- -

Cardiac action potential repolarization revisited: early repolarization shows all-or-none behaviour

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


Cardiac action potential repolarization revisited: early repolarization shows all-or-none behaviour

Show full item record

Trenor Gomis, BA.; Cardona-Urrego, KE.; Saiz Rodríguez, FJ.; Noble, D.; Giles, W. (2017). Cardiac action potential repolarization revisited: early repolarization shows all-or-none behaviour. The Journal of Physiology. 595(21):6599-6612. https://doi.org/10.1113/JP273651

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/153463

Files in this item

Item Metadata

Title: Cardiac action potential repolarization revisited: early repolarization shows all-or-none behaviour
Author: Trenor Gomis, Beatriz Ana Cardona-Urrego, Karen Eliana Saiz Rodríguez, Francisco Javier Noble, Denis Giles, Wayne
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Issued date:
[EN] In healthy mammalian hearts the action potential (AP) waveform initiates and modulates each contraction, or heartbeat. As a result, AP height and duration are key physiological variables. In addition, rate-dependent ...[+]
Copyrigths: Reserva de todos los derechos
The Journal of Physiology. (issn: 0022-3751 )
DOI: 10.1113/JP273651
Blackwell Publishing
Publisher version: https://doi.org/10.1113/JP273651
Project ID:
The Giles Laboratory acknowledges funding from the Canadian Institutes for Health Research. The computational work in Spain, was funded from the Ministerio de Economia, Industria y Competitividad of Spain (DPI2016-75799-R) ...[+]
Type: Artículo


Anderson, M. E., Al-Khatib, S. M., Roden, D. M., & Califf, R. M. (2002). Cardiac repolarization: Current knowledge, critical gaps, and new approaches to drug development and patient management. American Heart Journal, 144(5), 769-781. doi:10.1067/mhj.2002.125804

ANTZELEVITCH, C. (2005). Modulation of Transmural Repolarization. Annals of the New York Academy of Sciences, 1047(1), 314-323. doi:10.1196/annals.1341.028

Antzelevitch, C. (2012). Genetic, Molecular and Cellular Mechanisms Underlying the J Wave Syndromes. Circulation Journal, 76(5), 1054-1065. doi:10.1253/circj.cj-12-0284 [+]
Anderson, M. E., Al-Khatib, S. M., Roden, D. M., & Califf, R. M. (2002). Cardiac repolarization: Current knowledge, critical gaps, and new approaches to drug development and patient management. American Heart Journal, 144(5), 769-781. doi:10.1067/mhj.2002.125804

ANTZELEVITCH, C. (2005). Modulation of Transmural Repolarization. Annals of the New York Academy of Sciences, 1047(1), 314-323. doi:10.1196/annals.1341.028

Antzelevitch, C. (2012). Genetic, Molecular and Cellular Mechanisms Underlying the J Wave Syndromes. Circulation Journal, 76(5), 1054-1065. doi:10.1253/circj.cj-12-0284

Antzelevitch, C., & Yan, G.-X. (2010). J wave syndromes. Heart Rhythm, 7(4), 549-558. doi:10.1016/j.hrthm.2009.12.006

Antzelevitch, C., Yan, G.-X., & Viskin, S. (2011). Rationale for the Use of the Terms J-Wave Syndromes and Early Repolarization. Journal of the American College of Cardiology, 57(15), 1587-1590. doi:10.1016/j.jacc.2010.11.038

Ballou, L. M., Lin, R. Z., & Cohen, I. S. (2015). Control of Cardiac Repolarization by Phosphoinositide 3-Kinase Signaling to Ion Channels. Circulation Research, 116(1), 127-137. doi:10.1161/circresaha.116.303975

Bean, B. P. (2007). The action potential in mammalian central neurons. Nature Reviews Neuroscience, 8(6), 451-465. doi:10.1038/nrn2148

Belardinelli, L., Giles, W. R., Rajamani, S., Karagueuzian, H. S., & Shryock, J. C. (2015). Cardiac late Na+ current: Proarrhythmic effects, roles in long QT syndromes, and pathological relationship to CaMKII and oxidative stress. Heart Rhythm, 12(2), 440-448. doi:10.1016/j.hrthm.2014.11.009

Bondarenko, V. E., & Rasmusson, R. L. (2010). Transmural heterogeneity of repolarization and Ca2+ handling in a model of mouse ventricular tissue. American Journal of Physiology-Heart and Circulatory Physiology, 299(2), H454-H469. doi:10.1152/ajpheart.00907.2009

Bouchard, R. A., Clark, R. B., & Giles, W. R. (1995). Effects of Action Potential Duration on Excitation-Contraction Coupling in Rat Ventricular Myocytes. Circulation Research, 76(5), 790-801. doi:10.1161/01.res.76.5.790

Bouchard, R., Clark, R. B., Juhasz, A. E., & Giles, W. R. (2004). Changes in extracellular K+concentration modulate contractility of rat and rabbit cardiac myocytes via the inward rectifier K+currentIK1. The Journal of Physiology, 556(3), 773-790. doi:10.1113/jphysiol.2003.058248

Bowes, J., Brown, A. J., Hamon, J., Jarolimek, W., Sridhar, A., Waldron, G., & Whitebread, S. (2012). Reducing safety-related drug attrition: the use of in vitro pharmacological profiling. Nature Reviews Drug Discovery, 11(12), 909-922. doi:10.1038/nrd3845

Burashnikov, E., Pfeiffer, R., Barajas-Martinez, H., Delpón, E., Hu, D., Desai, M., … Antzelevitch, C. (2010). Mutations in the cardiac L-type calcium channel associated with inherited J-wave syndromes and sudden cardiac death. Heart Rhythm, 7(12), 1872-1882. doi:10.1016/j.hrthm.2010.08.026

Chandler, W. K., & Meves, H. (1970). Evidence for two types of sodium conductance in axons perfused with sodium fluoride solution. The Journal of Physiology, 211(3), 653-678. doi:10.1113/jphysiol.1970.sp009298

Chandler, W. K., & Meves, H. (1970). Slow changes in membrane permeability and long-lasting action potentials in axons perfused with fluoride solutions. The Journal of Physiology, 211(3), 707-728. doi:10.1113/jphysiol.1970.sp009300

Chi, K. R. (2013). Revolution dawning in cardiotoxicity testing. Nature Reviews Drug Discovery, 12(8), 565-567. doi:10.1038/nrd4083

CLARK, R. B., BOUCHARD, R. A., & GILES, W. R. (1996). Action Potential Duration Modulates Calcium Influx, Na+-Ca2+ Exchange, and Intracellular Calcium Release in Rat Ventricular Myocytesa. Annals of the New York Academy of Sciences, 779(1), 417-429. doi:10.1111/j.1749-6632.1996.tb44817.x

Clark, R. B., Tremblay, A., Melnyk, P., Allen, B. G., Giles, W. R., & Fiset, C. (2001). T-tubule localization of the inward-rectifier K+ channel in mouse ventricular myocytes: a role in K+ accumulation. The Journal of Physiology, 537(3), 979-992. doi:10.1113/jphysiol.2001.012708

Coronel, R., Wilders, R., Verkerk, A. O., Wiegerinck, R. F., Benoist, D., & Bernus, O. (2013). Electrophysiological changes in heart failure and their implications for arrhythmogenesis. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1832(12), 2432-2441. doi:10.1016/j.bbadis.2013.04.002

Cranefield, P. F., & Hoffman, B. F. (1958). PROPAGATED REPOLARIZATION IN HEART MUSCLE. Journal of General Physiology, 41(4), 633-649. doi:10.1085/jgp.41.4.633

Fink, M., Giles, W. R., & Noble, D. (2006). Contributions of inwardly rectifying K + currents to repolarization assessed using mathematical models of human ventricular myocytes. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 364(1842), 1207-1222. doi:10.1098/rsta.2006.1765

Giebisch, G., & Weidmann, S. (1971). Membrane Currents in Mammalian Ventricular Heart Muscle Fibers Using a Voltage-Clamp Technique. Journal of General Physiology, 57(3), 290-296. doi:10.1085/jgp.57.3.290

Gray, R. A., Mashburn, D. N., Sidorov, V. Y., & Wikswo, J. P. (2013). Quantification of Transmembrane Currents during Action Potential Propagation in the Heart. Biophysical Journal, 104(1), 268-278. doi:10.1016/j.bpj.2012.11.007

Gussak, I., & Antzelevitch, C. (2000). Early repolarization syndrome: Clinical characteristics and possible cellular and ionic mechanisms. Journal of Electrocardiology, 33(4), 299-309. doi:10.1054/jelc.2000.18106

Gussak, I., Antzelevitch, C., Hammill, S. C., Shen, W. K., & Bjerregaard, P. (2003). Cardiac Repolarization. doi:10.1385/1592593623

Haïssaguerre, M., Derval, N., Sacher, F., Jesel, L., Deisenhofer, I., de Roy, L., … Clémenty, J. (2008). Sudden Cardiac Arrest Associated with Early Repolarization. New England Journal of Medicine, 358(19), 2016-2023. doi:10.1056/nejmoa071968

HALL, A. E., & NOBLE, D. (1963). Transient Responses of Purkinje Fibres to Non-uniform Currents. Nature, 199(4900), 1294-1295. doi:10.1038/1991294a0

Hoogendijk, M. G., Potse, M., & Coronel, R. (2012). Early repolarization patterns: The good, the bad, and the ugly? Heart Rhythm, 9(2), 230-231. doi:10.1016/j.hrthm.2011.09.064

Hoogendijk, M. G., Potse, M., & Coronel, R. (2013). Critical appraisal of the mechanism underlying J waves. Journal of Electrocardiology, 46(5), 390-394. doi:10.1016/j.jelectrocard.2013.06.017

Huxley, A. F. (1959). ION MOVEMENTS DURING NERVE ACTIVITY. Annals of the New York Academy of Sciences, 81(2), 221-246. doi:10.1111/j.1749-6632.1959.tb49311.x

Janse, M. (2004). Electrophysiological changes in heart failure and their relationship to arrhythmogenesis. Cardiovascular Research, 61(2), 208-217. doi:10.1016/j.cardiores.2003.11.018

Jost, N., Virág, L., Comtois, P., Ördög, B., Szuts, V., Seprényi, G., … Nattel, S. (2013). Ionic mechanisms limiting cardiac repolarization reserve in humans compared to dogs. The Journal of Physiology, 591(17), 4189-4206. doi:10.1113/jphysiol.2013.261198

Kannankeril, P., Roden, D. M., & Darbar, D. (2010). Drug-Induced Long QT Syndrome. Pharmacological Reviews, 62(4), 760-781. doi:10.1124/pr.110.003723

Kelly, A., Ghouri, I. A., Kemi, O. J., Bishop, M. J., Bernus, O., Fenton, F. H., … Smith, G. L. (2013). Subepicardial Action Potential Characteristics Are a Function of Depth and Activation Sequence in Isolated Rabbit Hearts. Circulation: Arrhythmia and Electrophysiology, 6(4), 809-817. doi:10.1161/circep.113.000334

Kondo, R. P., Dederko, D. A., Teutsch, C., Chrast, J., Catalucci, D., Chien, K. R., & Giles, W. R. (2006). Comparison of contraction and calcium handling between right and left ventricular myocytes from adult mouse heart: a role for repolarization waveform. The Journal of Physiology, 571(1), 131-146. doi:10.1113/jphysiol.2005.101428

Kramer, J., Obejero-Paz, C. A., Myatt, G., Kuryshev, Y. A., Bruening-Wright, A., Verducci, J. S., & Brown, A. M. (2013). MICE Models: Superior to the HERG Model in Predicting Torsade de Pointes. Scientific Reports, 3(1). doi:10.1038/srep02100

Libbus, I., Wan, X., & Rosenbaum, D. S. (2004). Electrotonic load triggers remodeling of repolarizing current Ito in ventricle. American Journal of Physiology-Heart and Circulatory Physiology, 286(5), H1901-H1909. doi:10.1152/ajpheart.00581.2003

Liu, M. B., Ko, C. Y., Song, Z., Garfinkel, A., Weiss, J. N., & Qu, Z. (2016). A Dynamical Threshold for Cardiac Delayed Afterdepolarization-Mediated Triggered Activity. Biophysical Journal, 111(11), 2523-2533. doi:10.1016/j.bpj.2016.10.009

Macfarlane, P. W., Antzelevitch, C., Haissaguerre, M., Huikuri, H. V., Potse, M., Rosso, R., … Yan, G.-X. (2015). The Early Repolarization Pattern. Journal of the American College of Cardiology, 66(4), 470-477. doi:10.1016/j.jacc.2015.05.033

Mirams, G. R., Davies, M. R., Cui, Y., Kohl, P., & Noble, D. (2012). Application of cardiac electrophysiology simulations to pro‐arrhythmic safety testing. British Journal of Pharmacology, 167(5), 932-945. doi:10.1111/j.1476-5381.2012.02020.x

Mirams, G. R., Pathmanathan, P., Gray, R. A., Challenor, P., & Clayton, R. H. (2016). Uncertainty and variability in computational and mathematical models of cardiac physiology. The Journal of Physiology, 594(23), 6833-6847. doi:10.1113/jp271671

Mohri, S., Shimizu, J., Mika, Y., Shemer, I., Wang, J., Ben-Haim, S., & Burkhoff, D. (2003). Electric currents applied during refractory period enhance contractility and systolic calcium in the ferret heart. American Journal of Physiology-Heart and Circulatory Physiology, 284(4), H1119-H1123. doi:10.1152/ajpheart.00378.2002

Moreno, J. D., Yang, P.-C., Bankston, J. R., Grandi, E., Bers, D. M., Kass, R. S., & Clancy, C. E. (2013). Ranolazine for Congenital and Acquired Late I Na -Linked Arrhythmias. Circulation Research, 113(7). doi:10.1161/circresaha.113.301971

Myles, R. C., Bernus, O., Burton, F. L., Cobbe, S. M., & Smith, G. L. (2010). Effect of activation sequence on transmural patterns of repolarization and action potential duration in rabbit ventricular myocardium. American Journal of Physiology-Heart and Circulatory Physiology, 299(6), H1812-H1822. doi:10.1152/ajpheart.00518.2010

Näbauer, M., Beuckelmann, D. J., & Erdmann, E. (1993). Characteristics of transient outward current in human ventricular myocytes from patients with terminal heart failure. Circulation Research, 73(2), 386-394. doi:10.1161/01.res.73.2.386

Nattel, S. (2010). Sudden Cardio Arrest: When normal ECG variants turn lethal. Nature Medicine, 16(6), 646-647. doi:10.1038/nm0610-646

Nerbonne, J. M., & Kass, R. S. (2005). Molecular Physiology of Cardiac Repolarization. Physiological Reviews, 85(4), 1205-1253. doi:10.1152/physrev.00002.2005

NOBLE, D. (1960). Cardiac Action and Pacemaker Potentials based on the Hodgkin-Huxley Equations. Nature, 188(4749), 495-497. doi:10.1038/188495b0

Noble, D. (1962). A modification of the Hodgkin-Huxley equations applicable to Purkinje fibre action and pacemaker potentials. The Journal of Physiology, 160(2), 317-352. doi:10.1113/jphysiol.1962.sp006849

Noble, D. (1962). The Voltage Dependence of the Cardiac Membrane Conductance. Biophysical Journal, 2(5), 381-393. doi:10.1016/s0006-3495(62)86862-3

Noble, D., & Tsien, R. W. (1972). The Repolarization Process of Heart Cells. Electrical Phenomena in the Heart, 133-161. doi:10.1016/b978-0-12-208950-3.50012-0

O’Hara, T., Virág, L., Varró, A., & Rudy, Y. (2011). Simulation of the Undiseased Human Cardiac Ventricular Action Potential: Model Formulation and Experimental Validation. PLoS Computational Biology, 7(5), e1002061. doi:10.1371/journal.pcbi.1002061

Osborn, J. J. (1953). Experimental Hypothermia: Respiratory and Blood ph Changes in Relation to Cardiac Function. American Journal of Physiology-Legacy Content, 175(3), 389-398. doi:10.1152/ajplegacy.1953.175.3.389

Qu, Z., Xie, L.-H., Olcese, R., Karagueuzian, H. S., Chen, P.-S., Garfinkel, A., & Weiss, J. N. (2013). Early afterdepolarizations in cardiac myocytes: beyond reduced repolarization reserve. Cardiovascular Research, 99(1), 6-15. doi:10.1093/cvr/cvt104

Reuter, H. (1973). Divalent cations as charge carriers in excitable membranes. Progress in Biophysics and Molecular Biology, 26, 1-43. doi:10.1016/0079-6107(73)90016-3

Roden, D. M. (2004). Drug-Induced Prolongation of the QT Interval. New England Journal of Medicine, 350(10), 1013-1022. doi:10.1056/nejmra032426

Roden, D. M. (2008). Repolarization Reserve. Circulation, 118(10), 981-982. doi:10.1161/circulationaha.108.798918

Roden, D. M., & Abraham, R. L. (2011). Refining repolarization reserve. Heart Rhythm, 8(11), 1756-1757. doi:10.1016/j.hrthm.2011.06.024

Roden, D. M., & Yang, T. (2005). Protecting the Heart Against Arrhythmias: Potassium Current Physiology and Repolarization Reserve. Circulation, 112(10), 1376-1378. doi:10.1161/circulationaha.105.562777

Romero, L., Pueyo, E., Fink, M., & Rodríguez, B. (2009). Impact of ionic current variability on human ventricular cellular electrophysiology. American Journal of Physiology-Heart and Circulatory Physiology, 297(4), H1436-H1445. doi:10.1152/ajpheart.00263.2009

Romero, L., Trenor, B., Yang, P.-C., Saiz, J., & Clancy, C. E. (2014). In silico screening of the impact of hERG channel kinetic abnormalities on channel block and susceptibility to acquired long QT syndrome. Journal of Molecular and Cellular Cardiology, 72, 126-137. doi:10.1016/j.yjmcc.2014.02.018

Rosso, R., Adler, A., Halkin, A., & Viskin, S. (2011). Risk of sudden death among young individuals with J waves and early repolarization: Putting the evidence into perspective. Heart Rhythm, 8(6), 923-929. doi:10.1016/j.hrthm.2011.01.037

Rosso, R., Glikson, E., Belhassen, B., Katz, A., Halkin, A., Steinvil, A., & Viskin, S. (2012). Distinguishing «benign» from «malignant early repolarization»: The value of the ST-segment morphology. Heart Rhythm, 9(2), 225-229. doi:10.1016/j.hrthm.2011.09.012

Saegusa, N., Garg, V., & Spitzer, K. W. (2013). Modulation of ventricular transient outward K+ current by acidosis and its effects on excitation-contraction coupling. American Journal of Physiology-Heart and Circulatory Physiology, 304(12), H1680-H1696. doi:10.1152/ajpheart.00070.2013

Sager, P. T., Gintant, G., Turner, J. R., Pettit, S., & Stockbridge, N. (2014). Rechanneling the cardiac proarrhythmia safety paradigm: A meeting report from the Cardiac Safety Research Consortium. American Heart Journal, 167(3), 292-300. doi:10.1016/j.ahj.2013.11.004

Sah, R., Ramirez, R. J., Oudit, G. Y., Gidrewicz, D., Trivieri, M. G., Zobel, C., & Backx, P. H. (2003). Regulation of cardiac excitation-contraction coupling by action potential repolarization: role of the transient outward potassium current (Ito). The Journal of Physiology, 546(1), 5-18. doi:10.1113/jphysiol.2002.026468

Sampson, K. J., & Henriquez, C. S. (2005). Electrotonic influences on action potential duration dispersion in small hearts: a simulation study. American Journal of Physiology-Heart and Circulatory Physiology, 289(1), H350-H360. doi:10.1152/ajpheart.00507.2004

Sarkar, A. X., & Sobie, E. A. (2011). Quantification of repolarization reserve to understand interpatient variability in the response to proarrhythmic drugs: A computational analysis. Heart Rhythm, 8(11), 1749-1755. doi:10.1016/j.hrthm.2011.05.023

Sarkar, A. X., Christini, D. J., & Sobie, E. A. (2012). Exploiting mathematical models to illuminate electrophysiological variability between individuals. The Journal of Physiology, 590(11), 2555-2567. doi:10.1113/jphysiol.2011.223313

Silva, J., & Rudy, Y. (2005). Subunit Interaction Determines I Ks Participation in Cardiac Repolarization and Repolarization Reserve. Circulation, 112(10), 1384-1391. doi:10.1161/circulationaha.105.543306

SPITZER, K. W., POLLARD, A. E., YANG, L., ZANIBONI, M., CORDEIRO, J. M., & HUELSING, D. J. (2006). Cell-to-Cell Electrical Interactions During Early and Late Repolarization. Journal of Cardiovascular Electrophysiology, 17(s1), S8-S14. doi:10.1111/j.1540-8167.2006.00379.x

Tadros, R., Ton, A.-T., Fiset, C., & Nattel, S. (2014). Sex Differences in Cardiac Electrophysiology and Clinical Arrhythmias: Epidemiology, Therapeutics, and Mechanisms. Canadian Journal of Cardiology, 30(7), 783-792. doi:10.1016/j.cjca.2014.03.032

Taggart, P. (2001). Transmural repolarisation in the left ventricle in humans during normoxia and ischaemia. Cardiovascular Research, 50(3), 454-462. doi:10.1016/s0008-6363(01)00223-1

Teutsch, C., Kondo, R. P., Dederko, D. A., Chrast, J., Chien, K. R., & Giles, W. R. (2007). Spatial distributions of Kv4 channels and KChip2 isoforms in the murine heart based on laser capture microdissection. Cardiovascular Research, 73(4), 739-749. doi:10.1016/j.cardiores.2006.11.034

Tikkanen, J. T., Anttonen, O., Junttila, M. J., Aro, A. L., Kerola, T., Rissanen, H. A., … Huikuri, H. V. (2009). Long-Term Outcome Associated with Early Repolarization on Electrocardiography. New England Journal of Medicine, 361(26), 2529-2537. doi:10.1056/nejmoa0907589

Thomsen, M. B. (2007). Double pharmacological challenge on repolarization opens new avenues for drug safety research. British Journal of Pharmacology, 151(7), 909-911. doi:10.1038/sj.bjp.0707299

THOMSEN, M., OROS, A., SCHOENMAKERS, M., VANOPSTAL, J., MAAS, J., BEEKMAN, J., & VOS, M. (2007). Proarrhythmic electrical remodelling is associated with increased beat-to-beat variability of repolarisation. Cardiovascular Research, 73(3), 521-530. doi:10.1016/j.cardiores.2006.11.025

Varkevisser, R., Wijers, S. C., van der Heyden, M. A. G., Beekman, J. D. M., Meine, M., & Vos, M. A. (2012). Beat-to-beat variability of repolarization as a new biomarker for proarrhythmia in vivo. Heart Rhythm, 9(10), 1718-1726. doi:10.1016/j.hrthm.2012.05.016

Varró, A., & Baczkó, I. (2011). Cardiac ventricular repolarization reserve: a principle for understanding drug-related proarrhythmic risk. British Journal of Pharmacology, 164(1), 14-36. doi:10.1111/j.1476-5381.2011.01367.x

Vicente, J., Johannesen, L., Mason, J. W., Crumb, W. J., Pueyo, E., Stockbridge, N., & Strauss, D. G. (2015). Comprehensive T wave Morphology Assessment in a Randomized Clinical Study of Dofetilide, Quinidine, Ranolazine, and Verapamil. Journal of the American Heart Association, 4(4). doi:10.1161/jaha.114.001615

Walmsley, J., Rodriguez, J. F., Mirams, G. R., Burrage, K., Efimov, I. R., & Rodriguez, B. (2013). mRNA Expression Levels in Failing Human Hearts Predict Cellular Electrophysiological Remodeling: A Population-Based Simulation Study. PLoS ONE, 8(2), e56359. doi:10.1371/journal.pone.0056359

Wang, Y., Cheng, J., Joyner, R. W., Wagner, M. B., & Hill, J. A. (2006). Remodeling of Early-Phase Repolarization. Circulation, 113(15), 1849-1856. doi:10.1161/circulationaha.106.615682

Weidmann, S. (1951). Effect of current flow on the membrane potential of cardiac muscle. The Journal of Physiology, 115(2), 227-236. doi:10.1113/jphysiol.1951.sp004667

Weidmann, S. (1957). RESTING AND ACTION POTENTIALS OF CARDIAC MUSCLE. Annals of the New York Academy of Sciences, 65(6), 663-678. doi:10.1111/j.1749-6632.1957.tb36674.x

Wellens, H. J. (2008). Early Repolarization Revisited. New England Journal of Medicine, 358(19), 2063-2065. doi:10.1056/nejme0801060

WOOD, E. H., HEPPNER, R. L., & WEIDMANN, S. (1969). Inotropic Effects of Electric Currents. Circulation Research, 24(3), 409-445. doi:10.1161/01.res.24.3.409

Xiao, L., Xiao, J., Luo, X., Lin, H., Wang, Z., & Nattel, S. (2008). Feedback Remodeling of Cardiac Potassium Current Expression. Circulation, 118(10), 983-992. doi:10.1161/circulationaha.107.758672

Xiao, L., Zhang, L., Han, W., Wang, Z., & Nattel, S. (2006). Sex-based transmural differences in cardiac repolarization and ionic-current properties in canine left ventricles. American Journal of Physiology-Heart and Circulatory Physiology, 291(2), H570-H580. doi:10.1152/ajpheart.01288.2005

Xie, Y., Sato, D., Garfinkel, A., Qu, Z., & Weiss, J. N. (2010). So Little Source, So Much Sink: Requirements for Afterdepolarizations to Propagate in Tissue. Biophysical Journal, 99(5), 1408-1415. doi:10.1016/j.bpj.2010.06.042

Yan, G.-X., Lankipalli, R. S., Burke, J. F., Musco, S., & Kowey, P. R. (2003). Ventricular repolarization components on the electrocardiogram. Journal of the American College of Cardiology, 42(3), 401-409. doi:10.1016/s0735-1097(03)00713-7

Yang, T., Chun, Y. W., Stroud, D. M., Mosley, J. D., Knollmann, B. C., Hong, C., & Roden, D. M. (2014). Screening for Acute I Kr Block Is Insufficient to Detect Torsades de Pointes Liability. Circulation, 130(3), 224-234. doi:10.1161/circulationaha.113.007765

Yang, P.-C., Song, Y., Giles, W. R., Horvath, B., Chen-Izu, Y., Belardinelli, L., … Clancy, C. E. (2015). A computational modelling approach combined with cellular electrophysiology data provides insights into the therapeutic benefit of targeting the late Na+current. The Journal of Physiology, 593(6), 1429-1442. doi:10.1113/jphysiol.2014.279554

Yu, H., McKinnon, D., Dixon, J. E., Gao, J., Wymore, R., Cohen, I. S., … Rosen, M. R. (1999). Transient Outward Current, I to1 , Is Altered in Cardiac Memory. Circulation, 99(14), 1898-1905. doi:10.1161/01.cir.99.14.1898

Zaniboni, M. (2011). 3D current–voltage–time surfaces unveil critical repolarization differences underlying similar cardiac action potentials: A model study. Mathematical Biosciences, 233(2), 98-110. doi:10.1016/j.mbs.2011.06.008

Zaniboni, M. (2012). Late Phase of Repolarization is Autoregenerative and Scales Linearly with Action Potential Duration in Mammals Ventricular Myocytes: A Model Study. IEEE Transactions on Biomedical Engineering, 59(1), 226-233. doi:10.1109/tbme.2011.2170987

Zaniboni, M., Pollard, A. E., Yang, L., & Spitzer, K. W. (2000). Beat-to-beat repolarization variability in ventricular myocytes and its suppression by electrical coupling. American Journal of Physiology-Heart and Circulatory Physiology, 278(3), H677-H687. doi:10.1152/ajpheart.2000.278.3.h677

Zhao, Z., Xie, Y., Wen, H., Xiao, D., Allen, C., Fefelova, N., … Xie, L.-H. (2012). Role of the transient outward potassium current in the genesis of early afterdepolarizations in cardiac cells. Cardiovascular Research, 95(3), 308-316. doi:10.1093/cvr/cvs183

Zhou, Q., Bett, G. C. L., & Rasmusson, R. L. (2012). Markov Models of Use-Dependence and Reverse Use-Dependence during the Mouse Cardiac Action Potential. PLoS ONE, 7(8), e42295. doi:10.1371/journal.pone.0042295




This item appears in the following Collection(s)

Show full item record