4612-4614. doi:10.1002/anie.201001715 | es_ES |
dc.description.references | Wakchaure, V. N., Zhou, J., Hoffmann, S., & List, B. (2010). Catalytic Asymmetric Reductive Amination of α-Branched Ketones. Angewandte Chemie, 122(27), 4716-4718. doi:10.1002/ange.201001715 | es_ES |
dc.description.references | Chusov, D., & List, B. (2014). Reductive Amination without an External Hydrogen Source. Angewandte Chemie International Edition, n/a-n/a. doi:10.1002/anie.201400059 | es_ES |
dc.description.references | Chusov, D., & List, B. (2014). Reduktive Aminierung ohne externe Wasserstoffquelle. Angewandte Chemie, 126(20), 5299-5302. doi:10.1002/ange.201400059 | es_ES |
dc.description.references | Raoufmoghaddam, S. (2014). Recent advances in catalytic C–N bond formation: a comparison of cascade hydroaminomethylation and reductive amination reactions with the corresponding hydroamidomethylation and reductive amidation reactions. Organic & Biomolecular Chemistry, 12(37), 7179. doi:10.1039/c4ob00620h | es_ES |
dc.description.references | Jagadeesh, R. V., Murugesan, K., Alshammari, A. S., Neumann, H., Pohl, M.-M., Radnik, J., & Beller, M. (2017). MOF-derived cobalt nanoparticles catalyze a general synthesis of amines. Science, 358(6361), 326-332. doi:10.1126/science.aan6245 | es_ES |
dc.description.references | Hamada, H., Yamamoto, M., Kuwahara, Y., Matsuzaki, T., & Wakabayashi, K. (1985). The Co-amination of Phenol and Cyclohexanol with Palladium-on-carbon Catalyst in the Liquid Phase. An Application of a Hydrogen-transfer Reaction. Bulletin of the Chemical Society of Japan, 58(5), 1551-1555. doi:10.1246/bcsj.58.1551 | es_ES |
dc.description.references | Chen, Z., Zeng, H., Gong, H., Wang, H., & Li, C.-J. (2015). Palladium-catalyzed reductive coupling of phenols with anilines and amines: efficient conversion of phenolic lignin model monomers and analogues to cyclohexylamines. Chemical Science, 6(7), 4174-4178. doi:10.1039/c5sc00941c | es_ES |
dc.description.references | Cui, X., Junge, K., & Beller, M. (2016). Palladium-Catalyzed Synthesis of Alkylated Amines from Aryl Ethers or Phenols. ACS Catalysis, 6(11), 7834-7838. doi:10.1021/acscatal.6b01687 | es_ES |
dc.description.references | Yan, L., Liu, X.-X., & Fu, Y. (2016). N-Alkylation of amines with phenols over highly active heterogeneous palladium hydride catalysts. RSC Advances, 6(111), 109702-109705. doi:10.1039/c6ra22383d | es_ES |
dc.description.references | Zimmermann, B., Herwig, J., & Beller, M. (1999). The First Efficient Hydroaminomethylation with Ammonia: With Dual Metal Catalysts and Two-Phase Catalysis to Primary Amines. Angewandte Chemie International Edition, 38(16), 2372-2375. doi:10.1002/(sici)1521-3773(19990816)38:16<2372::aid-anie2372>3.0.co;2-h | es_ES |
dc.description.references | Zimmermann, B., Herwig, J., & Beller, M. (1999). Erste effiziente Hydroaminomethylierung mit Ammoniak: mit dualen Metallkatalysatoren und Zweiphasenkatalyse zu primären Aminen. Angewandte Chemie, 111(16), 2515-2518. doi:10.1002/(sici)1521-3757(19990816)111:16<2515::aid-ange2515>3.0.co;2-a | es_ES |
dc.description.references | Hartwig, J. F. (2002). CHEMICAL SYNTHESIS: Raising the Bar for the. Science, 297(5587), 1653-1654. doi:10.1126/science.1076371 | es_ES |
dc.description.references | Ahmed, M., Seayad, A. M., Jackstell, R., & Beller, M. (2003). Amines Made Easily: A Highly Selective Hydroaminomethylation of Olefins. Journal of the American Chemical Society, 125(34), 10311-10318. doi:10.1021/ja030143w | es_ES |
dc.description.references | Ahmed, M., Buch, C., Routaboul, L., Jackstell, R., Klein, H., Spannenberg, A., & Beller, M. (2007). Hydroaminomethylation with Novel Rhodium–Carbene complexes: An Efficient Catalytic Approach to Pharmaceuticals. Chemistry - A European Journal, 13(5), 1594-1601. doi:10.1002/chem.200601155 | es_ES |
dc.description.references | Crozet, D., Urrutigoïty, M., & Kalck, P. (2011). Recent Advances in Amine Synthesis by Catalytic Hydroaminomethylation of Alkenes. ChemCatChem, 3(7), 1102-1118. doi:10.1002/cctc.201000411 | es_ES |
dc.description.references | Gülak, S., Wu, L., Liu, Q., Franke, R., Jackstell, R., & Beller, M. (2014). Phosphine‐ and Hydrogen‐Free: Highly Regioselective Ruthenium‐Catalyzed Hydroaminomethylation of Olefins. Angewandte Chemie International Edition, 53(28), 7320-7323. doi:10.1002/anie.201402368 | es_ES |
dc.description.references | Gülak, S., Wu, L., Liu, Q., Franke, R., Jackstell, R., & Beller, M. (2014). Phosphine‐ and Hydrogen‐Free: Highly Regioselective Ruthenium‐Catalyzed Hydroaminomethylation of Olefins. Angewandte Chemie, 126(28), 7448-7451. doi:10.1002/ange.201402368 | es_ES |
dc.description.references | Chen, C., Dong, X.-Q., & Zhang, X. (2016). Recent progress in rhodium-catalyzed hydroaminomethylation. Organic Chemistry Frontiers, 3(10), 1359-1370. doi:10.1039/c6qo00233a | es_ES |
dc.description.references | Fleischer, I., Gehrtz, P., Hirschbeck, V., & Ciszek, B. (2016). Carbonylations of Alkenes in the Total Synthesis of Natural Compounds. Synthesis, 48(11), 1573-1596. doi:10.1055/s-0035-1560431 | es_ES |
dc.description.references | Kobayashi, S., & Ishitani, H. (1999). Catalytic Enantioselective Addition to Imines. Chemical Reviews, 99(5), 1069-1094. doi:10.1021/cr980414z | es_ES |
dc.description.references | Lipshutz, B. H., & Shimizu, H. (2004). Copper(I)-Catalyzed Asymmetric Hydrosilylations of Imines at Ambient Temperatures. Angewandte Chemie International Edition, 43(17), 2228-2230. doi:10.1002/anie.200353294 | es_ES |
dc.description.references | Lipshutz, B. H., & Shimizu, H. (2004). Copper(I)-Catalyzed Asymmetric Hydrosilylations of Imines at Ambient Temperatures. Angewandte Chemie, 116(17), 2278-2280. doi:10.1002/ange.200353294 | es_ES |
dc.description.references | Nolin, K. A., Ahn, R. W., & Toste, F. D. (2005). Enantioselective Reduction of Imines Catalyzed by a Rhenium(V)−Oxo Complex. Journal of the American Chemical Society, 127(36), 12462-12463. doi:10.1021/ja050831a | es_ES |
dc.description.references | Mršić, N., Minnaard, A. J., Feringa, B. L., & Vries, J. G. de. (2009). Iridium/Monodentate Phosphoramidite Catalyzed Asymmetric Hydrogenation ofN-Aryl Imines. Journal of the American Chemical Society, 131(24), 8358-8359. doi:10.1021/ja901961y | es_ES |
dc.description.references | Nugent, T. C., & El-Shazly, M. (2010). Chiral Amine Synthesis - Recent Developments and Trends for Enamide Reduction, Reductive Amination, and Imine Reduction. Advanced Synthesis & Catalysis, 352(5), 753-819. doi:10.1002/adsc.200900719 | es_ES |
dc.description.references | Xie, J.-H., Zhu, S.-F., & Zhou, Q.-L. (2011). Transition Metal-Catalyzed Enantioselective Hydrogenation of Enamines and Imines. Chemical Reviews, 111(3), 1713-1760. doi:10.1021/cr100218m | es_ES |
dc.description.references | Zhou, S., Fleischer, S., Junge, K., & Beller, M. (2011). Cooperative Transition-Metal and Chiral Brønsted Acid Catalysis: Enantioselective Hydrogenation of Imines To Form Amines. Angewandte Chemie International Edition, 50(22), 5120-5124. doi:10.1002/anie.201100878 | es_ES |
dc.description.references | Zhou, S., Fleischer, S., Junge, K., & Beller, M. (2011). Cooperative Transition-Metal and Chiral Brønsted Acid Catalysis: Enantioselective Hydrogenation of Imines To Form Amines. Angewandte Chemie, 123(22), 5226-5230. doi:10.1002/ange.201100878 | es_ES |
dc.description.references | Bartoszewicz, A., Ahlsten, N., & Martín-Matute, B. (2013). Enantioselective Synthesis of Alcohols and Amines by Iridium-Catalyzed Hydrogenation, Transfer Hydrogenation, and Related Processes. Chemistry - A European Journal, 19(23), 7274-7302. doi:10.1002/chem.201202836 | es_ES |
dc.description.references | Etayo, P., & Vidal-Ferran, A. (2013). Rhodium-catalysed asymmetric hydrogenation as a valuable synthetic tool for the preparation of chiral drugs. Chem. Soc. Rev., 42(2), 728-754. doi:10.1039/c2cs35410a | es_ES |
dc.description.references | Lagaditis, P. O., Sues, P. E., Sonnenberg, J. F., Wan, K. Y., Lough, A. J., & Morris, R. H. (2014). Iron(II) Complexes Containing Unsymmetrical P–N–P′ Pincer Ligands for the Catalytic Asymmetric Hydrogenation of Ketones and Imines. Journal of the American Chemical Society, 136(4), 1367-1380. doi:10.1021/ja4082233 | es_ES |
dc.description.references | Rossi, S., Benaglia, M., Massolo, E., & Raimondi, L. (2014). Organocatalytic strategies for enantioselective metal-free reductions. Catalysis Science & Technology, 4(9), 2708. doi:10.1039/c4cy00033a | es_ES |
dc.description.references | Hopmann, K. H., & Bayer, A. (2014). Enantioselective imine hydrogenation with iridium-catalysts: Reactions, mechanisms and stereocontrol. Coordination Chemistry Reviews, 268, 59-82. doi:10.1016/j.ccr.2014.01.023 | es_ES |
dc.description.references | Ghislieri, D., & Turner, N. J. (2013). Biocatalytic Approaches to the Synthesis of Enantiomerically Pure Chiral Amines. Topics in Catalysis, 57(5), 284-300. doi:10.1007/s11244-013-0184-1 | es_ES |
dc.description.references | Schrittwieser, J. H., Velikogne, S., & Kroutil, W. (2015). Biocatalytic Imine Reduction and Reductive Amination of Ketones. Advanced Synthesis & Catalysis, 357(8), 1655-1685. doi:10.1002/adsc.201500213 | es_ES |
dc.description.references | Zhu, C., Saito, K., Yamanaka, M., & Akiyama, T. (2015). Benzothiazoline: Versatile Hydrogen Donor for Organocatalytic Transfer Hydrogenation. Accounts of Chemical Research, 48(2), 388-398. doi:10.1021/ar500414x | es_ES |
dc.description.references | Oku, T., & Ikariya, T. (2002). Enhanced Product Selectivity in Continuous N-Methylation of Amino Alcohols over Solid Acid–Base Catalysts with Supercritical Methanol. Angewandte Chemie International Edition, 41(18), 3476-3479. doi:10.1002/1521-3773(20020916)41:18<3476::aid-anie3476>3.0.co;2-5 | es_ES |
dc.description.references | Oku, T., Arita, Y., Tsuneki, H., & Ikariya, T. (2004). Continuous Chemoselective Methylation of Functionalized Amines and Diols with Supercritical Methanol over Solid Acid and Acid−Base Bifunctional Catalysts. Journal of the American Chemical Society, 126(23), 7368-7377. doi:10.1021/ja048557s | es_ES |
dc.description.references | Hollmann, D., Bähn, S., Tillack, A., & Beller, M. (2007). A General Ruthenium-Catalyzed Synthesis of Aromatic Amines. Angewandte Chemie International Edition, 46(43), 8291-8294. doi:10.1002/anie.200703119 | es_ES |
dc.description.references | Hollmann, D., Bähn, S., Tillack, A., & Beller, M. (2007). Eine allgemeine rutheniumkatalysierte Synthese von aromatischen Aminen. Angewandte Chemie, 119(43), 8440-8444. doi:10.1002/ange.200703119 | es_ES |
dc.description.references | Hollmann, D., Bähn, S., Tillack, A., & Beller, M. (2008). N-Dealkylation of aliphatic amines and selective synthesis of monoalkylated aryl amines. Chemical Communications, (27), 3199. doi:10.1039/b803114b | es_ES |
dc.description.references | Saidi, O., Blacker, A. J., Farah, M. M., Marsden, S. P., & Williams, J. M. J. (2009). Selective Amine Cross-Coupling Using Iridium-Catalyzed «Borrowing Hydrogen» Methodology. Angewandte Chemie International Edition, 48(40), 7375-7378. doi:10.1002/anie.200904028 | es_ES |
dc.description.references | Saidi, O., Blacker, A. J., Farah, M. M., Marsden, S. P., & Williams, J. M. J. (2009). Selective Amine Cross-Coupling Using Iridium-Catalyzed «Borrowing Hydrogen» Methodology. Angewandte Chemie, 121(40), 7511-7514. doi:10.1002/ange.200904028 | es_ES |
dc.description.references | Guillena, G., Ramón, D. J., & Yus, M. (2009). Hydrogen Autotransfer in theN-Alkylation of Amines and Related Compounds using Alcohols and Amines as Electrophiles. Chemical Reviews, 110(3), 1611-1641. doi:10.1021/cr9002159 | es_ES |
dc.description.references | Zhao, Y., Foo, S. W., & Saito, S. (2011). Iron/Amino Acid Catalyzed Direct N-Alkylation of Amines with Alcohols. Angewandte Chemie International Edition, 50(13), 3006-3009. doi:10.1002/anie.201006660 | es_ES |
dc.description.references | Zhao, Y., Foo, S. W., & Saito, S. (2011). Iron/Amino Acid Catalyzed Direct N-Alkylation of Amines with Alcohols. Angewandte Chemie, 123(13), 3062-3065. doi:10.1002/ange.201006660 | es_ES |
dc.description.references | Bähn, S., Imm, S., Neubert, L., Zhang, M., Neumann, H., & Beller, M. (2011). The Catalytic Amination of Alcohols. ChemCatChem, 3(12), 1853-1864. doi:10.1002/cctc.201100255 | es_ES |
dc.description.references | Abarca, B., Adam, R., & Ballesteros, R. (2012). An efficient one pot transfer hydrogenation and N-alkylation of quinolines with alcohols mediated by Pd/C/Zn. Organic & Biomolecular Chemistry, 10(9), 1826. doi:10.1039/c1ob05888f | es_ES |
dc.description.references | Yang, Q., Wang, Q., & Yu, Z. (2015). Substitution of alcohols by N-nucleophiles via transition metal-catalyzed dehydrogenation. Chemical Society Reviews, 44(8), 2305-2329. doi:10.1039/c4cs00496e | es_ES |
dc.description.references | Yin, Z., Zeng, H., Wu, J., Zheng, S., & Zhang, G. (2016). Cobalt-Catalyzed Synthesis of Aromatic, Aliphatic, and Cyclic Secondary Amines via a «Hydrogen-Borrowing» Strategy. ACS Catalysis, 6(10), 6546-6550. doi:10.1021/acscatal.6b02218 | es_ES |
dc.description.references | Arachchige, P. T. K., Lee, H., & Yi, C. S. (2018). Synthesis of Symmetric and Unsymmetric Secondary Amines from the Ligand-Promoted Ruthenium-Catalyzed Deaminative Coupling Reaction of Primary Amines. The Journal of Organic Chemistry, 83(9), 4932-4947. doi:10.1021/acs.joc.8b00649 | es_ES |
dc.description.references | Müller, T. E., & Beller, M. (1998). Metal-Initiated Amination of Alkenes and Alkynes†. Chemical Reviews, 98(2), 675-704. doi:10.1021/cr960433d | es_ES |
dc.description.references | Beller, M., Seayad, J., Tillack, A., & Jiao, H. (2004). Catalytic Markovnikov and anti-Markovnikov Functionalization of Alkenes and Alkynes: Recent Developments and Trends. Angewandte Chemie International Edition, 43(26), 3368-3398. doi:10.1002/anie.200300616 | es_ES |
dc.description.references | Beller, M., Seayad, J., Tillack, A., & Jiao, H. (2004). Katalytische Markownikow- und Anti-Markownikow-Funktionalisierung von Alkenen und Alkinen. Angewandte Chemie, 116(26), 3448-3479. doi:10.1002/ange.200300616 | es_ES |
dc.description.references | Müller, T. E., Hultzsch, K. C., Yus, M., Foubelo, F., & Tada, M. (2008). Hydroamination: Direct Addition of Amines to Alkenes and Alkynes. Chemical Reviews, 108(9), 3795-3892. doi:10.1021/cr0306788 | es_ES |
dc.description.references | Leyva-Pérez, A., Cabrero-Antonino, J. R., Cantín, A., & Corma, A. (2010). Gold(I) Catalyzes the Intermolecular Hydroamination of Alkynes with Imines and Produces α,α′,N-Triarylbisenamines: Studies on Their Use As Intermediates in Synthesis. The Journal of Organic Chemistry, 75(22), 7769-7780. doi:10.1021/jo101674t | es_ES |
dc.description.references | Yim, J. C.-H., & Schafer, L. L. (2014). Efficient Anti-Markovnikov-Selective Catalysts for Intermolecular Alkyne Hydroamination: Recent Advances and Synthetic Applications. European Journal of Organic Chemistry, 2014(31), 6825-6840. doi:10.1002/ejoc.201402300 | es_ES |
dc.description.references | Gui, J., Pan, C.-M., Jin, Y., Qin, T., Lo, J. C., Lee, B. J., … Baran, P. S. (2015). Practical olefin hydroamination with nitroarenes. Science, 348(6237), 886-891. doi:10.1126/science.aab0245 | es_ES |
dc.description.references | Huang, L., Arndt, M., Gooßen, K., Heydt, H., & Gooßen, L. J. (2015). Late Transition Metal-Catalyzed Hydroamination and Hydroamidation. Chemical Reviews, 115(7), 2596-2697. doi:10.1021/cr300389u | es_ES |
dc.description.references | Yang, Y., Shi, S.-L., Niu, D., Liu, P., & Buchwald, S. L. (2015). Catalytic asymmetric hydroamination of unactivated internal olefins to aliphatic amines. Science, 349(6243), 62-66. doi:10.1126/science.aab3753 | es_ES |
dc.description.references | Pirnot, M. T., Wang, Y.-M., & Buchwald, S. L. (2015). Copper Hydride Catalyzed Hydroamination of Alkenes and Alkynes. Angewandte Chemie International Edition, 55(1), 48-57. doi:10.1002/anie.201507594 | es_ES |
dc.description.references | Pirnot, M. T., Wang, Y.-M., & Buchwald, S. L. (2015). Kupferhydrid-katalysierte Hydroaminierung von Alkenen und Alkinen. Angewandte Chemie, 128(1), 48-57. doi:10.1002/ange.201507594 | es_ES |
dc.description.references | Hartwig, J. F. (1998). Transition Metal Catalyzed Synthesis of Arylamines and Aryl Ethers from Aryl Halides and Triflates: Scope and Mechanism. Angewandte Chemie International Edition, 37(15), 2046-2067. doi:10.1002/(sici)1521-3773(19980817)37:15<2046::aid-anie2046>3.0.co;2-l | es_ES |
dc.description.references | Hartwig, J. F. (1998). Übergangsmetall-katalysierte Synthese von Arylaminen und Arylethern aus Arylhalogeniden und -triflaten: Anwendungen und Reaktionsmechanismus. Angewandte Chemie, 110(15), 2154-2177. doi:10.1002/(sici)1521-3757(19980803)110:15<2154::aid-ange2154>3.0.co;2-c | es_ES |
dc.description.references | Hartwig, J. F. (2008). Evolution of a Fourth Generation Catalyst for the Amination and Thioetherification of Aryl Halides. Accounts of Chemical Research, 41(11), 1534-1544. doi:10.1021/ar800098p | es_ES |
dc.description.references | Surry, D. S., & Buchwald, S. L. (2011). Dialkylbiaryl phosphines in Pd-catalyzed amination: a user’s guide. Chem. Sci., 2(1), 27-50. doi:10.1039/c0sc00331j | es_ES |
dc.description.references | Brusoe, A. T., & Hartwig, J. F. (2015). Palladium-Catalyzed Arylation of Fluoroalkylamines. Journal of the American Chemical Society, 137(26), 8460-8468. doi:10.1021/jacs.5b02512 | es_ES |
dc.description.references | Tietze, L. F. (1996). Domino Reactions in Organic Synthesis. Chemical Reviews, 96(1), 115-136. doi:10.1021/cr950027e | es_ES |
dc.description.references | Padwa, A., & Bur, S. K. (2007). The domino way to heterocycles. Tetrahedron, 63(25), 5341-5378. doi:10.1016/j.tet.2007.03.158 | es_ES |
dc.description.references | Padwa, A. (2009). Domino reactions of rhodium(ii) carbenoids for alkaloid synthesis. Chemical Society Reviews, 38(11), 3072. doi:10.1039/b816701j | es_ES |
dc.description.references | Tietze, L. F., Kinzel, T., & Brazel, C. C. (2009). The Domino Multicomponent Allylation Reaction for the Stereoselective Synthesis of Homoallylic Alcohols. Accounts of Chemical Research, 42(2), 367-378. doi:10.1021/ar800170y | es_ES |
dc.description.references | Sakakura, T., Choi, J.-C., & Yasuda, H. (2007). Transformation of Carbon Dioxide. Chemical Reviews, 107(6), 2365-2387. doi:10.1021/cr068357u | es_ES |
dc.description.references | Mikkelsen, M., Jørgensen, M., & Krebs, F. C. (2010). The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ. Sci., 3(1), 43-81. doi:10.1039/b912904a | es_ES |
dc.description.references | Peters, M., Köhler, B., Kuckshinrichs, W., Leitner, W., Markewitz, P., & Müller, T. E. (2011). Chemical Technologies for Exploiting and Recycling Carbon Dioxide into the Value Chain. ChemSusChem, 4(9), 1216-1240. doi:10.1002/cssc.201000447 | es_ES |
dc.description.references | Markewitz, P., Kuckshinrichs, W., Leitner, W., Linssen, J., Zapp, P., Bongartz, R., … Müller, T. E. (2012). Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energy & Environmental Science, 5(6), 7281. doi:10.1039/c2ee03403d | es_ES |
dc.description.references | Aresta, M., Dibenedetto, A., & Angelini, A. (2013). Catalysis for the Valorization of Exhaust Carbon: from CO2to Chemicals, Materials, and Fuels. Technological Use of CO2. Chemical Reviews, 114(3), 1709-1742. doi:10.1021/cr4002758 | es_ES |
dc.description.references | Lanzafame, P., Centi, G., & Perathoner, S. (2014). Catalysis for biomass and CO2use through solar energy: opening new scenarios for a sustainable and low-carbon chemical production. Chem. Soc. Rev., 43(22), 7562-7580. doi:10.1039/c3cs60396b | es_ES |
dc.description.references | Maeda, C., Miyazaki, Y., & Ema, T. (2014). Recent progress in catalytic conversions of carbon dioxide. Catalysis Science & Technology, 4(6), 1482. doi:10.1039/c3cy00993a | es_ES |
dc.description.references | Jessop, P. G., Ikariya, T., & Noyori, R. (1994). Homogeneous catalytic hydrogenation of supercritical carbon dioxide. Nature, 368(6468), 231-233. doi:10.1038/368231a0 | es_ES |
dc.description.references | Leitner, W. (1995). Carbon Dioxide as a Raw Material: The Synthesis of Formic Acid and Its Derivatives from CO2. Angewandte Chemie International Edition in English, 34(20), 2207-2221. doi:10.1002/anie.199522071 | es_ES |
dc.description.references | Leitner, W. (1995). Kohlendioxid als Rohstoff am Beispiel der Synthese von Ameisensäure und ihren Derivaten. Angewandte Chemie, 107(20), 2391-2405. doi:10.1002/ange.19951072005 | es_ES |
dc.description.references | Jessop, P. G., Hsiao, Y., Ikariya, T., & Noyori, R. (1996). Homogeneous Catalysis in Supercritical Fluids: Hydrogenation of Supercritical Carbon Dioxide to Formic Acid, Alkyl Formates, and Formamides. Journal of the American Chemical Society, 118(2), 344-355. doi:10.1021/ja953097b | es_ES |
dc.description.references | Jessop, P. G., Joó, F., & Tai, C.-C. (2004). Recent advances in the homogeneous hydrogenation of carbon dioxide. Coordination Chemistry Reviews, 248(21-24), 2425-2442. doi:10.1016/j.ccr.2004.05.019 | es_ES |
dc.description.references | Federsel, C., Jackstell, R., & Beller, M. (2010). State-of-the-Art Catalysts for Hydrogenation of Carbon Dioxide. Angewandte Chemie International Edition, 49(36), 6254-6257. doi:10.1002/anie.201000533 | es_ES |
dc.description.references | Federsel, C., Jackstell, R., & Beller, M. (2010). Moderne Katalysatoren zur Hydrierung von Kohlendioxid. Angewandte Chemie, 122(36), 6392-6395. doi:10.1002/ange.201000533 | es_ES |
dc.description.references | Wang, W., Wang, S., Ma, X., & Gong, J. (2011). Recent advances in catalytic hydrogenation of carbon dioxide. Chemical Society Reviews, 40(7), 3703. doi:10.1039/c1cs15008a | es_ES |
dc.description.references | Hull, J. F., Himeda, Y., Wang, W.-H., Hashiguchi, B., Periana, R., Szalda, D. J., … Fujita, E. (2012). Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures. Nature Chemistry, 4(5), 383-388. doi:10.1038/nchem.1295 | es_ES |
dc.description.references | Wesselbaum, S., vom Stein, T., Klankermayer, J., & Leitner, W. (2012). Hydrogenation of Carbon Dioxide to Methanol by Using a Homogeneous Ruthenium-Phosphine Catalyst. Angewandte Chemie International Edition, 51(30), 7499-7502. doi:10.1002/anie.201202320 | es_ES |
dc.description.references | Wesselbaum, S., vom Stein, T., Klankermayer, J., & Leitner, W. (2012). Hydrogenation of Carbon Dioxide to Methanol by Using a Homogeneous Ruthenium-Phosphine Catalyst. Angewandte Chemie, 124(30), 7617-7620. doi:10.1002/ange.201202320 | es_ES |
dc.description.references | Fernández-Alvarez, F. J., Aitani, A. M., & Oro, L. A. (2014). Homogeneous catalytic reduction of CO2 with hydrosilanes. Catal. Sci. Technol., 4(3), 611-624. doi:10.1039/c3cy00948c | es_ES |
dc.description.references | Moret, S., Dyson, P. J., & Laurenczy, G. (2014). Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media. Nature Communications, 5(1). doi:10.1038/ncomms5017 | es_ES |
dc.description.references | Von Wolff, N., Lefèvre, G., Berthet, J.-C., Thuéry, P., & Cantat, T. (2016). Implications of CO2Activation by Frustrated Lewis Pairs in the Catalytic Hydroboration of CO2: A View Using N/Si+Frustrated Lewis Pairs. ACS Catalysis, 6(7), 4526-4535. doi:10.1021/acscatal.6b00421 | es_ES |
dc.description.references | Álvarez, A., Bansode, A., Urakawa, A., Bavykina, A. V., Wezendonk, T. A., Makkee, M., … Kapteijn, F. (2017). Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO2 Hydrogenation Processes. Chemical Reviews, 117(14), 9804-9838. doi:10.1021/acs.chemrev.6b00816 | es_ES |
dc.description.references | Schneidewind, J., Adam, R., Baumann, W., Jackstell, R., & Beller, M. (2017). Low-Temperature Hydrogenation of Carbon Dioxide to Methanol with a Homogeneous Cobalt Catalyst. Angewandte Chemie International Edition, 56(7), 1890-1893. doi:10.1002/anie.201609077 | es_ES |
dc.description.references | Schneidewind, J., Adam, R., Baumann, W., Jackstell, R., & Beller, M. (2017). Low-Temperature Hydrogenation of Carbon Dioxide to Methanol with a Homogeneous Cobalt Catalyst. Angewandte Chemie, 129(7), 1916-1919. doi:10.1002/ange.201609077 | es_ES |
dc.description.references | Sordakis, K., Tang, C., Vogt, L. K., Junge, H., Dyson, P. J., Beller, M., & Laurenczy, G. (2017). Homogeneous Catalysis for Sustainable Hydrogen Storage in Formic Acid and Alcohols. Chemical Reviews, 118(2), 372-433. doi:10.1021/acs.chemrev.7b00182 | es_ES |
dc.description.references | Braunstein, P., Matt, D., & Nobel, D. (1988). Reactions of carbon dioxide with carbon-carbon bond formation catalyzed by transition-metal complexes. Chemical Reviews, 88(5), 747-764. doi:10.1021/cr00087a003 | es_ES |
dc.description.references | Aresta, M., & Dibenedetto, A. (2007). Utilisation of CO2 as a chemical feedstock: opportunities and challenges. Dalton Transactions, (28), 2975. doi:10.1039/b700658f | es_ES |
dc.description.references | Boogaerts, I. I. F., & Nolan, S. P. (2010). Carboxylation of C−H Bonds UsingN-Heterocyclic Carbene Gold(I) Complexes. Journal of the American Chemical Society, 132(26), 8858-8859. doi:10.1021/ja103429q | es_ES |
dc.description.references | Huang, K., Sun, C.-L., & Shi, Z.-J. (2011). Transition-metal-catalyzed C–C bond formation through the fixation of carbon dioxide. Chemical Society Reviews, 40(5), 2435. doi:10.1039/c0cs00129e | es_ES |
dc.description.references | Liu, Q., Wu, L., Jackstell, R., & Beller, M. (2015). Using carbon dioxide as a building block in organic synthesis. Nature Communications, 6(1). doi:10.1038/ncomms6933 | es_ES |
dc.description.references | Juliá-Hernández, F., Moragas, T., Cornella, J., & Martin, R. (2017). Remote carboxylation of halogenated aliphatic hydrocarbons with carbon dioxide. Nature, 545(7652), 84-88. doi:10.1038/nature22316 | es_ES |
dc.description.references | Tlili, A., Frogneux, X., Blondiaux, E., & Cantat, T. (2014). Creating Added Value with a Waste: Methylation of Amines with CO2and H2. Angewandte Chemie International Edition, 53(10), 2543-2545. doi:10.1002/anie.201310337 | es_ES |
dc.description.references | Tlili, A., Frogneux, X., Blondiaux, E., & Cantat, T. (2014). Wertschöpfung aus einem Abfallstoff: Methylierung von Aminen mit CO2und H2. Angewandte Chemie, 126(10), 2577-2579. doi:10.1002/ange.201310337 | es_ES |
dc.description.references | Klankermayer, J., & Leitner, W. (2015). Love at second sight for CO2 and H2 in organic synthesis. Science, 350(6261), 629-630. doi:10.1126/science.aac7997 | es_ES |
dc.description.references | Yan, G., Borah, A. J., Wang, L., & Yang, M. (2015). Recent Advances in Transition Metal-Catalyzed Methylation Reactions. Advanced Synthesis & Catalysis, 357(7), 1333-1350. doi:10.1002/adsc.201400984 | es_ES |
dc.description.references | Tlili, A., Blondiaux, E., Frogneux, X., & Cantat, T. (2015). Reductive functionalization of CO2 with amines: an entry to formamide, formamidine and methylamine derivatives. Green Chemistry, 17(1), 157-168. doi:10.1039/c4gc01614a | es_ES |
dc.description.references | Klankermayer, J., Wesselbaum, S., Beydoun, K., & Leitner, W. (2016). Selective Catalytic Synthesis Using the Combination of Carbon Dioxide and Hydrogen: Catalytic Chess at the Interface of Energy and Chemistry. Angewandte Chemie International Edition, 55(26), 7296-7343. doi:10.1002/anie.201507458 | es_ES |
dc.description.references | Klankermayer, J., Wesselbaum, S., Beydoun, K., & Leitner, W. (2016). Selektive katalytische Synthesen mit Kohlendioxid und Wasserstoff: Katalyse-Schach an der Nahtstelle zwischen Energie und Chemie. Angewandte Chemie, 128(26), 7416-7467. doi:10.1002/ange.201507458 | es_ES |
dc.description.references | Li, Y., Cui, X., Dong, K., Junge, K., & Beller, M. (2017). Utilization of CO2as a C1 Building Block for Catalytic Methylation Reactions. ACS Catalysis, 7(2), 1077-1086. doi:10.1021/acscatal.6b02715 | es_ES |
dc.description.references | Schäffner, B., Schäffner, F., Verevkin, S. P., & Börner, A. (2010). Organic Carbonates as Solvents in Synthesis and Catalysis. Chemical Reviews, 110(8), 4554-4581. doi:10.1021/cr900393d | es_ES |
dc.description.references | Balaraman, E., Gunanathan, C., Zhang, J., Shimon, L. J. W., & Milstein, D. (2011). Efficient hydrogenation of organic carbonates, carbamates and formates indicates alternative routes to methanol based on CO2 and CO. Nature Chemistry, 3(8), 609-614. doi:10.1038/nchem.1089 | es_ES |
dc.description.references | Dub, P. A., & Ikariya, T. (2012). Catalytic Reductive Transformations of Carboxylic and Carbonic Acid Derivatives Using Molecular Hydrogen. ACS Catalysis, 2(8), 1718-1741. doi:10.1021/cs300341g | es_ES |
dc.description.references | Ikariya, T., & Kayaki, Y. (2014). Hydrogenation of carboxylic acid derivatives with bifunctional ruthenium catalysts. Pure and Applied Chemistry, 86(6), 933-943. doi:10.1515/pac-2014-0103 | es_ES |
dc.description.references | Smith, A. M., & Whyman, R. (2014). Review of Methods for the Catalytic Hydrogenation of Carboxamides. Chemical Reviews, 114(10), 5477-5510. doi:10.1021/cr400609m | es_ES |
dc.description.references | Werkmeister, S., Junge, K., & Beller, M. (2014). Catalytic Hydrogenation of Carboxylic Acid Esters, Amides, and Nitriles with Homogeneous Catalysts. Organic Process Research & Development, 18(2), 289-302. doi:10.1021/op4003278 | es_ES |
dc.description.references | Just-Baringo, X., & Procter, D. J. (2015). Sm(II)-Mediated Electron Transfer to Carboxylic Acid Derivatives: Development of Complexity-Generating Cascades. Accounts of Chemical Research, 48(5), 1263-1275. doi:10.1021/acs.accounts.5b00083 | es_ES |
dc.description.references | Pritchard, J., Filonenko, G. A., van Putten, R., Hensen, E. J. M., & Pidko, E. A. (2015). Heterogeneous and homogeneous catalysis for the hydrogenation of carboxylic acid derivatives: history, advances and future directions. Chemical Society Reviews, 44(11), 3808-3833. doi:10.1039/c5cs00038f | es_ES |
dc.description.references | Mérel, D. S., Do, M. L. T., Gaillard, S., Dupau, P., & Renaud, J.-L. (2015). Iron-catalyzed reduction of carboxylic and carbonic acid derivatives. Coordination Chemistry Reviews, 288, 50-68. doi:10.1016/j.ccr.2015.01.008 | es_ES |
dc.description.references | Nagashima, H. (2015). Efficient Transition Metal-Catalyzed Reactions of Carboxylic Acid Derivatives with Hydrosilanes and Hydrosiloxanes, Afforded by Catalyst Design and the Proximity Effect of Two Si–H Groups. Synlett, 26(07), 866-890. doi:10.1055/s-0034-1379989 | es_ES |
dc.description.references | Crochet, P., & Cadierno, V. (2014). Ruthenium-Catalyzed Amide-Bond Formation. Topics in Organometallic Chemistry, 81-118. doi:10.1007/3418_2014_78 | es_ES |
dc.description.references | De Figueiredo, R. M., Suppo, J.-S., & Campagne, J.-M. (2016). Nonclassical Routes for Amide Bond Formation. Chemical Reviews, 116(19), 12029-12122. doi:10.1021/acs.chemrev.6b00237 | es_ES |
dc.description.references | Kreituss, I., & Bode, J. W. (2016). Catalytic Kinetic Resolution of Saturated N-Heterocycles by Enantioselective Amidation with Chiral Hydroxamic Acids. Accounts of Chemical Research, 49(12), 2807-2821. doi:10.1021/acs.accounts.6b00461 | es_ES |
dc.description.references | Ojeda-Porras, A., & Gamba-Sánchez, D. (2016). Recent Developments in Amide Synthesis Using Nonactivated Starting Materials. The Journal of Organic Chemistry, 81(23), 11548-11555. doi:10.1021/acs.joc.6b02358 | es_ES |
dc.description.references | Noda, H., Furutachi, M., Asada, Y., Shibasaki, M., & Kumagai, N. (2017). Unique physicochemical and catalytic properties dictated by the B3NO2 ring system. Nature Chemistry, 9(6), 571-577. doi:10.1038/nchem.2708 | es_ES |
dc.description.references | Brown, H. C., Narasimhan, S., & Choi, Y. M. (1981). Improved Procedure for Borane-Dimethyl Sulfide Reduction of Primary Amides to Amines. Synthesis, 1981(06), 441-442. doi:10.1055/s-1981-29473 | es_ES |
dc.description.references | W. Gribble, G. (1998). Sodium borohydride in carboxylic acid media: a phenomenal reduction system. Chemical Society Reviews, 27(6), 395. doi:10.1039/a827395z | es_ES |
dc.description.references | Pelletier, G., Bechara, W. S., & Charette, A. B. (2010). Controlled and Chemoselective Reduction of Secondary Amides. Journal of the American Chemical Society, 132(37), 12817-12819. doi:10.1021/ja105194s | es_ES |
dc.description.references | Coetzee, J., Dodds, D. L., Klankermayer, J., Brosinski, S., Leitner, W., Slawin, A. M. Z., & Cole-Hamilton, D. J. (2013). Homogeneous Catalytic Hydrogenation of Amides to Amines. Chemistry - A European Journal, 19(33), 11039-11050. doi:10.1002/chem.201204270 | es_ES |
dc.description.references | Stein, M., & Breit, B. (2012). Catalytic Hydrogenation of Amides to Amines under Mild Conditions. Angewandte Chemie International Edition, 52(8), 2231-2234. doi:10.1002/anie.201207803 | es_ES |
dc.description.references | Stein, M., & Breit, B. (2012). Catalytic Hydrogenation of Amides to Amines under Mild Conditions. Angewandte Chemie, 125(8), 2287-2290. doi:10.1002/ange.201207803 | es_ES |
dc.description.references | Vom Stein, T., Meuresch, M., Limper, D., Schmitz, M., Hölscher, M., Coetzee, J., … Leitner, W. (2014). Highly Versatile Catalytic Hydrogenation of Carboxylic and Carbonic Acid Derivatives using a Ru-Triphos Complex: Molecular Control over Selectivity and Substrate Scope. Journal of the American Chemical Society, 136(38), 13217-13225. doi:10.1021/ja506023f | es_ES |
dc.description.references | Cabrero-Antonino, J. R., Alberico, E., Junge, K., Junge, H., & Beller, M. (2016). Towards a general ruthenium-catalyzed hydrogenation of secondary and tertiary amides to amines. Chemical Science, 7(5), 3432-3442. doi:10.1039/c5sc04671h | es_ES |
dc.description.references | Li, B., Sortais, J.-B., & Darcel, C. (2016). Amine synthesis via transition metal homogeneous catalysed hydrosilylation. RSC Advances, 6(62), 57603-57625. doi:10.1039/c6ra10494k | es_ES |
dc.description.references | Mukherjee, D., Shirase, S., Mashima, K., & Okuda, J. (2016). Chemoselective Reduction of Tertiary Amides to Amines Catalyzed by Triphenylborane. Angewandte Chemie International Edition, 55(42), 13326-13329. doi:10.1002/anie.201605236 | es_ES |
dc.description.references | Mukherjee, D., Shirase, S., Mashima, K., & Okuda, J. (2016). Triphenylboran-katalysierte chemoselektive Reduktion von tertiären Amiden zu Aminen. Angewandte Chemie, 128(42), 13520-13523. doi:10.1002/ange.201605236 | es_ES |
dc.description.references | Volkov, A., Tinnis, F., Slagbrand, T., Trillo, P., & Adolfsson, H. (2016). Chemoselective reduction of carboxamides. Chemical Society Reviews, 45(24), 6685-6697. doi:10.1039/c6cs00244g | es_ES |
dc.description.references | Mitsudome, T., Miyagawa, K., Maeno, Z., Mizugaki, T., Jitsukawa, K., Yamasaki, J., … Kaneda, K. (2017). Mild Hydrogenation of Amides to Amines over a Platinum-Vanadium Bimetallic Catalyst. Angewandte Chemie International Edition, 56(32), 9381-9385. doi:10.1002/anie.201704199 | es_ES |
dc.description.references | Mitsudome, T., Miyagawa, K., Maeno, Z., Mizugaki, T., Jitsukawa, K., Yamasaki, J., … Kaneda, K. (2017). Mild Hydrogenation of Amides to Amines over a Platinum-Vanadium Bimetallic Catalyst. Angewandte Chemie, 129(32), 9509-9513. doi:10.1002/ange.201704199 | es_ES |
dc.description.references | GRIBBLE, G. W., & HEALD, P. W. (1975). Reactions of Sodium Borohydride in Acidic Media; III. Reduction and Alkylation of Quinoline and Isoquinoline with Carboxylic Acids. Synthesis, 1975(10), 650-652. doi:10.1055/s-1975-23871 | es_ES |
dc.description.references | Marchini, P., Liso, G., Reho, A., Liberatore, F., & Micheletti Moracci, F. (1975). Sodium borohydride-carboxylic acid systems. Useful reagents for the alkylation of amines. The Journal of Organic Chemistry, 40(23), 3453-3456. doi:10.1021/jo00911a038 | es_ES |
dc.description.references | GRIBBLE, G. W., JASINSKI, J. M., PELLICONE, J. T., & PANETTA, J. A. (1978). Reactions of Sodium Borohydride in Acidic Media; VIII.N-Alkylation of Aliphatic Secondary Amines with Carboxylic Acids. Synthesis, 1978(10), 766-768. doi:10.1055/s-1978-24885 | es_ES |
dc.description.references | Trapani, G., Reho, A., & Latrofa, A. (1983). Trimethylamine-Borane as Useful Reagent in theN-Acylation orN-Alkylation of Amines by Carboxylic Acids. Synthesis, 1983(12), 1013-1014. doi:10.1055/s-1983-30605 | es_ES |
dc.description.references | Perrio-Huard, C., Aubert, C., & Lasne, M.-C. (2000). Reductive amination of carboxylic acids and [11C]magnesium halide carboxylates. Journal of the Chemical Society, Perkin Transactions 1, (3), 311-316. doi:10.1039/a908991h | es_ES |
dc.description.references | Akita, M. (2000). Deoxygenative reduction of organometallic compounds by hydrosilanes — an organometallic approach to reaction mechanisms of catalytic CO hydrogenation. Applied Catalysis A: General, 200(1-2), 153-165. doi:10.1016/s0926-860x(00)00632-3 | es_ES |
dc.description.references | Carpentier, J.-F., & Bette, V. (2002). Chemo- and Enantioselective Hydrosilylation of Carbonyl and Imino Groups. An Emphasis on Non-Traditional Catalyst Systems. Current Organic Chemistry, 6(10), 913-936. doi:10.2174/1385272023373851 | es_ES |
dc.description.references | KUBAS, G. J. (2004). HETEROLYTIC SPLITTING OF HH, SiH, AND OTHER σ BONDS ON ELECTROPHILIC METAL CENTERS. Advances in Inorganic Chemistry, 127-177. doi:10.1016/s0898-8838(04)56005-1 | es_ES |
dc.description.references | Addis, D., Das, S., Junge, K., & Beller, M. (2011). Selective Reduction of Carboxylic Acid Derivatives by Catalytic Hydrosilylation. Angewandte Chemie International Edition, 50(27), 6004-6011. doi:10.1002/anie.201100145 | es_ES |
dc.description.references | Addis, D., Das, S., Junge, K., & Beller, M. (2011). Selektive Reduktion von Carbonsäurederivaten durch katalytische Hydrosilylierung. Angewandte Chemie, 123(27), 6128-6135. doi:10.1002/ange.201100145 | es_ES |
dc.description.references | Sousa, S. C. A., Cabrita, I., & Fernandes, A. C. (2012). High-valent oxo-molybdenum and oxo-rhenium complexes as efficient catalysts for X–H (X = Si, B, P and H) bond activation and for organic reductions. Chemical Society Reviews, 41(17), 5641. doi:10.1039/c2cs35155b | es_ES |
dc.description.references | Corey, J. Y. (2016). Reactions of Hydrosilanes with Transition Metal Complexes. Chemical Reviews, 116(19), 11291-11435. doi:10.1021/acs.chemrev.5b00559 | es_ES |
dc.description.references | Jacquet, O., Frogneux, X., Das Neves Gomes, C., & Cantat, T. (2013). CO2 as a C1-building block for the catalytic methylation of amines. Chemical Science, 4(5), 2127. doi:10.1039/c3sc22240c | es_ES |
dc.description.references | Li, Y., Fang, X., Junge, K., & Beller, M. (2013). A General Catalytic Methylation of Amines Using Carbon Dioxide. Angewandte Chemie International Edition, 52(36), 9568-9571. doi:10.1002/anie.201301349 | es_ES |
dc.description.references | Li, Y., Fang, X., Junge, K., & Beller, M. (2013). A General Catalytic Methylation of Amines Using Carbon Dioxide. Angewandte Chemie, 125(36), 9747-9750. doi:10.1002/ange.201301349 | es_ES |
dc.description.references | Das, S., Bobbink, F. D., Laurenczy, G., & Dyson, P. J. (2014). Metal-Free Catalyst for the Chemoselective Methylation of Amines Using Carbon Dioxide as a Carbon Source. Angewandte Chemie International Edition, 53(47), 12876-12879. doi:10.1002/anie.201407689 | es_ES |
dc.description.references | Das, S., Bobbink, F. D., Laurenczy, G., & Dyson, P. J. (2014). Metal-Free Catalyst for the Chemoselective Methylation of Amines Using Carbon Dioxide as a Carbon Source. Angewandte Chemie, 126(47), 13090-13093. doi:10.1002/ange.201407689 | es_ES |
dc.description.references | Frogneux, X., Jacquet, O., & Cantat, T. (2014). Iron-catalyzed hydrosilylation of CO2: CO2 conversion to formamides and methylamines. Catal. Sci. Technol., 4(6), 1529-1533. doi:10.1039/c4cy00130c | es_ES |
dc.description.references | González-Sebastián, L., Flores-Alamo, M., & García, J. J. (2015). Selective N-Methylation of Aliphatic Amines with CO2 and Hydrosilanes Using Nickel-Phosphine Catalysts. Organometallics, 34(4), 763-769. doi:10.1021/om501176u | es_ES |
dc.description.references | Santoro, O., Lazreg, F., Minenkov, Y., Cavallo, L., & Cazin, C. S. J. (2015). N-heterocyclic carbene copper(i) catalysed N-methylation of amines using CO2. Dalton Transactions, 44(41), 18138-18144. doi:10.1039/c5dt03506f | es_ES |
dc.description.references | Yang, Z., Yu, B., Zhang, H., Zhao, Y., Ji, G., Ma, Z., … Liu, Z. (2015). B(C6F5)3-catalyzed methylation of amines using CO2 as a C1 building block. Green Chemistry, 17(8), 4189-4193. doi:10.1039/c5gc01386k | es_ES |
dc.description.references | Das, S., Bobbink, F. D., Bulut, S., Soudani, M., & Dyson, P. J. (2016). Thiazolium carbene catalysts for the fixation of CO2 onto amines. Chemical Communications, 52(12), 2497-2500. doi:10.1039/c5cc08741d | es_ES |
dc.description.references | Fang, C., Lu, C., Liu, M., Zhu, Y., Fu, Y., & Lin, B.-L. (2016). Selective Formylation and Methylation of Amines using Carbon Dioxide and Hydrosilane Catalyzed by Alkali-Metal Carbonates. ACS Catalysis, 6(11), 7876-7881. doi:10.1021/acscatal.6b01856 | es_ES |
dc.description.references | Nguyen, T. V. Q., Yoo, W., & Kobayashi, S. (2016). Chelating Bis(1,2,3‐triazol‐5‐ylidene) Rhodium Complexes: Versatile Catalysts for Hydrosilylation Reactions. Advanced Synthesis & Catalysis, 358(3), 452-458. doi:10.1002/adsc.201500875 | es_ES |
dc.description.references | Liu, X.-F., Ma, R., Qiao, C., Cao, H., & He, L.-N. (2016). Fluoride-Catalyzed Methylation of Amines by Reductive Functionalization of CO2 with Hydrosilanes. Chemistry - A European Journal, 22(46), 16489-16493. doi:10.1002/chem.201603688 | es_ES |
dc.description.references | Liu, X.-F., Qiao, C., Li, X.-Y., & He, L.-N. (2017). Carboxylate-promoted reductive functionalization of CO2 with amines and hydrosilanes under mild conditions. Green Chemistry, 19(7), 1726-1731. doi:10.1039/c7gc00484b | es_ES |
dc.description.references | Niu, H., Lu, L., Shi, R., Chiang, C.-W., & Lei, A. (2017). Catalyst-free N-methylation of amines using CO2. Chemical Communications, 53(6), 1148-1151. doi:10.1039/c6cc09072a | es_ES |
dc.description.references | Xie, C., Song, J., Wu, H., Zhou, B., Wu, C., & Han, B. (2017). Natural Product Glycine Betaine as an Efficient Catalyst for Transformation of CO2 with Amines to Synthesize N-Substituted Compounds. ACS Sustainable Chemistry & Engineering, 5(8), 7086-7092. doi:10.1021/acssuschemeng.7b01287 | es_ES |
dc.description.references | Lu, Y., Gao, Z.-H., Chen, X.-Y., Guo, J., Liu, Z., Dang, Y., … Wang, Z.-X. (2017). Formylation or methylation: what determines the chemoselectivity of the reaction of amine, CO2, and hydrosilane catalyzed by 1,3,2-diazaphospholene? Chem. Sci., 8(11), 7637-7650. doi:10.1039/c7sc00824d | es_ES |
dc.description.references | Wang, M.-Y., Wang, N., Liu, X.-F., Qiao, C., & He, L.-N. (2018). Tungstate catalysis: pressure-switched 2- and 6-electron reductive functionalization of CO2 with amines and phenylsilane. Green Chemistry, 20(7), 1564-1570. doi:10.1039/c7gc03416d | es_ES |
dc.description.references | Hu, Y., Song, J., Xie, C., Wu, H., Wang, Z., Jiang, T., … Han, B. (2018). Renewable and Biocompatible Lecithin as an Efficient Organocatalyst for Reductive Conversion of CO2 with Amines to Formamides and Methylamines. ACS Sustainable Chemistry & Engineering, 6(9), 11228-11234. doi:10.1021/acssuschemeng.8b03245 | es_ES |
dc.description.references | Jacquet, O., Das Neves Gomes, C., Ephritikhine, M., & Cantat, T. (2012). Complete Catalytic Deoxygenation of CO2into Formamidine Derivatives. ChemCatChem, 5(1), 117-120. doi:10.1002/cctc.201200732 | es_ES |
dc.description.references | Frogneux, X., Blondiaux, E., Thuéry, P., & Cantat, T. (2015). Bridging Amines with CO2: Organocatalyzed Reduction of CO2 to Aminals. ACS Catalysis, 5(7), 3983-3987. doi:10.1021/acscatal.5b00734 | es_ES |
dc.description.references | Zhu, D.-Y., Fang, L., Han, H., Wang, Y., & Xia, J.-B. (2017). Reductive CO2 Fixation via Tandem C–C and C–N Bond Formation: Synthesis of Spiro-indolepyrrolidines. Organic Letters, 19(16), 4259-4262. doi:10.1021/acs.orglett.7b01906 | es_ES |
dc.description.references | Boddien, A., Mellmann, D., Gartner, F., Jackstell, R., Junge, H., Dyson, P. J., … Beller, M. (2011). Efficient Dehydrogenation of Formic Acid Using an Iron Catalyst. Science, 333(6050), 1733-1736. doi:10.1126/science.1206613 | es_ES |
dc.description.references | Mellmann, D., Sponholz, P., Junge, H., & Beller, M. (2016). Formic acid as a hydrogen storage material – development of homogeneous catalysts for selective hydrogen release. Chemical Society Reviews, 45(14), 3954-3988. doi:10.1039/c5cs00618j | es_ES |
dc.description.references | Li, Z., & Xu, Q. (2017). Metal-Nanoparticle-Catalyzed Hydrogen Generation from Formic Acid. Accounts of Chemical Research, 50(6), 1449-1458. doi:10.1021/acs.accounts.7b00132 | es_ES |
dc.description.references | Wienhöfer, G., Sorribes, I., Boddien, A., Westerhaus, F., Junge, K., Junge, H., … Beller, M. (2011). General and Selective Iron-Catalyzed Transfer Hydrogenation of Nitroarenes without Base. Journal of the American Chemical Society, 133(32), 12875-12879. doi:10.1021/ja2061038 | es_ES |
dc.description.references | Cabrero-Antonino, J. R., Adam, R., Junge, K., Jackstell, R., & Beller, M. (2017). Cobalt-catalysed transfer hydrogenation of quinolines and related heterocycles using formic acid under mild conditions. Catalysis Science & Technology, 7(10), 1981-1985. doi:10.1039/c7cy00437k | es_ES |
dc.description.references | Sorribes, I., Junge, K., & Beller, M. (2014). General Catalytic Methylation of Amines with Formic Acid under Mild Reaction Conditions. Chemistry - A European Journal, 20(26), 7878-7883. doi:10.1002/chem.201402124 | es_ES |
dc.description.references | Fu, M.-C., Shang, R., Cheng, W.-M., & Fu, Y. (2015). Boron-Catalyzed N-Alkylation of Amines using Carboxylic Acids. Angewandte Chemie International Edition, 54(31), 9042-9046. doi:10.1002/anie.201503879 | es_ES |
dc.description.references | Fu, M.-C., Shang, R., Cheng, W.-M., & Fu, Y. (2015). Boron-Catalyzed N-Alkylation of Amines using Carboxylic Acids. Angewandte Chemie, 127(31), 9170-9174. doi:10.1002/ange.201503879 | es_ES |
dc.description.references | Zhang, Q., Fu, M.-C., Yu, H.-Z., & Fu, Y. (2016). Mechanism of Boron-CatalyzedN-Alkylation of Amines with Carboxylic Acids. The Journal of Organic Chemistry, 81(15), 6235-6243. doi:10.1021/acs.joc.6b00778 | es_ES |
dc.description.references | Zhu, L., Wang, L.-S., Li, B., Li, W., & Fu, B. (2016). Methylation of aromatic amines and imines using formic acid over a heterogeneous Pt/C catalyst. Catalysis Science & Technology, 6(16), 6172-6176. doi:10.1039/c6cy00674d | es_ES |
dc.description.references | Qiao, C., Liu, X.-F., Liu, X., & He, L.-N. (2017). Copper(II)-Catalyzed Selective Reductive Methylation of Amines with Formic Acid: An Option for Indirect Utilization of CO2. Organic Letters, 19(6), 1490-1493. doi:10.1021/acs.orglett.7b00551 | es_ES |
dc.description.references | Zheng, J., Darcel, C., & Sortais, J.-B. (2014). Methylation of secondary amines with dialkyl carbonates and hydrosilanes catalysed by iron complexes. Chem. Commun., 50(91), 14229-14232. doi:10.1039/c4cc05517a | es_ES |
dc.description.references | Li, Y., Sorribes, I., Vicent, C., Junge, K., & Beller, M. (2015). Convenient Reductive Methylation of Amines with Carbonates at Room Temperature. Chemistry - A European Journal, 21(47), 16759-16763. doi:10.1002/chem.201502917 | es_ES |
dc.description.references | Sorribes, I., Junge, K., & Beller, M. (2014). Direct Catalytic N-Alkylation of Amines with Carboxylic Acids. Journal of the American Chemical Society, 136(40), 14314-14319. doi:10.1021/ja5093612 | es_ES |
dc.description.references | Andrews, K. G., Summers, D. M., Donnelly, L. J., & Denton, R. M. (2016). Catalytic reductive N-alkylation of amines using carboxylic acids. Chemical Communications, 52(9), 1855-1858. doi:10.1039/c5cc08881j | es_ES |
dc.description.references | Minakawa, M., Okubo, M., & Kawatsura, M. (2016). Ruthenium-catalyzed direct N-alkylation of amines with carboxylic acids using methylphenylsilane as a hydride source. Tetrahedron Letters, 57(37), 4187-4190. doi:10.1016/j.tetlet.2016.08.003 | es_ES |
dc.description.references | Andrews, K. G., Faizova, R., & Denton, R. M. (2017). A practical and catalyst-free trifluoroethylation reaction of amines using trifluoroacetic acid. Nature Communications, 8(1). doi:10.1038/ncomms15913 | es_ES |
dc.description.references | Li, B., Sortais, J.-B., & Darcel, C. (2013). Unexpected selectivity in ruthenium-catalyzed hydrosilylation of primary amides: synthesis of secondary amines. Chemical Communications, 49(35), 3691. doi:10.1039/c3cc39149c | es_ES |
dc.description.references | Ogiwara, Y., Shimoda, W., Ide, K., Nakajima, T., & Sakai, N. (2017). Carboxamides as N -Alkylating Reagents of Secondary Amines in Indium-Catalyzed Reductive Amination with a Hydrosilane. European Journal of Organic Chemistry, 2017(20), 2866-2870. doi:10.1002/ejoc.201601629 | es_ES |
dc.description.references | Zhu, J., Zhang, Z., Miao, C., Liu, W., & Sun, W. (2017). Synthesis of benzimidazoles from o -phenylenediamines and DMF derivatives in the presence of PhSiH 3. Tetrahedron, 73(25), 3458-3462. doi:10.1016/j.tet.2017.05.018 | es_ES |
dc.description.references | Pan, Y., Chen, C., Xu, X., Zhao, H., Han, J., Li, H., … Xiao, J. (2018). Metal-free tandem cyclization/hydrosilylation to construct tetrahydroquinoxalines. Green Chemistry, 20(2), 403-411. doi:10.1039/c7gc03095a | es_ES |
dc.description.references | Pedrajas, E., Sorribes, I., Guillamón, E., Junge, K., Beller, M., & Llusar, R. (2017). Efficient and Selective N -Methylation of Nitroarenes under Mild Reaction Conditions. Chemistry - A European Journal, 23(53), 13205-13212. doi:10.1002/chem.201702783 | es_ES |
dc.description.references | Nishikata, T., & Nagashima, H. (2012). N Alkylation of Tosylamides Using Esters as Primary and Tertiary Alkyl Sources: Mediated by Hydrosilanes Activated by a Ruthenium Catalyst. Angewandte Chemie International Edition, 51(22), 5363-5366. doi:10.1002/anie.201201426 | es_ES |
dc.description.references | Nishikata, T., & Nagashima, H. (2012). N Alkylation of Tosylamides Using Esters as Primary and Tertiary Alkyl Sources: Mediated by Hydrosilanes Activated by a Ruthenium Catalyst. Angewandte Chemie, 124(22), 5459-5462. doi:10.1002/ange.201201426 | es_ES |
dc.description.references | Courtemanche, M.-A., Légaré, M.-A., Maron, L., & Fontaine, F.-G. (2013). A Highly Active Phosphine–Borane Organocatalyst for the Reduction of CO2 to Methanol Using Hydroboranes. Journal of the American Chemical Society, 135(25), 9326-9329. doi:10.1021/ja404585p | es_ES |
dc.description.references | Das Neves Gomes, C., Blondiaux, E., Thuéry, P., & Cantat, T. (2014). Metal-Free Reduction of CO2with Hydroboranes: Two Efficient Pathways at Play for the Reduction of CO2to Methanol. Chemistry - A European Journal, 20(23), 7098-7106. doi:10.1002/chem.201400349 | es_ES |
dc.description.references | Bontemps, S. (2016). Boron-mediated activation of carbon dioxide. Coordination Chemistry Reviews, 308, 117-130. doi:10.1016/j.ccr.2015.06.003 | es_ES |
dc.description.references | Park, S., & Chang, S. (2017). Catalytic Dearomatization of N-Heteroarenes with Silicon and Boron Compounds. Angewandte Chemie International Edition, 56(27), 7720-7738. doi:10.1002/anie.201612140 | es_ES |
dc.description.references | Park, S., & Chang, S. (2017). Katalytische Desaromatisierung von N-Heteroarenen mit Silicium- und Borverbindungen. Angewandte Chemie, 129(27), 7828-7847. doi:10.1002/ange.201612140 | es_ES |
dc.description.references | Blondiaux, E., Pouessel, J., & Cantat, T. (2014). Carbon Dioxide Reduction to Methylamines under Metal-Free Conditions. Angewandte Chemie International Edition, 53(45), 12186-12190. doi:10.1002/anie.201407357 | es_ES |
dc.description.references | Blondiaux, E., Pouessel, J., & Cantat, T. (2014). Carbon Dioxide Reduction to Methylamines under Metal-Free Conditions. Angewandte Chemie, 126(45), 12382-12386. doi:10.1002/ange.201407357 | es_ES |
dc.description.references | Chen, W.-C., Shen, J.-S., Jurca, T., Peng, C.-J., Lin, Y.-H., Wang, Y.-P., … Ong, T.-G. (2015). Expanding the Ligand Framework Diversity of Carbodicarbenes and Direct Detection of Boron Activation in the Methylation of Amines with CO2. Angewandte Chemie International Edition, 54(50), 15207-15212. doi:10.1002/anie.201507921 | es_ES |
dc.description.references | Chen, W.-C., Shen, J.-S., Jurca, T., Peng, C.-J., Lin, Y.-H., Wang, Y.-P., … Ong, T.-G. (2015). Expanding the Ligand Framework Diversity of Carbodicarbenes and Direct Detection of Boron Activation in the Methylation of Amines with CO2. Angewandte Chemie, 127(50), 15422-15427. doi:10.1002/ange.201507921 | es_ES |
dc.description.references | Jin, G., Werncke, C. G., Escudié, Y., Sabo-Etienne, S., & Bontemps, S. (2015). Iron-Catalyzed Reduction of CO2 into Methylene: Formation of C–N, C–O, and C–C Bonds. Journal of the American Chemical Society, 137(30), 9563-9566. doi:10.1021/jacs.5b06077 | es_ES |
dc.description.references | Blaser, H. U., Spindler, F., & Studer, M. (2001). Enantioselective catalysis in fine chemicals production. Applied Catalysis A: General, 221(1-2), 119-143. doi:10.1016/s0926-860x(01)00801-8 | es_ES |
dc.description.references | Kubas, G. J. (2007). Fundamentals of H2Binding and Reactivity on Transition Metals Underlying Hydrogenase Function and H2Production and Storage. Chemical Reviews, 107(10), 4152-4205. doi:10.1021/cr050197j | es_ES |
dc.description.references | Tollefson, J. (2010). Hydrogen vehicles: Fuel of the future? Nature, 464(7293), 1262-1264. doi:10.1038/4641262a | es_ES |
dc.description.references | Gredig, S. V., Koeppel, R. A., & Baiker, A. (1995). Synthesis of methylamines from carbon dioxide and ammonia. Journal of the Chemical Society, Chemical Communications, (1), 73. doi:10.1039/c39950000073 | es_ES |
dc.description.references | Gredig, S. V., Koeppel, R., & Baiker, A. (1996). Comparative study of synthesis of methylamines from carbon oxides and ammonia over Cu/A12O3. Catalysis Today, 29(1-4), 339-342. doi:10.1016/0920-5861(95)00301-0 | es_ES |
dc.description.references | Gredig, S. V., Koeppel, R., & Baiker, A. (1997). Synthesis of methylamines from CO2, H2 and NH3. Catalytic behaviour of various metal-alumina catalysts. Applied Catalysis A: General, 162(1-2), 249-260. doi:10.1016/s0926-860x(97)00107-5 | es_ES |
dc.description.references | Gredig, S. V., Maurer, R., Koeppel, R., & Baiker, A. (1997). Copper-catalyzed synthesis of methylamines from CO2, H2 and NH3. Influence of support. Journal of Molecular Catalysis A: Chemical, 127(1-3), 133-142. doi:10.1016/s1381-1169(97)00117-9 | es_ES |
dc.description.references | Auer, S. (1999). Synthesis of methylamines from CO2, H2 and NH3 over Cu–Mg–Al mixed oxides. Journal of Molecular Catalysis A: Chemical, 141(1-3), 193-203. doi:10.1016/s1381-1169(98)00263-5 | es_ES |
dc.description.references | Beydoun, K., Thenert, K., Streng, E. S., Brosinski, S., Leitner, W., & Klankermayer, J. (2015). Selective Synthesis of Trimethylamine by Catalytic N -Methylation of Ammonia and Ammonium Chloride by utilizing Carbon Dioxide and Molecular Hydrogen. ChemCatChem, 8(1), 135-138. doi:10.1002/cctc.201501116 | es_ES |
dc.description.references | Toyao, T., Siddiki, S. M. A. H., Ishihara, K., Kon, K., Onodera, W., & Shimizu, K. (2017). Heterogeneous Platinum Catalysts for Direct Synthesis of Trimethylamine by N-Methylation of Ammonia and Its Surrogates with CO2/H2. Chemistry Letters, 46(1), 68-70. doi:10.1246/cl.160875 | es_ES |
dc.description.references | Beydoun, K., vom Stein, T., Klankermayer, J., & Leitner, W. (2013). Ruthenium-Catalyzed Direct Methylation of Primary and Secondary Aromatic Amines Using Carbon Dioxide and Molecular Hydrogen. Angewandte Chemie International Edition, 52(36), 9554-9557. doi:10.1002/anie.201304656 | es_ES |
dc.description.references | Beydoun, K., vom Stein, T., Klankermayer, J., & Leitner, W. (2013). Ruthenium-Catalyzed Direct Methylation of Primary and Secondary Aromatic Amines Using Carbon Dioxide and Molecular Hydrogen. Angewandte Chemie, 125(36), 9733-9736. doi:10.1002/ange.201304656 | es_ES |
dc.description.references | Li, Y., Sorribes, I., Yan, T., Junge, K., & Beller, M. (2013). Selective Methylation of Amines with Carbon Dioxide and H2. Angewandte Chemie International Edition, 52(46), 12156-12160. doi:10.1002/anie.201306850 | es_ES |
dc.description.references | Li, Y., Sorribes, I., Yan, T., Junge, K., & Beller, M. (2013). Selective Methylation of Amines with Carbon Dioxide and H2. Angewandte Chemie, 125(46), 12378-12382. doi:10.1002/ange.201306850 | es_ES |
dc.description.references | Cui, X., Dai, X., Zhang, Y., Deng, Y., & Shi, F. (2014). Methylation of amines, nitrobenzenes and aromatic nitriles with carbon dioxide and molecular hydrogen. Chem. Sci., 5(2), 649-655. doi:10.1039/c3sc52676c | es_ES |
dc.description.references | Cui, X., Zhang, Y., Deng, Y., & Shi, F. (2014). N-Methylation of amine and nitro compounds with CO2/H2catalyzed by Pd/CuZrOxunder mild reaction conditions. Chem. Commun., 50(88), 13521-13524. doi:10.1039/c4cc05119j | es_ES |
dc.description.references | Kon, K., Siddiki, S. M. A. H., Onodera, W., & Shimizu, K. (2014). Sustainable Heterogeneous Platinum Catalyst for Direct Methylation of Secondary Amines by Carbon Dioxide and Hydrogen. Chemistry - A European Journal, 20(21), 6264-6267. doi:10.1002/chem.201400332 | es_ES |
dc.description.references | Tang, G., Bao, H.-L., Jin, C., Zhong, X.-H., & Du, X.-L. (2015). Direct methylation of N-methylaniline with CO2/H2 catalyzed by gold nanoparticles supported on alumina. RSC Advances, 5(121), 99678-99687. doi:10.1039/c5ra20991a | es_ES |
dc.description.references | Du, X.-L., Tang, G., Bao, H.-L., Jiang, Z., Zhong, X.-H., Su, D. S., & Wang, J.-Q. (2015). Direct Methylation of Amines with Carbon Dioxide and Molecular Hydrogen using Supported Gold Catalysts. ChemSusChem, 8(20), 3489-3496. doi:10.1002/cssc.201500486 | es_ES |
dc.description.references | Su, X., Lin, W., Cheng, H., Zhang, C., Li, Y., Liu, T., … Zhao, F. (2016). PdGa/TiO2 an efficient heterogeneous catalyst for direct methylation of N-methylaniline with CO2/H2. RSC Advances, 6(105), 103650-103656. doi:10.1039/c6ra22089d | es_ES |
dc.description.references | Toyao, T., Siddiki, S. M. A. H., Morita, Y., Kamachi, T., Touchy, A. S., Onodera, W., … Shimizu, K. (2017). Rhenium‐Loaded TiO 2 : A Highly Versatile and Chemoselective Catalyst for the Hydrogenation of Carboxylic Acid Derivatives and the N‐Methylation of Amines Using H 2 and CO 2. Chemistry – A European Journal, 23(59), 14848-14859. doi:10.1002/chem.201702801 | es_ES |
dc.description.references | Yu, B., Zhang, H., Zhao, Y., Chen, S., Xu, J., Huang, C., & Liu, Z. (2013). Cyclization of o-phenylenediamines by CO2in the presence of H2for the synthesis of benzimidazoles. Green Chem., 15(1), 95-99. doi:10.1039/c2gc36517k | es_ES |
dc.description.references | Savourey, S., Lefèvre, G., Berthet, J.-C., & Cantat, T. (2014). Catalytic methylation of aromatic amines with formic acid as the unique carbon and hydrogen source. Chem. Commun., 50(90), 14033-14036. doi:10.1039/c4cc05908e | es_ES |
dc.description.references | Cabrero-Antonino, J. R., Adam, R., Junge, K., & Beller, M. (2016). A general protocol for the reductive N-methylation of amines using dimethyl carbonate and molecular hydrogen: mechanistic insights and kinetic studies. Catalysis Science & Technology, 6(22), 7956-7966. doi:10.1039/c6cy01401a | es_ES |
dc.description.references | Cabrero-Antonino, J. R., Adam, R., Wärnå, J., Murzin, D. Y., & Beller, M. (2018). Reductive N-methylation of amines using dimethyl carbonate and molecular hydrogen: Mechanistic insights through kinetic modelling. Chemical Engineering Journal, 351, 1129-1136. doi:10.1016/j.cej.2018.06.174 | es_ES |
dc.description.references | Núñez Magro, A. A., Eastham, G. R., & Cole-Hamilton, D. J. (2007). The synthesis of amines by the homogeneous hydrogenation of secondary and primary amides. Chemical Communications, (30), 3154. doi:10.1039/b706635j | es_ES |
dc.description.references | Additions and corrections published in 2012. (2012). Chemical Communications, 48(100), 12249. doi:10.1039/c2cc90426h | es_ES |
dc.description.references | Sorribes, I., Cabrero-Antonino, J. R., Vicent, C., Junge, K., & Beller, M. (2015). Catalytic N-Alkylation of Amines Using Carboxylic Acids and Molecular Hydrogen. Journal of the American Chemical Society, 137(42), 13580-13587. doi:10.1021/jacs.5b07994 | es_ES |
dc.description.references | Adam, R., Cabrero-Antonino, J. R., Junge, K., Jackstell, R., & Beller, M. (2016). Esters, Including Triglycerides, and Hydrogen as Feedstocks for the Ruthenium-Catalyzed Direct N-Alkylation of Amines. Angewandte Chemie International Edition, 55(37), 11049-11053. doi:10.1002/anie.201603681 | es_ES |
dc.description.references | Adam, R., Cabrero-Antonino, J. R., Junge, K., Jackstell, R., & Beller, M. (2016). Esters, Including Triglycerides, and Hydrogen as Feedstocks for the Ruthenium-Catalyzed Direct N-Alkylation of Amines. Angewandte Chemie, 128(37), 11215-11219. doi:10.1002/ange.201603681 | es_ES |
dc.description.references | Corma, A., Iborra, S., & Velty, A. (2007). Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews, 107(6), 2411-2502. doi:10.1021/cr050989d | es_ES |
dc.description.references | Meier, M. A. R., Metzger, J. O., & Schubert, U. S. (2007). Plant oil renewable resources as green alternatives in polymer science. Chemical Society Reviews, 36(11), 1788. doi:10.1039/b703294c | es_ES |
dc.description.references | Biermann, U., Bornscheuer, U., Meier, M. A. R., Metzger, J. O., & Schäfer, H. J. (2011). Oils and Fats as Renewable Raw Materials in Chemistry. Angewandte Chemie International Edition, 50(17), 3854-3871. doi:10.1002/anie.201002767 | es_ES |
dc.description.references | Biermann, U., Bornscheuer, U., Meier, M. A. R., Metzger, J. O., & Schäfer, H. J. (2011). Fette und Öle als nachwachsende Rohstoffe in der Chemie. Angewandte Chemie, 123(17), 3938-3956. doi:10.1002/ange.201002767 | es_ES |
dc.description.references | Besson, M., Gallezot, P., & Pinel, C. (2013). Conversion of Biomass into Chemicals over Metal Catalysts. Chemical Reviews, 114(3), 1827-1870. doi:10.1021/cr4002269 | es_ES |
dc.description.references | Deuss, P. J., Barta, K., & de Vries, J. G. (2014). Homogeneous catalysis for the conversion of biomass and biomass-derived platform chemicals. Catal. Sci. Technol., 4(5), 1174-1196. doi:10.1039/c3cy01058a | es_ES |
dc.description.references | Liu, W., Sahoo, B., Spannenberg, A., Junge, K., & Beller, M. (2018). Tailored Cobalt‐Catalysts for Reductive Alkylation of Anilines with Carboxylic Acids under Mild Conditions. Angewandte Chemie International Edition, 57(36), 11673-11677. doi:10.1002/anie.201806132 | es_ES |
dc.description.references | Liu, W., Sahoo, B., Spannenberg, A., Junge, K., & Beller, M. (2018). Tailored Cobalt-Catalysts for Reductive Alkylation of Anilines with Carboxylic Acids under Mild Conditions. Angewandte Chemie, 130(36), 11847-11851. doi:10.1002/ange.201806132 | es_ES |
dc.description.references | Shi, Y., Kamer, P. C. J., Cole-Hamilton, D. J., Harvie, M., Baxter, E. F., Lim, K. J. C., & Pogorzelec, P. (2017). A new route to N-aromatic heterocycles from the hydrogenation of diesters in the presence of anilines. Chemical Science, 8(10), 6911-6917. doi:10.1039/c7sc01718a | es_ES |
dc.description.references | Shi, Y., Kamer, P. C. J., & Cole-Hamilton, D. J. (2017). A new route to α,ω-diamines from hydrogenation of dicarboxylic acids and their derivatives in the presence of amines. Green Chemistry, 19(22), 5460-5466. doi:10.1039/c7gc02838e | es_ES |
dc.description.references | Beydoun, K., Ghattas, G., Thenert, K., Klankermayer, J., & Leitner, W. (2014). Ruthenium-Catalyzed Reductive Methylation of Imines Using Carbon Dioxide and Molecular Hydrogen. Angewandte Chemie International Edition, 53(41), 11010-11014. doi:10.1002/anie.201403711 | es_ES |
dc.description.references | Beydoun, K., Ghattas, G., Thenert, K., Klankermayer, J., & Leitner, W. (2014). Ruthenium-Catalyzed Reductive Methylation of Imines Using Carbon Dioxide and Molecular Hydrogen. Angewandte Chemie, 126(41), 11190-11194. doi:10.1002/ange.201403711 | es_ES |
dc.description.references | He, Z., Liu, H., Qian, Q., Lu, L., Guo, W., Zhang, L., & Han, B. (2017). N-methylation of quinolines with CO2 and H2 catalyzed by Ru-triphos complexes. Science China Chemistry, 60(7), 927-933. doi:10.1007/s11426-017-9024-8 | es_ES |
dc.description.references | Yu, L., Zhang, Q., Li, S.-S., Huang, J., Liu, Y.-M., He, H.-Y., & Cao, Y. (2015). Gold-Catalyzed Reductive Transformation of Nitro Compounds Using Formic Acid: Mild, Efficient, and Versatile. ChemSusChem, 8(18), 3029-3035. doi:10.1002/cssc.201500869 | es_ES |
dc.description.references | Fleming, F. F., & Fleming, F. F. (1999). Nitrile-containing natural products. Natural Product Reports, 16(5), 597-606. doi:10.1039/a804370a | es_ES |
dc.description.references | Martin, A., & Lücke, B. (2000). Ammoxidation and oxidation of substituted methyl aromatics on vanadium-containing catalysts. Catalysis Today, 57(1-2), 61-70. doi:10.1016/s0920-5861(99)00309-0 | es_ES |
dc.description.references | Movassaghi, M., & Hill, M. D. (2007). Synthesis of pyrimidines by direct condensation of amides and nitriles. Nature Protocols, 2(8), 2018-2023. doi:10.1038/nprot.2007.280 | es_ES |
dc.description.references | Martin, A., & Kalevaru, V. N. (2010). Heterogeneously Catalyzed Ammoxidation: A Valuable Tool for One-Step Synthesis of Nitriles. ChemCatChem, 2(12), 1504-1522. doi:10.1002/cctc.201000173 | es_ES |
dc.description.references | Fleming, F. F., Yao, L., Ravikumar, P. C., Funk, L., & Shook, B. C. (2010). Nitrile-Containing Pharmaceuticals: Efficacious Roles of the Nitrile Pharmacophore. Journal of Medicinal Chemistry, 53(22), 7902-7917. doi:10.1021/jm100762r | es_ES |
dc.description.references | Anbarasan, P., Schareina, T., & Beller, M. (2011). Recent developments and perspectives in palladium-catalyzed cyanation of aryl halides: synthesis of benzonitriles. Chemical Society Reviews, 40(10), 5049. doi:10.1039/c1cs15004a | es_ES |
dc.description.references | Ikawa, T., Fujita, Y., Mizusaki, T., Betsuin, S., Takamatsu, H., Maegawa, T., … Sajiki, H. (2012). Selective N-alkylation of amines using nitriles under hydrogenation conditions: facile synthesis of secondary and tertiary amines. Org. Biomol. Chem., 10(2), 293-304. doi:10.1039/c1ob06303k | es_ES |
dc.description.references | Shao, Z., Fu, S., Wei, M., Zhou, S., & Liu, Q. (2016). Mild and Selective Cobalt-Catalyzed Chemodivergent Transfer Hydrogenation of Nitriles. Angewandte Chemie International Edition, 55(47), 14653-14657. doi:10.1002/anie.201608345 | es_ES |
dc.description.references | Shao, Z., Fu, S., Wei, M., Zhou, S., & Liu, Q. (2016). Mild and Selective Cobalt-Catalyzed Chemodivergent Transfer Hydrogenation of Nitriles. Angewandte Chemie, 128(47), 14873-14877. doi:10.1002/ange.201608345 | es_ES |
dc.description.references | Zerecero-Silva, P., Jimenez-Solar, I., Crestani, M. G., Arévalo, A., Barrios-Francisco, R., & García, J. J. (2009). Catalytic hydrogenation of aromatic nitriles and dinitriles with nickel compounds. Applied Catalysis A: General, 363(1-2), 230-234. doi:10.1016/j.apcata.2009.05.027 | es_ES |
dc.description.references | Srimani, D., Feller, M., Ben-David, Y., & Milstein, D. (2012). Catalytic coupling of nitriles with amines to selectively form imines under mild hydrogen pressure. Chemical Communications, 48(97), 11853. doi:10.1039/c2cc36639h | es_ES |
dc.description.references | Chakraborty, S., & Berke, H. (2014). Homogeneous Hydrogenation of Nitriles Catalyzed by Molybdenum and Tungsten Amides. ACS Catalysis, 4(7), 2191-2194. doi:10.1021/cs5004646 | es_ES |
dc.description.references | Choi, J.-H., & Prechtl, M. H. G. (2015). Tuneable Hydrogenation of Nitriles into Imines or Amines with a Ruthenium Pincer Complex under Mild Conditions. ChemCatChem, 7(6), 1023-1028. doi:10.1002/cctc.201403047 | es_ES |
dc.description.references | Chakraborty, S., Leitus, G., & Milstein, D. (2017). Iron-Catalyzed Mild and Selective Hydrogenative Cross-Coupling of Nitriles and Amines To Form Secondary Aldimines. Angewandte Chemie International Edition, 56(8), 2074-2078. doi:10.1002/anie.201608537 | es_ES |
dc.description.references | Chakraborty, S., Leitus, G., & Milstein, D. (2017). Iron-Catalyzed Mild and Selective Hydrogenative Cross-Coupling of Nitriles and Amines To Form Secondary Aldimines. Angewandte Chemie, 129(8), 2106-2110. doi:10.1002/ange.201608537 | es_ES |